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SOME MODULAR ABELIAN SURFACES

FRANK CALEGARI, SHIVA CHIDAMBARAM, AND ALEXANDRU GHITZA

Abstract. In this note, we use the main theorem of Boxer, Calegari, Gee,
and Pilloni in Abelian surfaces over totally real fields are potentially mod-
ular (arXiv:1812.09269, 2018) to give explicit examples of modular abelian
surfaces A with EndC A = Z and A smooth outside 2, 3, 5, and 7.

1. Introduction

Let C/Q be a smooth projective curve of genus g. Let ΓC(s) = (2π)−sΓ(s).1

Associated to C and its Jacobian A = Jac(C) is a completed L-function

Λ(C, s) = ΓC(s)
g
∏
p

Lp(C, p
−s)−1,

where, for any � �= p, Lp(C, T ) = det
(
I2g − T · Frobp | H1

et(C,Q�)
Ip

)
. We say

that C is automorphic if Λ(C, s) = Λ(π, s), where π is an automorphic form
for GL2g(Q), and Λ(π, s) is the completed L-function associated to the standard
representation of GL2g. If C is automorphic, then

Λ(C, s) = ±N1−sΛ(C, 2− s),

where N is the conductor of A. One conjectures that all smooth projective curves C
over Q are automorphic. When g = 0 and g = 1, one knows that C is automor-
phic by theorems of Riemann [Rie59] and Wiles et al. [Wil95, TW95, BCDT01],
respectively. The conjecture seems completely hopeless with current technology
for general curves when g ≥ 3, but for g = 2 it was recently proved in [BCGP18]
that all such curves over Q (and even over totally real fields) were potentially au-
tomorphic. For abelian surfaces over Q, let us additionally say that A = Jac(C) is
modular of level N if there exists a cuspidal Siegel modular form f of weight two
such that Λ(C, s) = Λ(f, s), where Λ(f, s) is the completed L-function associated to
the degree four spin representation of GSp4. If A is modular in this sense, then it is
also automorphic in the sense above by taking π to be the transfer of the automor-
phic representation associated to f from GSp(4)/Q to GL(4)/Q. It was also shown
in [BCGP18] that certain classes of abelian surfaces over Q were actually modular
(see Theorem 1.1 below), and even that there were infinitely many modular abelian
surfaces over Q up to twist with EndC(A) = Z. However, no explicit examples of
such surfaces were given in that paper.
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1There is some ambiguity in the literature as to whether one defines ΓC(s) to be (2π)−sΓ(s)

or ΓR(s)ΓR(s + 1) = 2 · (2π)−sΓ(s). It makes no difference as long as one uses the same choice
for both Λ(C, s) and Λ(π, s). To be safe, we make the same choice as Serre [Ser70, §3(20)].
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The aim of this note is to give explicit examples of modular abelian surfaces A/Q
with EndC(A) = Z and such that A has good reduction outside a set S that
is either S = {2, 5}, S = {2, 5, 7}, or S = {2, 3, 7}. Previous explicit examples
of modular abelian surfaces with trivial endomorphisms were found by [BPP+18]
(in 2015) and also by [BK17]; these results relied heavily on very delicate and
explicit computations of spaces of low weight Siegel modular forms following [PY15,
PSY17]. In particular, they rely on the conductor being relatively small and also
take advantage of the fact that the conductor is odd and squarefree. (The examples
in those papers are of conductors 277, 353, 587, and 731 = 17 · 43.) In contrast,
the examples of this paper only require verifying some local properties of A at the
prime p (with p = 3 or p = 5) and showing that the image of the action of GQ on
the p-torsion of A = Jac(C) is of a suitable form. Although the conductors of our
examples have only small factors, the conductors themselves are quite large—the
smallest of our examples has conductor 98000 = 24 · 53 · 72. The modularity of the
examples in this paper follows by applying the following result (with either p = 3
or p = 5) proved in [BCGP18, Propositions 10.1.1 and 10.1.3].

Theorem 1.1. Let A/Q be an abelian surface with good ordinary reduction at v|p
and a polarization of degree prime to p, and suppose that the eigenvalues of Frobe-
nius on A[p](Fp) are distinct. Let

ρA,p : GF → GSp4(Fp)

denote the mod-p Galois representation associated to A[p], and assume that ρA,p

has vast and tidy image in the notation of [BCGP18]. Suppose that either:

(1) p = 3, and ρA,3 is induced from a 2-dimensional representation over a real
quadratic extension F/Q in which 3 is unramified; or

(2) p = 5, and ρA,5 is induced from a 2-dimensional representation valued
in GL2(F5) over a real quadratic extension F/Q in which 5 is unramified.

Then A is modular.

A precise definition of what representations are vast and tidy is included in §7.5
of [BCGP18], but we content ourselves with the following list which exhausts all of
our examples.

Lemma 1.2 (Examples of vast and tidy representations from [BCGP18, Lem-
mas 7.5.13 and 7.5.21]). The representation ρA,p is automatically vast and tidy when
the image of ρA,p is one of the following conjugacy classes of subgroups of GSp4(Fp):

(1) The groups G2304, G768, G
′
768, or G480 in GSp4(F3) of orders 2304, 768,

768, and 480, where:
(a) The group G2304 is a semidirect product Δ � Z/2Z, where

Δ =
{
(A,B) ∈ GL2(F3)

2 | det(A) = det(B)
}
;

it is (up to conjugacy) the unique subgroup of order 2304 of GSp4(F3).
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(b) The groups G768 and G′
768 are subgroups of G2304 of index 3, and are

(up to conjugacy) the only two subgroups of order 768 of GSp4(F3).
They are isomorphic as abstract groups, but they are distinguished up
to conjugacy inside GSp4(F3) by their intersections H384 and H ′

384

with Sp4(F3). In particular, (H384)
ab � Z/6Z and (H ′

384)
ab � Z/2Z.

According to the small groups database of magma (cf. [BEO02]),

G768 � G′
768 � SmallGroup(768,1086054),

whereas

H384 � SmallGroup(384, 18130), H ′
384 � SmallGroup(384, 618).

These groups can also be distinguished by their images P192 and P ′
192

in PSp4(F3) ⊂ PGSp4(F3), namely

P192 � SmallGroup(192, 1493), P ′
192 � SmallGroup(192, 201).

(c) The group G480 is a semidirect product Ã5 � 〈σ〉, where Ã5 ⊂ GL2(F9)
is a central extension of A5 by Z/4Z. There are precisely two subgroups
of this order up to conjugacy in GSp4(F3). The second subgroup G′

480

also contains Ã5 with index two, but it is not a semidirect product.
According to the small groups database of magma,

G480 � SmallGroup(480, 948), G′
480 � SmallGroup(480, 947).

(2) The group G115200 in GSp4(F5) is a semidirect product Δ � Z/2Z, where

Δ =
{
(A,B) ∈ GL2(F5)

2 | det(A) = det(B)
}
;

it is (up to conjugacy) the unique subgroup of order 115200 of GSp4(F5).

The conditions of the theorem are all very easy to verify in any given example
(once found) with the possible exception of computing the image of the mod-p
representation for p = 3 or 5. We describe how we computed this in the section
below. The second problem is then to find a list of candidate curves. Our original
approach involved searching for curves in a large box, which did indeed result
in a number of examples. However, we then switched to using a collection of
curves provided to us by Andrew Sutherland, all of which had the property that
they had good reduction outside the set {2, 3, 5, 7} (these were found during the
construction of [BSS+16] but discarded because their minimal discriminants were
too large). This list consisted of some 20 million curves, so the next task was to
identify examples to which we could apply Theorem 1.1. For a genus two curve C
on Sutherland’s list, we applied the following algorithm:

(1) Fix a real quadratic field F of fundamental discriminant D dividing ΔC

in which p ∈ {3, 5} is unramified. Since ΔC is only divisible by primes
in {2, 3, 5, 7}, there are at most seven such F . Let χD denote the quadratic
character associated to F .

(2) Check whether aq ≡ 0 mod p for all primes q ≤ 100 of good reduction
for C with χD(q) = −1.

(3) Check that aq �= 0 for at least one prime q ≤ 100 of good reduction for C
with χD(q) = −1.

Any C that passes this test is likely to have the following two properties: ρA,p

is induced from F , but the p-adic representation ρA,p itself is not induced. The
third condition in particular guarantees that A itself is not isogenous to a base
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change of an elliptic curve defined over F . Note that this test is very fast—one can
discard a C as soon as one finds a prime q with χD(q) = −1 and aq �≡ 0 mod p,
so for almost all curves C, one only has to compute aq for very small primes q.
In addition, the following postage stamp calculation with the Chebotarev density
theorem suggests that false positives will be few in number: for each of the allowable
discriminants D (there are seven such D for either p = 3 or p = 5), there are at
least M ≥ 10 primes in the interval [10, 100] with χD(q) = −1. A “random”
abelian surface A will have aq ≡ 0 mod p for any such prime q approximately 1/p
of the time (the exact expectation depends on A[p]—if the mod-p representation
is surjective, the exact expectation that aq ≡ 0 mod p for a random prime q
is 231/640 for p = 3 and 3095/14976 for p = 5), and so one might expect a false
positive to occur with probability approximately 1/pM . On the other hand, false
positives are certainly not impossible. In our original box search, we did find the
one curve C : y2 = x5−2x4+6x3+5x2+10x+5 that “passed” the test for ρA,3 to

be induced from Q(
√
7), whereas it turns out instead to be induced from Q(

√
85)—

requiring only an accidental vanishing of aq for q = 23, 73, 89, and 97. The smallest

prime guaranteeing that ρA,3 is not induced from Q(
√
7) in this case is a151 = 5 �≡ 0

mod 3.

2. Determining the mod-p representation

Consider a genus two curve

C : Y 2 = f(X),

with deg(f) = 6. The desingularization of the corresponding projective curve has
two points b1 and b2 at infinity. The canonical class O in Pic2(C) is represented
by the divisor b1+b2, and the Jacobian A = Jac(C) can be identified with Pic2(C)
under addition of the canonical class. By Riemann–Roch, every class in Pic2(C)
except O has precisely one effective divisor. Thus, we may represent any point of A
as an unordered pair {P,Q} of points on C.

If we assume f(X) has a rational root, then, by suitably transforming the vari-
ables X and Y , we can make deg(f) = 5; then, there will be exactly one point b

at infinity, and the canonical class will be represented by 2b. We will not need
this assumption, however, and several of our examples do not have any Weierstrass
points over Q.

2.1. p = 3. Let K/Q denote the Galois closure of the corresponding projective
representation. It will contain the field Q(x + u, xu, yv) for any 3-torsion point
{P,Q} of A, where P = (x, y) and Q = (u, v). There exist polynomials Bij , given
in [CF96, Theorem 3.4.1 and Appendix II], using which the multiplication-by-n
map can be described explicitly at the level of the Kummer surface of A. Writing
the equation [2]{P,Q} = −{P,Q} in terms of the Kummer coordinates explicitly,
taking resultants, and eliminating spurious solutions, one can compute the minimal
polynomials of x + u, xu, and yv in any particular case, as well as determine the
Galois group of the corresponding extension.

Note that the first coordinates determine the GSp4(F3)/〈±1〉 = PGSp4(F3)-
representation, so this determines the image of ρA,3 modulo the central subgroup
of order 2 as an abstract group. One can similarly compute the field Q(y+ v, yv) if
one wants to know the full GSp4(F3)-representation. In any case of interest, this is
enough (purely by considering possible orders) to determine the order of the image
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of ρA,3 itself. It then remains to determine the precise subgroup of GSp4(F3) in the
cases where this is ambiguous. The group PGSp4(F3) has a natural permutation
representation on 40 points, corresponding to the non-zero points of A[3] up to
sign (warning: the group PGSp4(F3) has a second non-conjugate representation
on 40 points). From this data, one can distinguish between G480 and G′

480 purely
based on the degrees of the polynomials arising from the computation above. The
following table gives the corresponding decomposition in the cases of interest:

G Orbits
G2304 8, 32
G768 8, 32
G′

768 8, 32
G480 20, 20
G′

480 40

The groups G768 and G′
768 cannot be distinguished by this method. This is not

important for establishing modularity since both groups give representations with
vast and tidy image. However, in order to complete the tables, we distinguish
between these cases as follows: we explicitly compute (using magma) the Galois
group of the corresponding degree 32 polynomial over the field Q(

√
−3), and see

whether the resulting group is P192 or P
′
192 (in which case the group is G768 or G

′
768,

respectively).

2.2. p = 5. Similar to the p = 3 case, for an arbitrary point {P = (x, y), Q =
(u, v)} of A, we write the equation 3{P,Q} = −2{P,Q} in terms of the Kummer
coordinates of the point, and take resultants to find the minimal polynomials of
x+ u, xu, and yv of 5-torsion points on A. The splitting field of these polynomials
is the Galois closure K/Q of the representation to PGSp4(F5) = GSp4(F5)/〈±1〉.

We describe an algorithm for showing that the image ρA,5 of a mod-5 rep-
resentation in GSp4(F5) with cyclotomic determinant has image G115200. The
group GSp4(F5) has a representation on 312 = (54−1)/2 points, given by the action
on the non-trivial 5-torsion points up to sign (which factors through PGSp4(F5)).

Lemma 2.3. Let G ⊂ GSp4(F5) be a subgroup, and suppose that the similitude
character is surjective on G, or equivalently that [G : G ∩ Sp4(F5)] = 4. Suppose,
in addition, that G acts on the degree 312 permutation representation above with
two orbits of size 288 and 24, respectively. Then:

(1) G is one of four groups, distinguished by their orders: 2304, 4608, 57600,
and 115200.

(2) The degree 24 permutation representation of G factors through a group of
order 576, 1152, 14400, and 28800, respectively.

In particular, we can distinguish these representations by computing the Galois
group of the factor of size 24. Hence by computing the corresponding polynomials
of order 24 and 288 we can verify that the image is indeed G115200.

2.4. Checking the Sato–Tate group. For all the residual representations we
consider, it turns out that the image of ρ is big enough to guarantee that the Sato–
Tate group is either USp(4) or the normalizer of SU(2)× SU(2). More precisely:

Lemma 2.5. Suppose that p = 3 and that ρA,p has image either G480, G768,
G′

768, G2304, or that p = 5 and ρA,p has image G115200. Then the Sato–Tate group
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of A is either USp(4) or N(SU(2) × SU(2)). Moreover, if the Sato–Tate group
is N(SU(2) × SU(2)), the quadratic extension F/Q over which A has Sato–Tate
group SU(2)× SU(2) is the quadratic field F from which ρ is induced.

Proof. The image of ρA,p is constrained by the Sato–Tate group, and thus the fact
that the Sato–Tate group can only be USp(4) or N(SU(2)×SU(2)) follows directly
from a classification of all such groups in [FKRS12]. (In fact, when the image
is G480, only the first case can occur.) In the latter case, the representation becomes
reducible over the quadratic extension F , where A has Sato–Tate group SU(2) ×
SU(2), and (for the given ρ) this forces F to be the field from which ρ is induced. �

In particular, in all our examples, our initial selection process requires the ex-
istence of a prime q of good reduction with χ(q) = −1 and aq �= 0, which implies
that ρA,p cannot be induced from F , and thus the Sato–Tate group in each example
below is USp(4).

3. Examples

Of the curves we consider, a number satisfy the conditions of the main theorem,
and are thus provably modular. For any curve C that is modular, so too are any
quadratic twists. Hence we only list a single representative curve for each equiv-
alence class of abelian surfaces under both Q-isogenies and twisting by quadratic
characters.

3.1. Inductions from GL2(F3) and GL2(F9). We first give the examples of mod-
ular curves whose mod-3 representation is induced from either GL2(F3) or GL2(F9)-
representations of GF for real quadratic fields F . It turns out that, in the range of
our computation, the representation ρ up to twist determined the representation ρ
up to twist—after applying our other desiderata, including that A/Q had good
reduction at p and had Sato–Tate group USp(4). In particular, all the examples
below give rise to mod-3 representations that are not twist equivalent. The exam-
ples C we choose to list are of minimal conductor amongst all those with Jacobian
isogenous to a twist of Jac(C). The conductors were computed rigorously away
from 2 using magma. The conductors at 2 were computed for us by Andrew Suther-
land using an analytic algorithm discussed in §5.2 of [BSS+16]. This computation
assumes the analytic continuation and functional equation for L(A, s), which we
know to be true in this case. (More precisely, as explained to us by Andrew Booker,
one version of this program gives a non-rigorous computation of these conductors
and a second slower but more rigorous version then confirms these values.) In the
case of ties, we chose the curve with smaller minimal discriminant. In the case of
subsequent ties, we eyeballed the different forms and chose the one that looked the
prettiest.

Theorem 3.2. The Jacobians A = Jac(C) of the following smooth genus two
curves C over Z[1/70] are modular. In particular, the L-function L(A, s) is holo-
morphic in C and satisfies the corresponding functional equation. Each A has good
ordinary reduction at 3 and is 3-distinguished and EndC(A) = Z. Moreover, the
representation ρA,3 is induced from a GL2(F3)-valued representation of GF that is
vast and tidy.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SOME MODULAR ABELIAN SURFACES 393

Curve Cond Disc im(ρ) ΔF

y2 = x6 − 10x4 + 2x3 + 31x2 − 13x− 18 245372 285373 G480 5
y2 = −5x6 − 20x5 − 10x4 + 36x3 + 22x2 − 20x 210537 2205473 G′

768 5
y2 + y = −4x5 − 23x4 − 22x3 + 74x2 − 40x+ 6 285372 2195772 G2304 5
y2 = 16x6 − 46x4 + 10x3 + 46x2 − 9x− 17 2125274 2195974 G480 5

y2 = 2x5 − 8x4 + 26x2 − 7x− 26 2155 21653 G2304 8
y2 = x5 − x4 − 4x3 − 44x2 − 60x− 100 2145 · 7 233537 G2304 8
y2 = x5 − 17x4 + 70x3 + 26x2 − 35x− 29 2165 · 7 237537 G2304 8
y2 + x2y = 13x6 − 29x5 − 10x4 + 41x3 + 6x2 + 20x+ 20 275274 21652716 G2304 8
y2 = x5 − 11x4 − 2x3 − 34x2 − 5x− 25 2205 · 7 2215373 G768 8
y2 = −2x6 − 41x5 − 48x4 + 54x3 + 42x2 − 49x 2145274 23252711 G2304 8
y2 = 2x5 + 34x4 − 16x3 − 52x2 − 13x− 1 2195372 2205576 G′

768 8
y2 = 8x6 − 24x5 − 4x4 + 20x3 + 49x2 − 21x− 28 2155274 2235679 G2304 8

y2 + (x+ 1)y = 64x5 − 8x4 + 39x3 + x2 + 2x+ 1 275373 2275676 G480 40
y2 = 15x5 + 23x4 + 20x3 + 28x2 + 12x− 4 2143 · 53 2333254 G2304 40
y2 = 3x5 + 7x4 + 28x3 + 20x2 + 28x− 36 2143 · 53 2363254 G2304 40

Example 3.3. Precisely one curve in this table is actually smooth over a smaller
ring, namely the curve of conductor 163840 = 215 · 5 which is smooth over Z[1/10].
This curve has a quadratic twist with particularly small näıve height, namely the
curve

y2 = 4x5 + 6x4 + 4x3 + 6x2 + 2x+ 3

which also has conductor 163840 = 215 · 5 but larger minimal discriminant

131072000000 = 223 · 56

rather than 8192000 = 216 · 53 as the curve in the table. The mod-3 representation
of both of these curves is actually unramified at 5, and is congruent up to twist to
the mod-3 representation attached to the curve y2 = 4x5 − 4x4 + 4x3 − 2x2 + x of
conductor 215. The Jacobian of this latter curve is isogenous to ResQ(

√
2)/Q(E),

where E is the elliptic curve

y2 +
√
2xy = x3 + (−1−

√
2)x2 + 2(

√
2 + 1)x− 3

√
2− 5.

3.4. Inductions from GL2(F5). We now consider the case p = 5.

Theorem 3.5. The Jacobians A = Jac(C) of the following smooth genus two
curves C over Z[1/42] are modular. In particular, the L-function L(A, s) is holo-
morphic in C and satisfies the corresponding functional equation. Each A has good
ordinary reduction at 5 and is 5-distinguished and EndC(A) = Z. Moreover, the
representation ρA,5 is induced from a GL2(F5)-valued representation of GF that is
vast and tidy.

Curve Cond Disc im(ρ) ΔF

y2 + xy = 7x6 − 22x5 − 7x4 + 61x3 − 3x2 − 54x− 12 273273 2113974 G115200 8
y2 = 8x6 − 24x5 − 30x4 + 8x3 − 24x2 − 48x− 8 26387 251387 G115200 8

The second curve also admits a quadratic twist of smaller näıve height, namely

y3 + x2y = x6 − 3x5 − 4x4 + x3 − 3x2 − 6x− 1

of conductor 5878656 = 27 ·38 ·7 and minimal discriminant 96315899904 = 221 ·38 ·7.
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