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Torsion in abelian varieties

Let C be a smooth genus g curve over Q.
Let A = JacC = Pic°(C) be its Jacobian variety. A is a principally
polarized abelian variety over Q of dimension g.

Over C, A'is a torus. A ~ C&/A for some lattice A.
So A[p] ~ (Z/p)?& as abelian groups.

The polarisation induces a non-degenerate alternating bilinear
pairing on A[p] called the Weil pairing.

The Galois action on A[p], being equivariant with respect to the
Weil pairing, gives a representation

p: Gp — GSp(2g,Fp)

with similitude character equal to the mod p cyclotomic character.



Questions

Can we parametrize all ppavs A of dimension g which have the
same p-torsion representation?

This is a very hard problem in general.

Theorem

The moduli space Ag(p) of ppavs of dimension g with full level p
structure is geometrically rational only for (g, p) =

(1,2), (1,3), (1,5), (2,2), (2,3), (3,2).

Rubin-Silverberg constructed explicit families of elliptic curves with
fixed p-torsion representations for p = 3 and 5.



Main result

Theorem (Calegari-C-Roberts)

There are explicit polynomials A, B, C,D € Q[a, b, c,d,s, t, u, V]
homogenous of degrees 12,18,24,30 in the variables s, t, u, v
parametrizing all* genus 2 curves with the same 3-torsion.

PXQ)>(s:t:u:v)»C:y2=x>+Ax>*+B x2+ C x+D.

@ The curve corresponding to the point (1:0:0:0) is
C:y?=x>+ax®+bx®> + cx +d.

@ The polynomials A, B, C and D have respectively
14604, 112763, 515354 and 1727097 terms.

@ The coefficients are in fact in Z [%]

*It is all curves with a Weierstrass point. This moduli space is
rational, as opposed to Ma(p).



Transferring modularity

Corollary

Suppose C has good ordinary reduction at 3, and A = Jac(C)
satisfies the conditions of [BCGP18 Prop. 10.1.1. and 10.1.3.] so
that C is modular. Then, if C' is a curve in the above family and
has good reduction at 3, C’' is also modular.

One can thus produce infinitely many modular abelian surfaces, by
starting with a C as above, and considering for example, the points
(s:t:u:v)e P3Q) which reduce to (1:0:0:0) € P3(F3).



Subrepresentation inside torsion field

@ Write down a division polynomial that cuts out an extension
K|Q with Galois group G that is generically GSp(2g,Fp).

o K = Q[G] as a G-representation and the roots of this
polynomial generate a representation V inside Q[G] of small
dimension.

@ For the small (g, p) we consider, this V is irreducible.

This process is reversible and any copy of V inside K gives an
abelian variety with the same p-torsion. Since the isotypical
component is V ® V*, this identifies the moduli space with P(V*).

Computational problem

Given V inside K = Q[G], how to find the "other” copies of it
inside K explicitly?

Remark. Usually V is defined over Q({,). So we work with
Gal(K|Q(¢p)) and keep track of descent.



Elliptic curves

Let E:y? = f(x) = x3 + ax + b over Q.

Example (p = 2)

@ A division polynomial is f(x), whose splitting field K has
Galois group S3 over Q. Roots of f generate the unique 2-dim
irrep V of S3 because trace is 0.

e Conversely, given V inside K, it has a unique element (upto
scalars) fixed by a chosen order 2 subgroup of S3. Its minimal
polynomial is g(x) = x3 + Ax + B, and the elliptic curve
y? = g(x) has the same 2-torsion.

Example (p = 3)

A division polynomial is p(z) = z8 + 18az* 4 108bz% — 272,
whose roots generate a 2-dim irrep of SL(2,F3) inside the splitting
field K = Q(¢3)[SL(2,F3)]. How to find the other copies?




Complex reflection groups

We have a map V — K of representations given by the roots of
the division polynomial. It induces a map Sym(V) — K.

So it is enough to find the V-isotypical piece inside Sym(V/).

Theorem (Chevalley-Shephard-Todd)

A pair (G, V') consisting of a finite group G with a representation
V is a complex reflection group if and only if Sym(V)® is a
polynomial algebra.

In this situation, the V-isotypical piece inside Sym(V) is a free
module over the invariant algebra Sym(V)€ of rank equal to
dim V.

We are in this situation (almost), and so we exploit the invariant
theory of complex reflection groups.



Invariants and covariants

(g.p) (1.2) | (1,3) (2,3)
Group G S3 | SL(2,F3) | Sp(4,F3) x Z/3Z
The invariant algebra 2 3 4 6 12 18 24 30
Sym(V)® has generators

in degrees

V-isotypical piece has 1 2 1 3 1 7 13 19
generators in degrees

For any copy of V in K, the invariants suitably normalized give
Weierstrass coefficients of the corresponding curve.



Three torsion of genus 2 curves

Let C:y?=x>+ax3+bx?>+cx+dover Q and A = discC.
Let A= JacC.

There is a polynomial pao(z) =
z*% 4+ 15120a 238 + 26208006 237 — 504(70277a> — 831820c¢) z*°
— 1965600(2529ab — 33550d) z% + - -

which describes the field cut out by Pp : Gg — PGSp(4, F3).

The polynomial pso(z?) describes K = Q(A[3]) = o’



Contrasting genus 1 and 2

% The degree 240 polynomial pso(z°) is nicer. Its splitting field
is K(A'/3), whose Galois group over Q((3) is the exceptional
complex reflection group G = Sp(4,F3) x Z/3Z.

@ lts roots generate the 4-dimensional reflection representation
of G.

% The family we obtain also has the field Q(A/3) fixed, even
though this is not contained in K = Q(A[3]). A genus 2 curve
C : y? = f(x) also does not determine Q(A'/3) because
scaling by t changes A by t%°. So this is okay.



Thank you
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