# Finding the Walls in Geometric Invariant Theory

Rachel Webb Cornell University

#### What is GIT?

A way to construct varieties (and stacks):

#### **INPUTS**

 $\begin{aligned} G &= \text{complex reductive group} \\ X &= \text{representation of } G \\ \theta : G \to \mathbb{C}^* \text{ homomorphism} \end{aligned}$ 

#### **OUTPUTS**

 $\text{ open set } X^{ss}_{\theta}(G) \subseteq X$  GIT quotient  $X/\!\!/_{\theta}G := [X^{ss}_{\theta}(G)/G]$ 

#### Examples:

$$\mathbb{P}^n = \mathbb{C}^{n+1}/\!\!/_{\theta(t)=t}\mathbb{C}^*$$
 many toric varieties, using  $G = (\mathbb{C}^*)^k$ 

$$Gr(k,n) = M_{k\times n}/\!\!/_{\theta(g) = \det(g)} GL_k$$
 moduli of representations of quivers, using  $G = \prod GL_{k_i}/\mathbb{C}^*$ 

Note:  $X/\!\!/_{\theta}G$  can be a variety or Deligne-Mumford stack, or it can be an Artin stack.

#### What is VGIT?

Study dependence of  $X/\!\!/_{\theta}G$  on  $\theta$ :

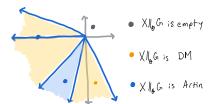
#### **INPUTS**

G = complex reductive groupX = representation of G

#### **OUTPUTS**

 $\Sigma(G,X) = \text{fan in } \operatorname{char}(G)_{\mathbb{R}}$  cones biject with possible  $X^{ss}_{\theta}(G)$ 

 $\begin{array}{c} \mathsf{hypothetical} \\ \Sigma(G,X) \subset \mathrm{char}(G)_{\mathbb{R}} \end{array}$ 



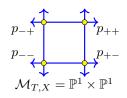
#### Questions:

- How to compute  $\Sigma(G,X)$ ?
- For which (G, X) does there exist non-Artin  $X//_{\theta}G$ ?

#### Mirror symmetry motivation for VGIT

$$G = GL_2$$
  $X = M_{2 \times n} \times M_{n \times 2}$   $g \cdot (x, y) = (gx, yg^{-1})$   $T = \text{diag } \subseteq G$ 





#### Theorem (Coates-Corti-Iritani-Tseng)

A generating series  $I^{X/\!\!/_{\theta}T}$  of Gromov-Witten invariants is an analytic function in a neighborhood of  $p_{\theta}$ . The series  $I^{X/\!\!/_{\theta}T}$  are related by analytic continuation and a symplectic transformation.

Theorem (Lutz-Shafi-W, see also Priddis-Shoemaker-Wen)

The theorem holds for the Grassmannian flop by "taking Weyl invariants."

#### References

- Mumford '65: Introduces the study of GIT quotients of quasiprojective X
- King '93: Specializes definitions to  $X = \mathbb{C}^n$ ; numerical criterion allows to compute small examples by hand
- Dolgachev-Hu '98: Introduces the study of variation of GIT
- Arzhantsev-Hausen '09: The VGIT fan is a fan and is determined by its walls; tools for computation

#### Questions:

- How to compute  $\Sigma(G, X)$ ?
- For which (G, X) does there exist non-Artin  $X/\!\!/_{\theta}G$ ?

# Toric VGIT

$$Q \in M_{k \times n}(\mathbb{Z})$$

matrix representing action of  $(\mathbb{C}^*)^k$  on  $\mathbb{C}^n$ 

#### **OUTPUTS**

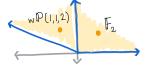
 $\Sigma \subset \mathbb{R}^k$  the VGIT fan

ccr of triangulations of columns of QArtin quotients  $\leftrightarrow$  low-dim cones

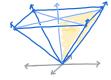
#### Examples:

$$\left[\begin{array}{cccc} 1 & 1 & -2 & 0 \\ 0 & 0 & 1 & 1 \end{array}\right] \ X = \mathbb{C}^4, \ G = (\mathbb{C}^*)^2 \qquad \qquad \text{where} \ 1 = (\mathbb{C}^*)^2$$

$$(s,t)\cdot(x,y,z,w)=(sx,sy,s^{-2}tz,tw)$$



$$\begin{bmatrix}
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & 1 & 1 & 1
\end{bmatrix}$$



### Quiver VGIT

#### **INPUTS**

#### OUTPUTS

Q a directed graph (quiver) with vertices  $Q_0$ 

 $\Sigma \subset {}^\perp \mathbf{d}$  the VGIT fan ambient dim  $|Q_0|-1$ 

$$\mathbf{d} \in \mathbb{Z}_{>0}^{Q_0}$$

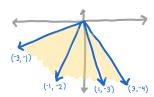
#### Example:



$$X = M_{5\times 1} \times M_{7\times 5} \times M_{7\times 5} \times M_{1\times 7}$$

$$G = GL_1 \times GL_5 \times GL_7/\mathbb{C}^*$$

$$(g, h, k) \cdot (x, \mathbf{y}, z) = (hxg^{-1}, k\mathbf{y}h^{-1}, gzk^{-1})$$



- Schofield '92: recursive computation of generic subdimension vectors
- King '93: constructs moduli of quiver representations via GIT
- Derksen-Weyman '00: For acyclic quivers, support  $sst(\mathbf{d})$  of  $\Sigma(Q, \mathbf{d})$  is determined by *generic subdimension vectors*
- Hille-de la Peña '02: For acyclic quivers, study the wall system: minimal union of hyperplanes separating VGIT chambers
- Chindris '08: For acyclic guivers, shows existence of the VGIT fan
- lacktriangle Belmans-Franzen-Petrella: Packages for computing  $\mathrm{sst}(\mathbf{d})$

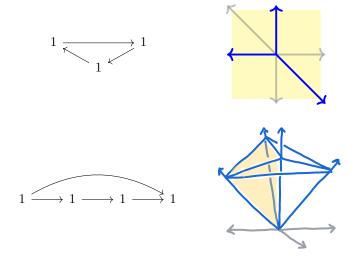
#### Theorem (Franzen-Petrella-W.)

 $X//_{\theta}G$  is Artin iff  $\theta \in W_{\mathbf{e}}$  for nonzero  $\mathbf{e} \subseteq \mathbf{d}$ , where

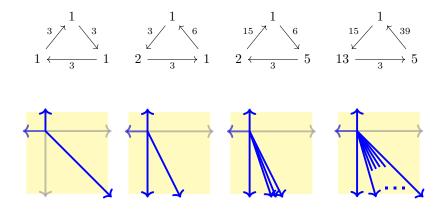
$$W_{\mathbf{e}} = \operatorname{sst}(\mathbf{e}) \cap \operatorname{sst}(\mathbf{d} - \mathbf{e}).$$

• (G, X) has a non-Artin quotient if and only if  $\mathbf{d}$  is an indivisible Schur root.

# A gallery of walls: cones not hyperplanes

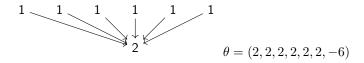


# A gallery of walls: mutation



Seiberg duality: Zhang, He-Zhang

# A gallery of walls: Segre cubic



- lacksquare good moduli space of  $X/\!\!/_{ heta}G$  is the (singular) Segre cubic
- VGIT fan has 1678 full-dimensional cones

# General reductive groups

Choose G a connected complex reductive group. Then

$$G \approx H_1 \times H_2 \times \ldots \times H_M \times (\mathbb{C}^*)^k$$

with possible  $H_i$  indexed by connected Dynkin diagrams.

#### Possible $H_i$ :

- $\blacksquare A_n = SL_{n+1}$
- $\blacksquare B_n = \text{s.c. cover of } SO_{2n+1}$
- $C_n = Sp_{2n+1}$
- lacksquare  $D_n = \text{s.c. cover of } SO_{2n}$
- $\blacksquare$   $E_6, E_7, E_8, F_4, G_2$

Notice: For toric, quiver VGIT the group G is type A—all  $H_i$ 's are  $A_{n_i}$ 

Me: Is there a non-Artin  $X/\!\!/_{\theta}G$  for some G not of type A?

Quasimap theory: Work with  $X/\!\!/_{\theta}G$ , no restrictions on the type of G, but assume  $X/\!\!/_{\theta}G$  is non-Artin.

Lie theorists: Type A is very special.

Arzhantsev-Hausen: Here's an example with  $G=Sp_{2n}\times (\mathbb{C}^*)^k$ . All  $X/\!\!/_{\theta}G$  are Artin.

Me: How to compute the VGIT fan of (X, G)?

Arzhantsev-Hausen: Like this!

Me: I still don't know how to answer the first question . . .

Recall:  $\Sigma(G,X)$  is the Weyl-invariant part of  $\theta_{-+}$ 

# $\theta_{-+}$ $\theta_{++}$ $\theta_{--}$ $\theta_{+-}$ $\Sigma(T,X)$

#### In general:

Set 
$$T=$$
 maximal torus in  $G$ ,  $W=$  Weyl group 
$$\operatorname{Char}(G)_{\mathbb{R}}=\operatorname{char}(T)_{\mathbb{R}}^{W} \text{, and}$$
 
$$\Sigma(T,X)\cap\operatorname{char}(T)_{\mathbb{R}}^{W} \text{ is a fan}$$

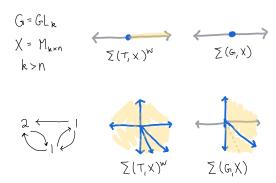
#### Theorem (Kurama-Li-Talbott-W.)

- (1) For  $r>\dim(G)$ , have  $\Sigma(G,X^{\oplus r})=\Sigma(T,X^{\oplus r})\cap\operatorname{char}(T)^W_{\mathbb{R}}$ .
- (2) If  $X/\!\!/_{\theta}G$  is nonempty/Artin, then  $X/\!\!/_{\theta}T$  is nonempty/Artin.
- (3) The converse of (2) is false.

#### Theorem (Kurama-Li-Talbott-W.)

- (1) For  $r > \dim(G)$ , have  $\Sigma(G, X^{\oplus r}) = \Sigma(T, X^{\oplus r}) \cap \operatorname{char}(T)^W_{\mathbb{R}}$ .
- (2) If  $X/\!\!/_{\theta}G$  is nonempty/Artin, then  $X/\!\!/_{\theta}T$  is nonempty/Artin.
- (3) The converse of (2) is false.

#### Examples:



#### Theorem (Kurama-Li-Talbott-W.)

- (1) For  $r>\dim(G)$ , have  $\Sigma(G,X^{\oplus r})=\Sigma(T,X^{\oplus r})\cap\operatorname{char}(T)^W_{\mathbb{R}}$ .
- (2) If  $X//_{\theta}G$  is nonempty/Artin, then  $X//_{\theta}T$  is nonempty/Artin.
- (3) The converse of (2) is false.

#### Corollary

An example with  $\Sigma(T,X)\cap \operatorname{char}(T)^W_{\mathbb{R}}$  not in the walls of  $\Sigma(T,X)$  gives an example of non-Artin  $X/\!\!/_{\theta}G$  (after replacing X with  $X^{\oplus r}$ ).

#### Theorem (Kurama-Li-Talbott-W.)

- (1) If  $\Sigma(T,X) \cap \operatorname{char}(T)^W_{\mathbb{R}}$  is not in the walls, then G has type A.
- (2) In this case, if  $G = \prod_{i=1}^{M} SL_{n_i} \times \mathbb{C}^*$ , then
  - the  $n_i$  are pairwise coprime
  - $X = \bigoplus_{a \in \mathbb{Z}} X_a \otimes \mathbb{C}_a$ , where

$$\text{ for } a>0 \text{ we have } X_a=\bigotimes_{i=1}^M \left\{ \begin{array}{c} \text{ (dual of) } Sym^1(\mathbb{C}^{n_i}) \\ \text{ (dual of) } Sym^{2\ell_a+1}(\mathbb{C}^2) \end{array} \right\}$$

(3) If  $G = \prod SL_{n_i} \times (\mathbb{C}^*)^k$  and  $X = X_+ \otimes (\mathbb{C}_{a_1} \oplus \ldots \oplus \mathbb{C}_{a_m})$  for some nondegenerate  $X_+$  and  $a_i$  spanning  $\operatorname{char}((\mathbb{C}^*)^k)$ , then  $\Sigma(T,X) \cap \operatorname{char}(T)^W_{\mathbb{R}}$  is not in the walls.

#### Corollary

There are no "easy" examples of non-Artin  $X/\!\!/_{\theta}G$ , for G not of type A.

#### Theorem (many authors)

For toric quotients or the Grassmannian flop, a generating series  $I^{X/\!/_{\theta}G}$  of Gromov-Witten invariants is an analytic function in a neighborhood of  $p_{\theta}$ . The series  $I^{X/\!/_{\theta}G}$  are related by analytic continuation and a symplectic transformation.

#### Observation (Ben Elias)

If W preserves a vector space basis of  $\operatorname{char}(T)_{\mathbb{R}}$ , then G has type A.

Definite takeaway: Type A is very special.

# For non-type A, W-invariants $\subseteq$ walls

 $\operatorname{degen}(X_{\lambda}) = \min \ell \text{ s.t. } 0 = \sum_{i=1}^{\ell+1} a_i \xi_i, a_i > 0, \ \xi_i \in \operatorname{weights}(X_{\lambda})$ 

| H                             | dominant weight $\lambda$ | bound on $\operatorname{degen}(X_{\lambda})$ |
|-------------------------------|---------------------------|----------------------------------------------|
| $A_1$                         | (k,0) $k$ odd             | 1                                            |
|                               | (k,0) $k$ even            | 0                                            |
| $A_n, n \geq 2$               | (1,0, 0)                  | n                                            |
|                               | $(1,1\ldots,1,0)$         | n                                            |
|                               | all other $\lambda$       | n-1                                          |
| $B_n, n \geq 2$               | $\omega_n$                | 1                                            |
| $C_n, n \geq 3$               | $\omega_1$                | 1                                            |
| $D_n, n \ge 4$ even           | $\omega_1$                | 1                                            |
|                               | $\omega_{n-1}$            | 1                                            |
|                               | $\omega_n$                | 1                                            |
| $D_n, \ n \geq 5 \text{ odd}$ | $\omega_1$                | 1                                            |
|                               | $\omega_{n-1}$            | 3                                            |
|                               | $\omega_n$                | 3                                            |
| $E_6$                         | $\omega_1$                | 2                                            |
|                               | $\omega_6$                | 2                                            |
| $E_7$                         | $\omega_7$                | 1                                            |
| $E_8, F_4, G_2$               | 0                         | 0                                            |

