Math 641, Fall 1999

R.A. Brualdi

Exercise Set 5, * exercises due Friday, November 12, 1999

- * 1. Prove that in F_{2^m} every element a has a square root, that is, there is an element b such that $b^2 = a$.
- * 2. Let $f(x) \in F_q[x]$ be a monic polynomial of degree k. The reciprocal polynomial is the polynomial $f_{-1}(x) = x^k f(x^{-1})$. Prove that if f(x) is an irreducible polynomial of degree > 2 satisfying $f(x) = f_{-1}(x)$, then f(x) is not a primitive polynomial.
- * 3. Let $C_1 = \langle g_1(x) \rangle$ and $C_2 = \langle g_2(x) \rangle$ be cyclic codes in $R_n = F_q[x]/\langle x^n 1 \rangle$ with gen. polys. $g_1(x)$ and $g_2(x)$, respectively. Prove:
 - (a) $C_1 \subseteq C_2$ if and only if $g_2(x)|g_1(x)$;
 - (b) $C_1 \cap C_2$ is a cyclic code with generator polynomial

$$LCM\{g_1(x), g_2(x)\};$$

(c) $C_1 + C_2 = \det \{c_1(x) + c_2(x) : c_1(x) \in C_1, c_2(x) \in C_2\}$ is a cyclic code with generator polynomial

$$GCD\{g_1(x), g_2(x)\};$$

- (d) C is self-orthogonal if and only if h'(x)|g(x) where h'(x) is the reciprocal of the check polynomial of C.
- * 4. Let g(x) be the generator polynomial of a binary cyclic code containing at least one odd weight vector. Prove that the set of codewords of even weight form a cyclic code C and determine its generator polynomial.
- * 5. Let C be a binary cyclic code. Prove that C contains a codeword of odd weight if and only if the all 1's vector is in C.