Abelian surfaces with fixed three torsion

Shiva Chidambaram

University of Chicago

shivac@uchicago.edu

Joint work with Frank Calegari and David P. Roberts

Fourteenth Algorithmic Number Theory Symposium

June 26, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let *C* be a smooth genus *g* curve over \mathbb{Q} . Let $A = \text{Jac}C = \text{Pic}^{o}(C)$ be its Jacobian variety. *A* is a principally polarized abelian variety over \mathbb{Q} of dimension *g*.

Over \mathbb{C} , A is a torus. $A \simeq \mathbb{C}^g / \Lambda$ for some lattice Λ . So $A[p] \simeq (\mathbb{Z}/p)^{2g}$ as abelian groups.

The polarisation induces a non-degenerate alternating bilinear pairing on A[p] called the **Weil pairing**.

The Galois action on A[p], being equivariant with respect to the Weil pairing, gives a representation

$$\overline{\rho}: G_{\mathbb{Q}} \longrightarrow \mathsf{GSp}(2g, \mathbb{F}_p)$$

with similitude character equal to the mod p cyclotomic character.

Can we parametrize all ppavs A of dimension g which have the same p-torsion representation?

This is a very hard problem in general.

Theorem

The moduli space $A_g(p)$ of ppavs of dimension g with full level p structure is geometrically rational only for (g, p) =

(1,2), (1,3), (1,5), (2,2), (2,3), (3,2).

Rubin-Silverberg constructed explicit families of elliptic curves with fixed *p*-torsion representations for p = 3 and 5.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem (Calegari-C-Roberts)

There are explicit polynomials A, B, C, $D \in \mathbb{Q}[a, b, c, d, s, t, u, v]$ homogenous of degrees 12, 18, 24, 30 in the variables s, t, u, vparametrizing all* genus 2 curves with the same 3-torsion.

$$\mathbf{P}^{3}(\mathbb{Q}) \ni (s:t:u:v) \mapsto C': y^{2} = x^{5} + A x^{3} + B x^{2} + C x + D.$$

- The curve corresponding to the point (1:0:0:0) is $C: y^2 = x^5 + ax^3 + bx^2 + cx + d.$
- The polynomials *A*, *B*, *C* and *D* have respectively 14604, 112763, 515354 and 1727097 terms.
- The coefficients are in fact in $\mathbb{Z}\left[\frac{1}{5}\right]$.

*It is all curves with a Weierstrass point. This moduli space is rational, as opposed to $\mathcal{M}_2(\overline{\rho})$.

Corollary

Suppose C has good ordinary reduction at 3, and A = Jac(C) satisfies the conditions of [BCGP18 Prop. 10.1.1. and 10.1.3.] so that C is modular. Then, if C' is a curve in the above family and has good reduction at 3, C' is also modular.

One can thus produce infinitely many modular abelian surfaces, by starting with a *C* as above, and considering for example, the points $(s : t : u : v) \in \mathbf{P}^3(\mathbb{Q})$ which reduce to $(1 : 0 : 0 : 0) \in \mathbf{P}^3(\mathbb{F}_3)$.

Subrepresentation inside torsion field

- Write down a division polynomial that cuts out an extension $K|\mathbb{Q}$ with Galois group G that is generically $GSp(2g, \mathbb{F}_p)$.
- $K = \mathbb{Q}[G]$ as a *G*-representation and the roots of this polynomial generate a representation *V* inside $\mathbb{Q}[G]$ of small dimension.
- For the small (g, p) we consider, this V is irreducible.

This process is reversible and any copy of V inside K gives an abelian variety with the same p-torsion. Since the isotypical component is $V \otimes V^*$, this identifies the moduli space with $\mathbf{P}(V^*)$.

Computational problem

Given V inside $K = \mathbb{Q}[G]$, how to find the "other" copies of it inside K explicitly?

Remark. Usually V is defined over $\mathbb{Q}(\zeta_p)$. So we work with $\operatorname{Gal}(K|\mathbb{Q}(\zeta_p))$ and keep track of descent.

Elliptic curves

Let
$$E: y^2 = f(x) = x^3 + ax + b$$
 over \mathbb{Q} .

Example (p = 2)

- A division polynomial is f(x), whose splitting field K has Galois group S₃ over Q. Roots of f generate the unique 2-dim irrep V of S₃ because trace is 0.
- Conversely, given V inside K, it has a unique element (upto scalars) fixed by a chosen order 2 subgroup of S_3 . Its minimal polynomial is $g(x) = x^3 + Ax + B$, and the elliptic curve $y^2 = g(x)$ has the same 2-torsion.

Example (p = 3)

A division polynomial is $p(z) = z^8 + 18az^4 + 108bz^2 - 27a^2$, whose roots generate a 2-dim irrep of $SL(2, \mathbb{F}_3)$ inside the splitting field $\mathcal{K} = \mathbb{Q}(\zeta_3)[SL(2, \mathbb{F}_3)]$. How to find the other copies?

Complex reflection groups

We have a map $V \to K$ of representations given by the roots of the division polynomial. It induces a map $Sym(V) \to K$.

So it is enough to find the V-isotypical piece inside Sym(V).

Theorem (Chevalley-Shephard-Todd)

A pair (G, V) consisting of a finite group G with a representation V is a complex reflection group if and only if $Sym(V)^G$ is a polynomial algebra.

In this situation, the V-isotypical piece inside Sym(V) is a free module over the invariant algebra $\text{Sym}(V)^{G}$ of rank equal to dim V.

We are in this situation (almost), and so we exploit the invariant theory of complex reflection groups.

(g,p)	(1,2)		(1,3)		(2,3)			
Group G	S_3		$SL(2,\mathbb{F}_3)$		$Sp(4,\mathbb{F}_3) imes \mathbb{Z}/3\mathbb{Z}$			
The invariant algebra $Sym(V)^G$ has generators in degrees	2	3	4	6	12	18	24	30
<i>V</i> -isotypical piece has generators in degrees	1	2	1	3	1	7	13	19

For any copy of V in K, the invariants suitably normalized give Weierstrass coefficients of the corresponding curve.

Let $C: y^2 = x^5 + a x^3 + b x^2 + c x + d$ over \mathbb{Q} and $\Delta = \operatorname{disc} C$. Let $A = \operatorname{Jac} C$.

There is a polynomial $p_{40}(z) =$

 $z^{40} + 15120a z^{38} + 2620800b z^{37} - 504(70277a^2 - 831820c) z^{36}$ - 1965600(2529ab - 33550d) $z^{35} + \cdots$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

which describes the field cut out by $\mathbf{P}\overline{\rho}: \mathcal{G}_{\mathbb{Q}} \longrightarrow \mathsf{PGSp}(4, \mathbb{F}_3).$

The polynomial $p_{40}(z^2)$ describes $K = \mathbb{Q}(A[3]) = \overline{\mathbb{Q}}^{\ker \overline{\rho}}$.

- ★ The degree 240 polynomial $p_{40}(z^6)$ is nicer. Its splitting field is $K(\Delta^{1/3})$, whose Galois group over $\mathbb{Q}(\zeta_3)$ is the exceptional complex reflection group $G = \operatorname{Sp}(4, \mathbb{F}_3) \times \mathbb{Z}/3\mathbb{Z}$.
 - Its roots generate the 4-dimensional reflection representation of *G*.
- ★ The family we obtain also has the field Q(Δ^{1/3}) fixed, even though this is not contained in K = Q(A[3]). A genus 2 curve C : y² = f(x) also does not determine Q(Δ^{1/3}) because scaling by t changes Δ by t⁴⁰. So this is okay.

Thank you

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

References

George Boxer, Frank Calegari, Toby Gee, and Vincent Pilloni. (2018) Abelian surfaces over totally real fields are potentially modular. Preprint. arXiv:1812.09269 [math.NT]
Frank Calegari and Shiva Chidambaram. (2020) Rationality of twists of $\mathcal{A}_2(3)$. <i>Preprint</i> .
Tom Fisher. (2012) The Hessian of a genus one curve. Proceedings of the London Mathematical Society, 104(3) : 613-648.
K. Rubin and A. Silverberg. (1995) Families of elliptic curves with constant mod <i>p</i> representations. Elliptic curves, modular forms, & Fermat's last theorem (Hong Kong, 1993), Ser. Number Theory, I, 148 - 161. Int. Press, Cambridge, MA.
Tetsuji Shioda. (1991) Construction of elliptic curves with high rank via the invariants of the Weyl groups.

J. Math. Soc. Japan, 43(4) : 673-719.