
Math 221 – Practice problems for the Second midterm (fall 2013)

The following problems are examples of the types of problems you can expect for the second
midterm. They are not all the problems you need to know, so be sure you also work on other
problems from homework and from the notes.

1. Find the equations of the tangent and normal to the curve defined implicitly by e2x+y+xy = x+1
at (0, 0).
2. Suppose a function y = f(x) satisfies y3 + xy = 12 for all x

• If f(x) = 2 then what is x?
• Find dy

dx at the point x = 11, y = 1.

3. (20 points) A highway patrol plane flies 3 miles above a straight road at a steady velocity of
120 miles per hour. The pilot sees an oncoming car and with radar determines that at the moment
when the line-of-sight distance from the plane to the car is 5 miles, the distance from plane to car is
decreasing at a rate of 160 miles per hour. Find the car’s speed along the highway at that moment.

plane

car

4.

(1) y = e2x cosx =⇒ dy

dx
=?

(2) y = ln
(x+ 1)2

(x2 + 1)3
=⇒ dy

dx
=?

(3) Use the implicit function theorem to calculate θ = arctan(1− z)

(4) y = xlnx =⇒ dy

dx
=?

5. From these statements two are correct and two are wrong. Explain which one is which and why.
Explain your answer, more than half the points go to the explanation.

(1) If f is nonincreasing, then f ′(x) ≤ 0 always.
(2) If f is a function and f increases, then f ′(x) > 0 always.
(3) If f is a function and f ′ ≥ 0 always, then f increases.
(4) If f ′(x) < 0 always, then f is decreasing.

6. Calculate the following limits
(1) lim

x→+∞
x3e−1/x.

(2) lim
t→+∞

et + e−t

2et − te−t
.

(3) lim
x→0+

x(lnx)2. (Hint: either substitute x = t2 or write x = (x1/2)2 and combine.)

(4) lim
x→+∞

(lnx)2

x
. (Same hint as above.)

(5) lim
x→1

a lnx+ x− 1
x3 − x

, where a is any constant.

7. The sum of two nonnegative numbers is 20. Find the numbers such that one number plus the
square root of the other number is the largest possible.
8. If b, c and d are constants, for which value of b will the curve f(x) = x3 + bx2 + cx + d have a
point of inflection at x = 1?
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9. The ACME Boxes & Containers company is going to produce a new type of container in shape
of a rectangular box (the base of the box is a square, and the four vertical sides are rectangles; the
container will have no top). The material that is used to make the base of the container costs $2
per square meter. The material from which the sides will be made costs $3 per square meter. If
the container must hold 9 cubic meters, then what is the cheapest container that can be made?

In your solution specify
• which function you are going to minimize, and
• explain what the variables that you use stand for.

10. Sketch the graph of the function f(x) =
2x

1 + x2
. In particular

(1) Find the intervals where the function is positive or negative;
(2) find the intervals on which the function is increasing (decreasing);
(3) find the local maxima and minima;
(4) indicate which local maxima and minima are in fact global maxima or minima (explain how

you reached your conclusion);
(5) find the inflection points on the graph and where the function is concave and convex;
(6) find asymptotes.

11. Consider the function f(x) defined by f(x) =

{
x lnx for x > 0

0 for x ≤ 0
Find the absolute minimum

of f(x) over [0,∞).

12. Sketch the graph of f(x) =
1

x2 + 3
using the same steps as in the previous graph.

13. Consider the parametrized curve

x(t) =
1− t3

1 + t2
and y(t) =

2t
1 + t2

.

(1) Which points have horizontal tangent lines?
(2) Find one point with a vertical tangent line.
(3) Calculate the tangent line when t = 2.

14. Let y(t) be the amount of certain radioactive element in a sample at time t (in years) and
suppose y(t) is decaying at a rate proportional to itself. If it takes one year for the amount of
this radioactive element to reduce to one half of the original amount, how long does it take for the
amount to reduce to 1/3 of the original amount? (Your answer may be written in terms of natural
logarithms.)
15. One of the following statements is true. State which one and explain why, including why the
others are wrong. Explain your answer in detail, more than half the credit goes to the
explanation.

(1) The integral∫ b

a
f(x)dx

represents the area below the function f and above the interval [a, b].

(2)
∫ x

0
F ′(t)dt = F (x)

(3)
∫ x

0
F ′(t)dt = F (t)
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(4)
d

dx

∫ x

0
f(t)dt = f(x)

16. Compute the following integrals

(1)
∫ π

0

(√
x3 + sinx

)
dx

(2)
cosx

1 + sin2 x
dx

(3)
∫ π/2

0
ecos t sin tdt.

(4)
∫

e2x

1 + e2x
dx.

(5)
∫

ex

1 + e2x
dx.

III See also problems on page 148 of the text.

17. Find
dy

dx
, where y =

∫ 3x

2x
sin(t3 + 1) dt.

18. Find the area of the bounded region above the x-axis and below the graph of f(x) = 4x2−x4.

19. Consider the “triangular” region T in the first quadrant that is bounded above by the curve
y = cosx, below by the curve y = sinx and on the left by the y-axis. Find the area of T .

20. Find the area of the region bounded by the functions y = 2− x2 and y = x2.

21. Find the area of the “triangular” region bounded on the left by y =
√
x, on the right by

y = 6− x, and below by y = 1.

Answers and explanations

(1) This is an implicit function problem, we need to find dy
dx but the function y is given as

solution of an equations. Thus, we differentiate both sides of the equation with respect to
x

e2x+y
d(2x+ y)

dx
+
d(xy)
dx

=
dx

dx
= 1

(2 +
dy

dx
)e2x+y + x

dy

dx
+ y = 1

which, at (0, 0) becomes 2 + dy
dx = 1 or dy

dx = −1. From here, the tangent line will be

y = −1x+ b

where b is found by substituting x = 0 and y = 0. Thus b = 0 and the line is y = −x. The
normal line is of the form

y = x+ c

here again c = 0 since it needs to go through (0, 0), The normal is y = x.

(2) – If x and y are such that y = f(x) = 2 then by definition y3 + xy = 12, i.e.

23 + x · 2 = 12, so that x =
12− 23

2
=

12− 8
2

= 2.
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– We must use implicit differentiation. From the equation that y = f(x) satisfies we get

y3 + xy = 12
true for all x, so we are
allowed to differentiate both
sides w.r.t. x

dy3

dx
+
d(xy)
dx

=
d 12
dx

3y2 dy

dx
+ 1 · y + x

dy

dx
= 0(

3y2 + x
)dy
dx

+ y = 0 now solve for
dy

dx
dy

dx
=

−y
3y2 + x

.

This is still true for all x and y provided they satisfy y3 + xy = 12.
At the point that we are given in the problem we have x = 11 and y = 1, so there we
have

dy

dx
=

−1
3 · 12 + 11

= − 1
14
.

(3) This is a related rates problem. In such problems it is important to distinguish between
facts that are true at all times (and which we are therefore allowed to differentiate with
respect to time), and facts that are true at only one instant.
Let the road be the x-axis, call the x-coordinates of the plane and the car P (t) and C(t).
These are functions of time. We are given

P ′(t) =
dP

dt
= 120 mph.

We are asked to find C ′(t) (the velocity of the car).
We are given that the height of the plane above the ground is 3 miles.
Let us call the distance between the plane and the car D(t).
By Pythagoras’ theorem we have(
C(t)− P (t)

)2 + 32 = D(t)2.

This is true at all times t so we may differentiate this (using the chain rule):

2
(
C(t)− P (t)

)
·
(
C ′(t)− P ′(t)

)
+ 0 = 2D(t)D′(t),

i.e., canceling the 2s(
C(t)− P (t)

)
·
(
C ′(t)− P ′(t)

)
= D(t)D′(t),

In the problem we are also given that at one given moment D = 5 miles and D′ = −160
miles per hour (D′ is negative because the distance between car and plane is given to be
decreasing.)
From Pythagoras we then also have

C − P =
√

52 − 32 = 4 miles.

Combining all the facts we have found so far we see that

4 ·
(
C ′(t)− 120

)
= 5 · (−160).
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Solving this for C ′ leads to

C ′(t) = 120− 5 · 160
4

= 120− 200 = −80 mph.

So at the moment that the pilot measures the speed of the car the car is moving at 80
miles per hour in the direction of the plane (since C ′ < 0.)

(4) (1)
dy

dx
= e2x cosxd(2x cosx)

dx
= e2x cosx(2 cosx− 2x sinx)

(2) First we simplify

ln
(x+ 1)2

(x2 + 1)3
= 2 ln(x+ 1)− 3 ln(x2 + 1)

then we differentiate, using the chain rule
dy

dx
=

2
x+ 1

− 3
2x

x2 + 1
.

(3) First we transform the equation to
tan θ = 1− z

and we apply the implicit function theorem differentiating with respect to z in both
sides

(1 + tan2 θ)
dθ

dz
= −1 =⇒ (1 + (1− z)2)

dθ

dz
= −1 =⇒ dθ

dz
=

−1
1 + (1− z)2

.

(4) When we have functions in both the base and ex-
ponent of a function, as in this case, the best is to apply logarithms to both sides. Thus

ln y = lnxlnx = lnx lnx = (lnx)2.
we then apply implicit differentiation to get

y′

y
= 2 lnx

1
x

and from here
y′ =

2 lnx
x

y = xlnx 2 lnx
x

(5) (1) This is correct, since if f ′(x) > 0 the function needs to be increasing at x (by a
theorem in the book), so it cannot be nonincreasing.

(2) This is false, take for example f(x) = x3. The function is always increasing, but
f ′(x) = 3x2 which is zero at x = 0.

(3) This is false, take the function f(x) = 0, f ′ ≥ 0 but it is not increasing.
(4) This is correct, this is one of the theorems in the book. (You can make a stronger

statement using the mean values theorem, but I would accept something like this).
The stronger statement would be: if a < b, then

f(b)− f(a)
b− a

= f ′(c)

for some a < c < b. And since f ′(c) < 0, we have f(b) < f(a), so f is decreasing.

(6) (1) If we make u = − 1
x , we have lim

x→+∞
x3e−1/x = lim

u→0−
−e

u

u3
= +∞.

(2) We factor the exponential with the highest base, that is et. We get

lim
t→+∞

et + e−t

2et − te−t
= lim

t→+∞

1 + e−2t

2− te−2t
.
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And since limt→+∞ e
−2t = limt→+∞ te

−2t = 0 we have

lim
t→+∞

et + e−t

2et − xe−t
=

1
2
.

(3) lim
x→0+

x(lnx)2 = lim
x→0+

(x1/2 lnx)2 = 0, since lim
x→0+

x1/2 lnx = 0

(4) lim
x→+∞

(lnx)2

x
= lim

x→+∞

(
lnx
x1/2

)2

= 0 since lim
x→+∞

lnx
x1/2

= 0.

(5) In this one we use l’Hopital

lim
x→1

a lnx+ x− 1
x3 − x

=
0
0

= lim
x→1

a
x + 1

3x2 − 1
=
a+ 1

2
.

(7) Let x and y be two numbers such that x+ y = 20. We want to maximize

f(y) = x+
√
y = 20− y +

√
y.

We use the usual method

f ′(y) = −1 +
1

2
√
y

= 0 =⇒ √
y =

1
2
, =⇒ y =

1
4
.

This value indeed produces a max since using the second derivative test

f ′′(y) = −1
4
y−3/2 < 0.

The value for x is x = 20− y = 79
4 and the maximum value is f(1

4) = 81
4 .

(8) We need to calculate the second derivative of the function f ′′(x) = 6x+ 2b and find the
values of b for which it vanishes at x = 1. This gives us b = −3. We then check that
f ′′(0) < 0 and f ′′(2) > 0 and so the point is an inflection point.

(9) Let x be the size of the sides of the squared base and y the height of the rectangular box,
both in meters. If the container must hold 9 cubic meters, then

x2y = 9, y =
9
x2
.

Since we want to have the cheapest box, we need to minimize the cost of the box. The
cost for the base is $2 per square meter, and since it has x2 square meters, the cost is 2x2.
The material for the sides is $3 per square meter, and since the area of one side is xy
square meters, we have that the cost for one side is 3xy, and for four sides is 12xy. Thus,
the total cost is

C(x, y) = 2x2 + 12xy.

We need this function in one variable only before we start the study, so we use
y = 9/x2 and

C(x) = 2x2 + (12)9/x.

We can now find the minimum or maximum.

C ′(x) = 4x− (12)9/x2 = 0, =⇒ x3 = (12)9/4 = 27. =⇒ x = 3 =⇒ y = 1.

We now check that these values are a minimum. We use the second derivative test

C ′′(x) = 4 + (12)18/x3 > 0

if x > 0. C ′′(3) = 12 > 0, thus it is a minimum.
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(10) (1) Since there are no vertical asymptotes, we only need to find zeroes of f to know
where f is positive or negative. The only x for which f vanishes is x = 0, and
f(−1) < 0 while f(1) > 0. Therefore, f is positive for x > 0 and negative for x < 0.

(2) To answer this question we need to find where the derivative of the function is
positive or negative. We calculate

f ′(x) =
2(1 + x2)− (2x)2

(1 + x2)2
=

2− 2x2

(1 + x2)2
= 0 =⇒ 1− x2 = 0 =⇒ x = ±1.

Using that f ′(−2) < 0, f ′(0) > 0 and f ′(2) < 0 we conclude that the function is
increasing for −1 < x < 1 and decreasing elsewhere.

(3) Since f decreases to the left and increases to the right of x = −1, this points
represents a local minimum achieved at f(−1) = −1. Since it increases to the left and
decreases to the right of x = 1, x = 1 represents a maximum, achieved at f(1) = 1.

(4) To see if these are global max and min we need to find the limits at ±∞

lim
x→±∞

f(x) = lim
x→±∞

x

x2

2
1
x2 + 1

= 0

and so both of the extrema are global (you should include a picture of the graph here
to bring your point).

(5) To find inflections points we need to analyze the second derivative of f .

f ′′(x) =
−4x((1 + x2)2)− 2(1 + x2)2x(2− 2x2)

(1 + x2)4
=
−4x(1 + x2)− 4x(2− 2x2)

(1 + x2)3
=

4x3 − 12x
(1 + x2)3

.

The second derivative vanishes when

4x3 − 12x = 4x(x2 − 3) = 0

that is, when x = 0,±
√

3. Since f ′′(−100) =< 0, f ′′(−1) > 0, f ′′(1) < 0 and
f ′′(100) > 0 we know that the function is convex if

√
3 < x < +∞ and −

√
3 < x < 0,

and concave if −∞ < x < −
√

3 and 0 < x <
√

3. The inflection points are
(0, 0), (

√
3, 1

2

√
3) and (−

√
3,−1

2

√
3).

(6) There are no vertical asymptotes. Since

lim
x→±∞

f(x) = 0

there is a horizontal asymptote given by y = 0. Since

lim
x→±∞

f(x)
x

= lim
x→±∞

x

x3

2
1
x2 + 1

= 0

the only slanted asymptote is the horizontal one we already have.
After this evaluation you will need to give a rough description of the graph.

(11) We first find the local minimum for x > 0, the usual way

f ′(x) = lnx+ 1 = 0, =⇒ lnx = −1, =⇒ x =
1
e
.

We can either check the sign of f ′ to the left and the right of 1/e or use the second
derivative test, which says

f ′′(x) =
1
x
> 0
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for x > 0. Therefore, 1/e is a local minimum and f(1/e) = −1
e

is the minimum value.

Since lim
x→0+

x lnx = 0 and lim
x→+∞

x lnx = +∞, we have that −1
e

is the global minimum.

(12) – The function is always positive.
–

f ′(x) = − 2x
(x2 + 3)2

so f ′(x) = 0 only if x = 0. Since f ′(−1) > 0 and f ′(1) < 0 the function is increasing
when x < 0 and decreasing when x > 0. Thus x = 0 is a local max achieved at (0, 1

3).
– Finding the limits we get lim

x→±∞
f(x) = 0, and so the function has a global maximum

at x = 0. No global minimum.
–

f ′′(x) = −2(x2 + 3)2 − 2(x2 + 3)(2x)2

(x2 + 3)4
= −2(x2 + 3)− 2(2x)2

(x2 + 3)3
=

6x2 − 6
(x2 + 3)3

.

From here the inflection points are given by x2 − 1 = 0, that is x = ±1.
– Since f ′′(−100) > 0, f ′′(0) < 0 and f ′′(100) > 0, they are indeed inflection points

since the function is convex when x < −1 and x > 1 and concave if −1 < x < 1.
You then need to sketch the graph.

(13) (1) A point has horizontal tangent line if y′(t) = 0. We calculate

y′(t) =
2(1 + t2)− (2t)2

(1 + t2)2
=

2− 2t2

(1 + t2)2

so y′(t) = 0 for t = ±1. These are the points (0, 1) and (1,−1).
(2) To have vertical tangent lines we need x′(t) = 0. We calculate

x′(t) =
−3t2(1 + t2)− 2t(1− t3)

(1 + t2)2
=
−t4 − 3t2 − 2t

(1 + t2)2

This vanishes at t = 0, that is at (1, 0).
(3) When t = 2 the point is (−7

5 ,
4
5) and the slope is

y′(2)
x′(2)

=
−6/25
−32/25

=
6
32

=
3
16

hence the line is given by

y − 4
5

=
3
16

(x+
7
5

).

(14) If y(t) is decaying at a rate proportional to itself, it means y(t) follows an exponential
decay and

y(t) = y(0)ekt

for some initial amount y(0) and some constant k < 0. Since we are told that the half life
is a year, we have that

y(1) =
1
2
y(0) = y(0)ek, =⇒ ek =

1
2
, =⇒ k = ln

1
2

= − ln 2.
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We are asked how long it takes to be 1/3 of the original amount. That translates into

y(t) =
1
3
y(0) = y(0)ekt, =⇒ ekt =

1
3
, =⇒ kt = ln

1
3

= − ln 3, =⇒ t =
− ln 3
k

, =⇒ t =
ln 3
ln 2

.

The time t is given in years.

(15) (1) This is false, it is only true if the function is not negative, if negative the integral is
the negative of the area.

(2) This is false, the correct answer, by the fundamental theorem of Calculus, would be∫ x

0
F ′(t)dt = F (x)− F (0) since F (x) is an antiderivative of F ′(x).

(3) This is false since t is a dummy variable, not a real variable (also, see the previous
one).

(4) This is correct, it is the statement of the second fundamental theorem of Calculus.

(16) (1)
∫ π

0

(√
x3 + sinx

)
dx =

∫ π

0

(
x3/2 + sinx

)
dx =

(
x5/2

5/2
− cosx

)
|π0 =

2π5/2

5
+ 1 + 1 =

2 +
2π5/2

5
(2) Let us choose u = sinx so that du = cosxdx. Substituting in the integral we get∫

cosx
1 + sin2 x

dx =
∫

1
1 + u2

du = arctanu+ C = arctan(sinx) + C.

(3) Call u = cos t so that du = − sin tdt. Then∫ π/2

0
ecos t sin tdt = −

∫ 0

1
eudu = −eu|01 = e− 1.

(4) Call u = e2x.
(5) Call u = ex.

(17)
dy

dx
= −2 sin(8x3 + 1) + 3 sin(27x3 + 1).

(18) The function f intersects the x-axis at x = 0 and x = ±2. Since f(100) < 0, f(−1) > 0,
f(1) > 0 and f(100) < 0, the region where the function is above the axis is the interval
[−2, 2]. Therefore, the area the problem asks for is∫ 2

−2
(4x2 − x4)dx =

4
3
x3 − 1

5
x5|2−2 =

4
3

23 − 1
5

25 +
4
3

23 − 1
5

25 =
4
3

24 − 1
5

26 = 24(
4
3
− 4

5
).

(19) We first need to know where the functions cosx and sinx intersect in the first quadrant.
We know that sinx = cosx for x = π

4 , therefore the area will be given by the integral (you
will need a picture here)∫ π/4

0
(cosx− sinx)dx = sinx+ cosx|π/40 = 2

√
2

2
− 1 =

√
2− 1.
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(20) We find intersection in the functions: 2− x2 = x2 =⇒ x = ±1. Thus, the region we are
looking for is the integral between −1 and 1. Since at zero 2− x2 is larger than x2, the
area will be given by∫ 1

−1
(2− x2 − x2)dx = 2

∫ 1

−1
(1− x2)dx = 2(x− 1

3
x3)|1−1 = 2(2/3− (−2/3)) = 8/3.

(21) We first find the intersections:

6− x =
√
x, =⇒ 36− 12x+ x2 = x, =⇒ x2 − 13x+ 36 = 0, =⇒ x = 4, x = 9.

For these two values only one (x = 4) is valid since x = 9 gives y =
√

9 6= 6− 9.
We also have that y =

√
x intersects y = 1 at x = 1 and y = 6− x intersects y = 1 at

x = 5. You now need to draw a picture here. Since both functions are above y = 1, the
area we are looking for is then given by the integral∫ 4

1
(
√
x− 1)dx+

∫ 5

4
(6− x− 1)dx

Finally∫ 4

1
(
√
x− 1)dx+

∫ 5

4
(6− x− 1)dx = (

2
3
x3/2 − x)|41 + (5x− 1

2
x2)|54 = whatever...
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	Answers and explanations

