Activation degree thresholds and expressiveness of polynomial neural networks

Bella Finkel (UW–Madison) with Jose Israel Rodriguez, Chenxi Wu, Thomas Yahl

Spring Southeastern Sectional Meeting Clemson University, March 8, 2025

arXiv:2408.04569

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 2137424.

Definition

A polynomial neural network $p_{\mathbf{w}} : \mathbb{R}^{d_0} \to \mathbb{R}^{d_L}$ with fixed activation degree r and architecture $\mathbf{d} = (d_0, d_1, \dots, d_L)$ is a feedforward neural network

$$p_{\mathbf{w}}(x) = (W_L \circ \sigma_{L-1} \circ W_{L-1} \circ \sigma_{L-2} \circ \cdots \circ \sigma_1 \circ W_1)(x)$$

where the weights $W_i \in \mathbb{R}^{d_i \times d_{i-1}}$

and the **activation maps** $\sigma_i(x) : \mathbb{R}^{d_i} \to \mathbb{R}^{d_i}$ are given by coordinate-wise exponentiation to the *r*-th power,

$$\sigma_i(\mathbf{x}) := (\mathbf{x}_1^r, \dots, \mathbf{x}_{d_i}^r).$$
$$\mathbf{w} = (W_1, W_2, \dots, W_L)$$

Neurovarieties

An *L*-layer polynomial neural network p_w with architecture $\mathbf{d} = (d_0, d_1, \dots, d_L)$ and activation degree r is represented by a tuple of homogeneous polynomials of degree r^{L-1}

$$\begin{split} \Psi_{\mathbf{d},r} : \mathbb{R}^{d_1 \times d_0} \times \cdots \times \mathbb{R}^{d_L \times d_{L-1}} &\to (\mathsf{Sym}_{r^{L-1}}(\mathbb{R}^{d_0}))^{d_L} \subset \mathsf{Fun}(\mathbb{R}^{d_0}, \mathbb{R}^{d_L}), \\ \mathbf{w} &\mapsto p_{\mathbf{w}} = \begin{pmatrix} p_{\mathbf{w}_1} \\ \vdots \\ p_{\mathbf{w}_{d_l}} \end{pmatrix} \end{split}$$

The Zariski closure of the image of $\Psi_{\mathbf{d},r}$ in $\operatorname{Sym}_{r^{L-1}}(\mathbb{R}^{d_0}))^{d_L}$ is a **neurovariety** $\mathcal{V}_{\mathbf{d},r}$

Example

If $d_L = 1$, the codomain of the parameter map is the space of degree r^{L-1} homogeneous polynomials.

Why study polynomial neural networks?

Somewhat surprising slogan

Somebody cares!

 Recognizing tensor rank for quantum entanglement arXiv:1908.10247

And the characterization of neurovarieties speaks to broader questions...

arXiv:2410.00722 On the Geometry and Optimization of Polynomial Convolutional Networks (Vahid Shahverdi, Giovanni Luca Marchetti, Kathlén Kohn)

arXiv:2408.17221 Geometry of Lightning Self-Attention: Identifiability and Dimension (Nathan W. Henry, Giovanni Luca Marchetti, Kathlén Kohn)

Neurovarieties and their invariants

How do we characterize this function space?

One way: use the dimension of $\mathcal{V}_{\mathbf{d},r}$ to characterize the network's *expressiveness*.

Mulit-homogeneity (Kileel-Trager-Bruna)

For all invertible diagonal matrices $D_i \in \mathbb{R}^{d_i \times d_i}$ and permutation matrices $P_i \in \mathbb{R}^{d_i \times d_i}$, $\Psi_{\mathbf{d},r}$ gives the same neural network under the replacement

$$W_1 \leftarrow P_1 D_1 W_1$$
$$W_2 \leftarrow P_2 D_2 W_2 D_1^{-r} P_1^T$$
$$\vdots$$
$$W_l \leftarrow W_l D_l^{-r} P_l^T 1.$$

Thus the dimension of a generic pre-image of $\Psi_{\mathbf{d},r}$ is at least $\sum_{i=1}^{L-1} d_i$.

The **expected dimension** of the neurovariety $\mathcal{V}_{\mathbf{d},r}$ is

$$ext{edim} \mathcal{V}_{\mathbf{d},r} := \min \left\{ d_L + \sum_{i=0}^{L-1} (d_i d_{i+1} - d_{i+1}), \quad d_L \binom{d_0 + r^{L-1} - 1}{r^{L-1}} \right\}.$$

Example (L = 1)

In the case when L = 1, the neurovariety $\mathcal{V}_{\mathbf{d},r}$ has the expected dimension $d_0 d_1$, as the map $\Psi_{\mathbf{d},r}$ is an isomorphism. The function space is parameterized by the $d_1 \times d_0$ matrix W_1 . If $\text{dim}\mathcal{V}_{d,r}\neq \mathrm{edim}\mathcal{V}_{d,r},$ then the neurovariety is said to be defective

```
\operatorname{defect}(\mathcal{V}_{\mathbf{d},r}) := \operatorname{edim}(\mathcal{V}_{\mathbf{d},r}) - \operatorname{dim}(\mathcal{V}_{\mathbf{d},r}).
```

Theorem (Alexander-Hirschowitz)

Let X be a general collection of d_1 double points in \mathbb{P}^{d_0-1} and let $Y(d) \subseteq \operatorname{Sym}_r(\mathbb{C}^{d_0-1})$ be the subspace of polynomials through X. Then Y(d) has the expected dimension $\min\{d_0d_1, \binom{d_0+r-1}{r}\}$. So, if $\mathbf{d} = (d_0, d_1, 1)$, then $\mathcal{V}_{\mathbf{d},r}$ is defective exactly when

$$r = 2, 2 \le d_1 < d_0 \quad r = 3, d_0 = 5, d_1 = 7,$$

$$r = 4, d_0 = 3, d_1 = 5 \quad r = 4, d_0 = 4, d_1 = 9$$

$$r = 4, d_0 = 5, d_1 = 14$$

Problem

Given an architecture **d**, does there exist a non-negative integer \tilde{r} such that the following holds:

$$\dim \mathcal{V}_{\mathbf{d},r} = \operatorname{edim} \mathcal{V}_{\mathbf{d},r} \quad \text{for all} \quad r > \tilde{r} ?$$

We'd like to make a definition.

Definition The activation degree threshold of an architecture $\mathbf{d} = (d_0, d_1, \dots, d_L)$ with $L > 1, d_i > 1$ is

 $\mathsf{ActThr}(\mathbf{d}) := \min\{\tilde{r} \in \mathbb{N}_{\geq 0} : \dim \mathcal{V}_{\mathbf{d},r} = \operatorname{edim} \mathcal{V}_{\mathbf{d},r} \text{ for all } r > \tilde{r}\}.$

Theorem (**Finkel**-Rodriguez-Wu-Yahl)

For fixed $\mathbf{d} = (d_0, d_1, \dots, d_L)$ satisfying $d_i > 1$ $(i = 0, \dots, L - 1)$, the activation degree threshold ActThr(\mathbf{d}) exists.

In other words, there exists \tilde{r} such that whenever $r > \tilde{r}$, the neurovariety $\mathcal{V}_{\mathbf{d},r}$ has the expected dimension,

$$\dim \mathcal{V}_{\mathbf{d},r} = \operatorname{edim} \mathcal{V}_{\mathbf{d},r} = d_L + \sum_{i=0}^{L-1} (d_i - 1)d_{i+1}.$$

Moreover, for L > 1, we have

ActThr(**d**)
$$\leq 20m^2 - 32m + 10$$
, $m = \max\{d_1, \dots, d_{L-1}\}$.

Powers of non-proportional multivariate polynomials

Proposition (Newman-Slater, Finkel-Rodriguez-Wu-Yahl)

Let

$$R_1^n(x) + R_2^n(x) + \cdots + R_k^n(x) = 1$$

where the R_i 's are linearly independent non-constant rational functions in the variable x. Then $n \le 5k^2 - 6k + 3$.

Proposition (Finkel-Rodriguez-Wu-Yahl)

Let \mathbb{K} be a subfield of \mathbb{C} . Given integers d, k, there exists an integer $\tilde{r} = \tilde{r}(k)$ with the following property. If $r > \tilde{r}(k)$ and $p_1, \ldots, p_k \in \mathbb{K}[x_1, \ldots, x_d]$ are pairwise non-proportional, then p_1^r, \ldots, p_k^r are linearly independent (over \mathbb{K}).

Moreover, $\tilde{r}(k) = 5k^2 - 16k + 10$ has the desired property.

Equi-width architectures

In special cases, we can do a lot better...

Let $\mathbf{d} = (d_0, d_1, \dots, d_L)$ be an equi-width architecture, i.e., $d = d_0 = d_1 \dots = d_L$, L > 1, and d > 1.

Theorem (**Finkel**-Rodriguez-Wu-Yahl)

The activation degree threshold associated to \mathbf{d} is ActThr(\mathbf{d}) = 1.

That is, if **d** is equi-width with L > 1 and d > 1, then for all r > 1 the neurovariety $\mathcal{V}_{\mathbf{d},r}$ has the expected dimension

$$\dim \mathcal{V}_{\mathbf{d},r} = Ld^2 - (L-1)d.$$

Better bounding activation degree thresholds

Except in a small number of cases, it is an open question to describe the fibers of the parameter map $\Psi_{\mathbf{d},r}$ when the neurovariety dimension does not equal the expected dimension.

This is a difficult but interesting problem! For example...

Patterns of linear dependence among polynomial powers

The **ticket** T(F) of a finite set of polynomials $F = \{f_i\}$ is

 $T(F) = \{m \in \mathbb{N} | \{f_j^m\} \text{ is linearly dependent} \}$

lf

$$f_1 = x^2 + \sqrt{2}xy - y^2, \quad f_2 = ix^2 - \sqrt{2}xy + iy^2,$$

$$f_3 = -x^2 + \sqrt{2}xy + y^2, \quad f_4 = -ix^2 - \sqrt{2}xy - iy^2,$$

then $T({f_1, f_2, f_3, f_4}) = {2, 5}$

Theorem (Reznick)

Let $F = \{f_1, \ldots, f_{d_L}\}$ be a set of pairwise non-proportional polynomials over \mathbb{C} . Then $|T(F)| \leq \binom{r-1}{2}$.

Conjecture (Reznick)

Every finite subset of $\mathbb N$ appears as a ticket for some family of homogeneous polynomials over $\mathbb C.$

AWM Research Symposium

 \star Special Session on Advances in Applied Algebra and Algebraic Statistics \star May 16-18, 2025 in Madison, WI

Joe Kileel, Matthew Trager, Joan Bruna arXiv:1905.12207

Kaie Kubjas, Jiayi Li, Maximilian Wiesmann arXiv:2402.00949

Giovanni Luca Marchetti, Vahid Shahverdi, Stefano Mereta, Matthew Trager, Kathlén Kohn arXiv:2501.18915