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Torsion in abelian varieties

Let C be a smooth genus g curve over Q.
Let A = JacC = Pico(C ) be its Jacobian variety. A is a principally
polarized abelian variety over Q of dimension g .

Over C, A is a torus. A ' Cg/Λ for some lattice Λ.
So A[p] ' (Z/p)2g as abelian groups.

The polarisation induces a non-degenerate alternating bilinear
pairing on A[p] called the Weil pairing.

The Galois action on A[p], being equivariant with respect to the
Weil pairing, gives a representation

ρ : GQ −→ GSp(2g ,Fp)

with similitude character equal to the mod p cyclotomic character.



Questions

Can we parametrize all ppavs A of dimension g which have the
same p-torsion representation?

This is a very hard problem in general.

Theorem

The moduli space Ag (p) of ppavs of dimension g with full level p
structure is geometrically rational only for (g , p) =

(1, 2), (1, 3), (1, 5), (2, 2), (2, 3), (3, 2).

Rubin-Silverberg constructed explicit families of elliptic curves with
fixed p-torsion representations for p = 3 and 5.



Main result

Theorem (Calegari-C-Roberts)

There are explicit polynomials A,B,C ,D ∈ Q[a, b, c, d , s, t, u, v ]
homogenous of degrees 12, 18, 24, 30 in the variables s, t, u, v
parametrizing all* genus 2 curves with the same 3-torsion.

P3(Q) 3 (s : t : u : v) 7→ C ′ : y2 = x5 + A x3 + B x2 + C x + D.

The curve corresponding to the point (1 : 0 : 0 : 0) is
C : y2 = x5 + ax3 + bx2 + cx + d .

The polynomials A,B,C and D have respectively
14604, 112763, 515354 and 1727097 terms.

The coefficients are in fact in Z
[

1
5

]
.

*It is all curves with a Weierstrass point. This moduli space is
rational, as opposed to M2(ρ).



Transferring modularity

Corollary

Suppose C has good ordinary reduction at 3, and A = Jac(C )
satisfies the conditions of [BCGP18 Prop. 10.1.1. and 10.1.3.] so
that C is modular. Then, if C ′ is a curve in the above family and
has good reduction at 3, C ′ is also modular.

One can thus produce infinitely many modular abelian surfaces, by
starting with a C as above, and considering for example, the points
(s : t : u : v) ∈ P3(Q) which reduce to (1 : 0 : 0 : 0) ∈ P3(F3).



Subrepresentation inside torsion field

Write down a division polynomial that cuts out an extension
K |Q with Galois group G that is generically GSp(2g ,Fp).

K = Q[G ] as a G -representation and the roots of this
polynomial generate a representation V inside Q[G ] of small
dimension.

For the small (g , p) we consider, this V is irreducible.

This process is reversible and any copy of V inside K gives an
abelian variety with the same p-torsion. Since the isotypical
component is V ⊗V ∗, this identifies the moduli space with P(V ∗).

Computational problem

Given V inside K = Q[G ], how to find the ”other” copies of it
inside K explicitly?

Remark. Usually V is defined over Q(ζp). So we work with
Gal(K |Q(ζp)) and keep track of descent.



Elliptic curves

Let E : y2 = f (x) = x3 + ax + b over Q.

Example (p = 2)

A division polynomial is f (x), whose splitting field K has
Galois group S3 over Q. Roots of f generate the unique 2-dim
irrep V of S3 because trace is 0.

Conversely, given V inside K , it has a unique element (upto
scalars) fixed by a chosen order 2 subgroup of S3. Its minimal
polynomial is g(x) = x3 + Ax + B, and the elliptic curve
y2 = g(x) has the same 2-torsion.

Example (p = 3)

A division polynomial is p(z) = z8 + 18az4 + 108bz2 − 27a2,
whose roots generate a 2-dim irrep of SL(2,F3) inside the splitting
field K = Q(ζ3)[SL(2,F3)]. How to find the other copies?



Complex reflection groups

We have a map V → K of representations given by the roots of
the division polynomial. It induces a map Sym(V )→ K .

So it is enough to find the V -isotypical piece inside Sym(V ).

Theorem (Chevalley-Shephard-Todd)

A pair (G ,V ) consisting of a finite group G with a representation
V is a complex reflection group if and only if Sym(V )G is a
polynomial algebra.

In this situation, the V -isotypical piece inside Sym(V ) is a free
module over the invariant algebra Sym(V )G of rank equal to
dimV .

We are in this situation (almost), and so we exploit the invariant
theory of complex reflection groups.



Invariants and covariants

(g,p) (1,2) (1,3) (2,3)
Group G S3 SL(2,F3) Sp(4,F3)× Z/3Z
The invariant algebra
Sym(V )G has generators
in degrees

2 3 4 6 12 18 24 30

V -isotypical piece has
generators in degrees

1 2 1 3 1 7 13 19

For any copy of V in K , the invariants suitably normalized give
Weierstrass coefficients of the corresponding curve.



Three torsion of genus 2 curves

Let C : y2 = x5 + a x3 + b x2 + c x + d over Q and ∆ = discC .
Let A = JacC .

There is a polynomial p40(z) =

z40 + 15120a z38 + 2620800b z37 − 504(70277a2 − 831820c) z36

− 1965600(2529ab − 33550d) z35 + · · ·

which describes the field cut out by Pρ : GQ −→ PGSp(4,F3).

The polynomial p40(z2) describes K = Q(A[3]) = Qker ρ
.



Contrasting genus 1 and 2

F The degree 240 polynomial p40(z6) is nicer. Its splitting field
is K (∆1/3), whose Galois group over Q(ζ3) is the exceptional
complex reflection group G = Sp(4,F3)× Z/3Z.

Its roots generate the 4-dimensional reflection representation
of G .

F The family we obtain also has the field Q(∆1/3) fixed, even
though this is not contained in K = Q(A[3]). A genus 2 curve
C : y2 = f (x) also does not determine Q(∆1/3) because
scaling by t changes ∆ by t40. So this is okay.



Thank you
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