
HODGE DECOMPOSITION

YUCHEN CHEN

Abstract. This is an expository paper on the Hodge Decomposition Theo-

rem. The aim is to give a proof of this theorem. Along the way we will discuss

some machinery involving Sobolev spaces and differential operators and an
application to de Rham cohomology.
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1. Introduction

This paper is an exposition on the Hodge decomposition theorem. We aim to
study p-forms by considering the action of the Laplace-Beltrami operator. This
is an extension of the Laplace operator in calculus. The kernel of this action are
special forms called harmonic forms. The space of harmonic forms turns out to be
finite dimensional which allows us to take orthogonal complements. This forms the
basis of the Hodge decomposition theorem.

The Hodge decomposition theorem has many useful applications. We will discuss
one application to de Rham cohomology which says that each cohomology class has
a unique harmonic representative, i.e. we have a correspondence between de Rham
cohomology groups Hp

dR and p-harmonic forms.
We will mostly follow [5]. For this proof, we will need some background in

Sobolev spaces and differential operators. We will at least state all results needed
to prove the Hodge decomposition theorem in this paper but may refer the reader
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to [5] for some of the proofs. For a more general exposition of this theory, one may
check out [1].

2. Laplace-Beltrami Operator

We want to study p-forms by studying the action of a Laplacian operator. From
calculus, recall the Laplacian operator∑

i

∂2

∂x2i .

We want to extend this operator to an operator on p-forms. In this section we will
construct this operator, the Laplace-Beltrami operator.

2.1. Hodge Star. Let V be a finite dimensional vector space with an inner product

〈·, ·〉. We can extend this inner product to exterior powers
∧k

V as follows. On
decomposable tensors, α = α1 ∧ · · · ∧ αk and β = β1 ∧ · · · ∧ βk, define

〈α, β〉 = det(〈αi, βj〉)ij .

One can check that this extends to a unique inner product on
∧k

V .
We want to define an operator on the exterior algebra

∧
V . We will use the following

lemma.

Lemma 2.1. Let φ be a linear functional on V . Then there exists a unique v ∈ V
such that for all w ∈ V

φ(w) = 〈w, v〉.

Proof. See [3]. �

Given α ∈
∧p

V , we can define a linear functional as follows. Let β ∈
∧n−p

V ,
so α ∧ β ∈

∧n
V , where n is the dimension of V . Let ω ∈

∧n
V be given by

determinant. Then since
∧n

V is one dimensional, ω is a basis. We can then write

α ∧ β = φα(β)ω

where the expression on the right is unique. Note that φα is a linear functional on∧n−p
V .

Definition 2.2. Let α ∈
∧p

V . We denote by ∗α the element of
∧n−p

V such that

φα(β) = 〈β, ∗α〉,

as given by Lemma 2.1. We call this operator ∗ the Hodge star operator.

The case we are most interested in is when we have a compact orientable Rie-
mannian manifold M . The Riemannian metric allows us to define the star operator
∗ taking p-forms on M to (n− p)-forms on M .

If we choose an orthonormal basis e1, ..., en of V , we can write the Hodge star
operator more explicitly. Note that a choice of basis fixes an orientation on V .
That is if we have another basis f1, ..., fn, we have a unique linear transformation T
mapping ei 7→ fi. If T has positive determinant, these bases have same orientation,
otherwise, they have the opposite orientation.
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Proposition 2.3. The Hodge star operator

∗ :
∧
V →

∧
V

satisfies the property that for any orthonormal basis f1, ..., fn,

∗(f1 ∧ · · · ∧ fk) = ±fk+1 ∧ · · · ∧ fn
where the sign depends on the orientation. Here we set

∗(1) = ±f1 ∧ · · · ∧ fn
and

∗(f1 ∧ · · · ∧ fn) = ±1.

We can check that this follows from the original definition by expanding out with
the chosen bases.

The definition of the Hodge star operator may seem rather opaque. However,
there is geometric intuition behind this operation, particularly it encodes orthog-
onality. Suppose that j1, ..., jk is an orthogonal basis of a subspace. By Gram-
Schmidt we may extend this to an orthonormal basis j1, ..., jn modulo some scaling
factors. The properties in Definition 2.3 show that ∗(j1 ∧ · · · ∧ jk) is the element
jk+1 ∧ · · · ∧ jn, where jk+1, ..., jn spans a subspace orthogonal to the one spanned
by j1, ..., jk.

This is most easily visualized on low dimensions of Rn which we illustrate in the
following examples.

Example 2.4. We first consider the plane R2. We choose the ordered basis dx, dy
on 1-forms. Following the properties in Proposition 2.3, we can compute the star
operator explicitly.

• ∗(1) = dx ∧ dy
• ∗(dx) = dy
• ∗(dy) = −dx
• ∗(dx ∧ dy) = 1

If we abuse notation and think of dx as the standard basis vector î and dy by ĵ,
We see that ∗(xî+ yĵ) = −yî+ xĵ, which rotates counter clockwise by 90 degrees.

Figure 1. The star operator on R2 corresponds to rotating coun-
terclockwise by 90 degrees

Example 2.5. Another easy case to visualize is R3. By choosing an ordered basis
dx, dy, dz, we can again compute the star operator explicitly.
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• ∗(1) = dx ∧ dy ∧ dz
• ∗(dx) = dy ∧ dz
• ∗(dy) = dz ∧ dx
• ∗(dz) = dx ∧ dy
• ∗(dx ∧ dy) = dz
• ∗(dx ∧ dz) = −dy
• ∗(dy ∧ dz) = dx
• ∗(dx ∧ dy ∧ dz) = 1.

In particular if we abuse notation again and view dx, dy, dz as î, ĵ, k̂, we see that
the star operator agrees with the cross product on R3. The cross product of two
linearly independent vectors u, v gives the normal vector to the plane spanned u, v,
which connects the star operator to orthogonality.

2.2. Laplace-Beltrami. Now we are ready to construct the Laplace-Beltrami op-
erator. Recall the Laplacian operator

(2.6)
∑
i

∂2

∂x2i .

We would like to extend this operator to the space of p-forms Ωp. We will do this
as follows.

Definition 2.7. Define δ : Ωp → Ωp−1 by

δ = (−1)n(p+1)+1 ∗ d ∗ .

On 0-forms this is the 0 map. The −1 term is added to be compatible with the −1
term in ∗2.

Definition 2.8. We define the Laplace-Beltrami operator, ∆, by

∆ = δd+ dδ.

We will call this operator the Laplacian.

We should check that on 0-forms, the Laplacian ∆ matches the Laplacian oper-
ator (2.6) on Rn. The 0-forms are just C∞ functions. Let f be such a function.

Then

∆f = δdf

= ∗d ∗ df

= ∗d ∗
(
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn

)
= ∗d

(
∂f

∂x1
dx2 ∧ · · · ∧ dxn + · · ·+ ∂f

∂xn
dx1 ∧ · · · ∧ dxn−1

)
= ∗

(
∂2f

∂x21
+ · · ·+ ∂2f

∂x2n

)
dx1 ∧ · · · ∧ dxn

=

(
∂2f

∂x21
+ · · ·+ ∂2f

∂x2n

)
.

To get from the first line to the second line recall that δ is the zero operator in
0-forms. To get from the fourth to fifth line, after expanding the exterior derivative,
the signs of terms with mixed partials cancel out due to the signs form ∗. Thus,
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it makes sense to consider the Laplace-Beltrami operator as an extension of the
classical Laplacian.

The star operator can also be used to define an inner product on Ωp by

〈α, β〉 =

∫
M

α ∧ ∗(β).

This can be extended linearly to
∑

Ωp by requiring p and q forms to be orthogonal
for p 6= q. This inner product is symmetric and positive definite. The importance
of this inner product is that it makes the Laplacian a self-adjoint operator.

Theorem 2.9. If α, β are p-forms, then

〈∆α, β〉 = 〈α,∆β〉.

We see that to prove this, it is enough to show that δ is the adjoint to d.

Proposition 2.10. For α a (p− 1)-form, β a p-form, we have that

〈dα, β〉 = 〈α, δβ〉.

Proof. We will compute
∫
M
d(α ∧ ∗β) in two ways. First, by Stokes’ theorem and

that M is compact, we know that∫
M

d(α ∧ ∗β) = 0.

For the second computation, note that

∗δ = (−1)n(p+1)+1 ∗ ∗d∗ = −1(p−1)(n−p−1)d∗,

where we use that ∗∗ = (−1)p(n−p). Then we see that∫
M

d(α ∧ ∗β) =

∫
M

dα ∧ ∗β + (−1)p−1α ∧ d ∗ β

=

∫
M

dα ∧ ∗β − α ∧ ∗δβ.

Then

0 =

∫
M

dα ∧ ∗β −
∫
M

α ∧ ∗δβ = 〈dα, β〉 − 〈α, δβ〉,

which completes the proof. �

Our goal is to prove the Hodge decomposition theorem which says that the space
of p-forms decomposes as the direct sum of the image and kernel of the Laplacian.

The elements of the kernel have a special name.

Definition 2.11. The p-forms in the kernel of the Laplacian, denoted

Hp = {ω ∈ Ωp(M) : ∆ω = 0}

are called the harmonic p-forms.

Example 2.12. The harmonic 0-forms are constant functions. This is since if α is
a p-form then,

0 = 〈∆α, α〉 = 〈δα, δα〉+ 〈dα, dα〉.
Hence , dα = 0. In particular, if α is a 0-form, then α is a function, so it must be
constant.
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We would like to understand harmonic p-forms in general. Finding harmonic
forms is related to solving equations of the form ∆ω = 0, or more generally equa-
tions of the form ∆ω = α. Thus, we will be interested in solving such equations.
This is not an easy task.

If we happen to have a solution ω to the equation ∆ω = α, then we can form a
bounded linear function ` on Ωp by

`(β) = 〈ω, β〉.

Now given any γ ∈ Ωp, we have that

`(∆γ) = 〈ω,∆γ〉 = 〈∆ω, γ〉,= 〈α, γ〉.

This observation gives the following definition.

Definition 2.13. A bounded linear operator ` on Ωp satisfying

`(∆γ) = 〈α, γ〉,

is called a weak solution of the equation ∆ω = α.

Weak solutions come from the theory of distributions. Distributions will not
be discussed in this paper but in a sense, they can be thought of as generalized
functions. The idea here is that we think of functions as objects acting on a class
of test functions. Then we can reformulate our differential equation using test
functions and try to find a solution in that sense. This is what is being done by
introducing the functional `. Here our test function are p-forms β. We are defining
the weak solution as a functional that acts on test functions in the same way a real
solution ω acts on test functions by inner product.

In general, it is much easier to find a weak solution. One trick that we will use
involves the Hahn-Banach theorem.

Definition 2.14. Let E be a vector space over R or C. A function p : E → R
satisfying

p(λx) = λp(x)

for all x ∈ E, λ > 0 and

p(x+ y) ≤ p(x) + p(y)

for x, y ∈ E is called a sublinear functional.

Theorem 2.15. (Hahn-Banach) Let G ⊂ E be a subspace, p a sublinear functional
and g : G→ R a linear functional satisfying

g(x) ≤ p(x)

for all x ∈ G. Then we can extend g to a functional f : E → R on all of E such
that

f(x) ≤ p(x)

for all x ∈ E.

Proof. The proof is found in [1, Thm. 1.1]. �

The Hahn-Banach theorem can be used as follows. We have a subspace ∆(Ωp).
On this subspace, we can define a linear functional ` by

`(∆γ) = 〈α, γ〉.
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Then by proving some bound on the norm, which we use as the sublinear functional,
we can apply Hahn-Banach to extend ` to a linear functional on all of Ωp. By
definition, this is a weak solution to ∆ω = α.

Fortunately, it turns out that finding a weak solution is enough to find an actual
solution to the equation. In the next few sections, we develop the tools necessary
to prove this fact.

3. Sobolev Spaces

In this section, we introduce Sobolev spaces. Sobolev spaces will give us the
framework and tools to understand the behavior of weak solutions. In particular
to investigate regularity i.e differentiability of these solutions.

To define Sobolev spaces, we need to understand differentiability in the weak
sense.

Definition 3.1. Let f be a function on Rn. Let α be an index, i.e. a n-tuple of
natural numbers. We say g is the αth weak derivative of f if g satisfies integration
by parts with all test functions φ ∈ C(Rn) with compact support. That is∫

fDαφ = (−1)|α|
∫
gφ.

For notation, we will denote g by Dαf as well.

As a remark, weak differentiability is related to distributions as well as we are
characterizing a derivative by how it acts on test functions. Here ”acting” is satis-
fying integration by parts.

Example 3.2. A canonical example of a nondifferentiable function with a weak
derivative is the absolute value function f(x) = |x| on R. From calculus, we know
that f is not differentiable at 0. However, f has a weak derivative given by

f ′(x) =

{
1 x ≥ 0

−1 x < 0.

The idea here is that the nondifferentiable part of f is just a single point, but
integration doesn’t care about measure zero sets. By the same reasoning, we also
see that weak derivatives are not unique. This is since we modify the weak derivative
on a measure zero set but this modification can’t be detected by integration.

Definition 3.3. We define the Sobolev space W k,p(Rn) to be the space of all (Cm
valued) functions f ∈ Lp(Rn) whose weak derivatives up to order k also belong to
Lp(Rn).

The Sobolev space W k,p comes with a norm

|f |Wk,p = |f |p +
∑
|α|≤k

|Dαf |p

given by taking the sum of the Lp norms of the function and its weak derivatives
up to order k making it a Banach space.

We are particularly interested in the case when p = 2 For notation, we will
denote

Hk := W k,2.

Note that it is more standard to denote the indices by superscripts but we will use
subscripts to avoid confusion with the notation for harmonic forms. We use the
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notation H to emphasize that in the p = 2 case, the Sobolev space is actually a
Hilbert space. It has an inner product

〈f, g〉k = 〈f, g〉2 +
∑
|α|≤k

〈Dαf,Dαg〉2

induced by the inner product on the Hilbert space L2(Rn).
Equivalently, we can define Hk in terms of Fourier series.
Denote by S the space of vectors in Cm indexed by n-tuples of integers ξ =

(ξ1, ..., ξn).
Given u = {uξ} ∈ S, we view u as a formal Fourier series∑

ξ

uξe
ixξ.

In this situation, we view weak derivatives as taking formal derivatives of Fourier
series

Dαu =
∑
ξ

ξαuξe
ixξ.

We have inner products

〈u, v〉k =
∑
ξ

(1 + |ξ|2)k|uξ| · |vξ|,

which gives the norm

|u|2k =
∑
ξ

(1 + |ξ|2)k|uξ|2.

Definition 3.4. We define the Sobolev space

Hk := {u ∈ S : |u|k <∞}.

For notation, we will denote by H−∞ the union of all Hk.

The equivalence to the Sobolev spaces defined earlier can be seen as follows.
Let u be a function and {uξ} denote its Fourier coefficients. Then for a positive
constant c, we have the inequality

c(1 + |ξ|2)k|uξ|2 ≤
k∑
|α|=0

|Dαu|2 ≤ (1 + |ξ|2)k|uξ|2

showing equivalence of norms.
There are a number of properties and inequalities that we will need. These will

be stated without proof. Proofs of the following can be found in chapter 6 of [5].
Let P denote the space of Cm valued C∞ functions on Rn which are 2π-periodic.

Then by viewing each function by its Fourier coefficients, we see that P is a subspace
of Hk for all k. Moreover, P is dense as it contains the sequences with only finitely
many terms nonzero.

Proposition 3.5. If u ∈ Hk+[α], then

|Dαu|k ≤ |u|k+[α].

Proof. See [5, Thm. 6.18(h)]. �

The upshot here is that Dα is a bounded operator from Hk+[α] to Hk.
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Proposition 3.6. If u ∈ Hk+`, then

|u|k+` = sup
v∈Hk−`

|〈u, v〉k|
|v|k−`

.

Proof. See [5, Thm. 6.18(f)]. �

This result will be applied in the case when ` = 0. This tells us that we can check
for equality by testing against elements of Hk. That is, u ∈ Hk is 0 if and only if
〈u, v〉k = 0 for all v ∈ Hk.

Proposition 3.7. (Peter-Paul Inequality) If k′ < k < k′′ and u ∈ Hk′′ , then for
ε > 0, there is a constant c depending on ε such that

|u|2k ≤ ε|u|2k′′ + c|u|2k′ .

Proof. See [5, Thm. 6.18(g)]. �

We have two more inequalities regarding periodic functions.

Proposition 3.8. Let ω be a C∞ complex valued periodic function on Rn. Then
for any ϕ ∈ P, we have constants c, c′ such that

|ωϕ|k ≤ c|ω|∞|ϕ|k + c′|ϕ|k−1.

Proof. See [5, Thm. 6.18(i)]. �

Proposition 3.9. Let ω be as before and u, v ∈ Hk. Then there is a constant c
such that

|〈ωu, v〉k − 〈u, ωv〉k| ≤ c(|u|k|v|k−1 + |u|k−1|v|k).

Proof. See [5, Thm. 6.18(j)] �

3.1. Sobolev Embedding. Suppose we have some u ∈ Hk. We view u as a formal
Fourier series

∑
ξ uξe

ixξ. We want to know when u is an actual function, i.e. when
does the Fourier series converge, and moreover if it does converge, how differentiable
the function it converges to is in the classical sense. These questions are answered
by the Sobolev embedding theorem.

Theorem 3.10. (Sobolev Embedding) If u ∈ Hk where k ≥ [n/2] + 1 +m, then u
is a Cm function.

This is a case of a more general Sobolev embedding theorem, see [1].
The proof follows from the following results.

Lemma 3.11. (Sobolev Lemma) Let u ∈ Hk(Rn). If k ≥ [n/2] + 1, where [·]
denotes the least integer function, then

∑
ξ uξe

ixξ converges uniformly.

Proof. We will show absolute convergence. Note that |uξeixξ| = |uξ|. Then,
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∑
|ξ|<N

|uξ| =
∑
|ξ|<N

(1 + |ξ|2)−k/2(1 + |ξ|2)k/2|uξ|

≤ (
∑
|ξ|<N

(1 + |ξ|2)−k/2)(
∑
|ξ|<N

(1 + |ξ|2)k/2|uξ|)

= (
∑
|ξ|<N

(1 + |ξ|2)−k)1/2(
∑
|ξ|<N

(1 + |ξ|2)k|uξ|2)1/2

= (
∑
|ξ|<N

(1 + |ξ|2)−k)1/2|u|k.

The lemma then follows from the fact that
∑
|ξ|(1 + |ξ|2)−k converges for k ≥

[n/2] + 1, and by sending N to ∞. �

If we apply the Sobolev lemma to derivatives, we get the following result.

Corollary 3.12. Let u ∈ Hk and k ≥ [n/2] + 1 + m. By the Sobolev lemma,
u(x) =

∑
ξ uξe

ixξ is a continuous function. Then for |α| ≤ m, the derivatives

Dαu :=
∑
ξ ξ

αuξe
ixξ converge uniformly.

Proof. Dαu belongs to Hk−|α|. Applying the Sobolev lemma to Dαu and using

Proposition 3.5 shows that
∑
ξ ξ

αuξe
ixξ converges uniformly. �

The Sobolev embedding gives a partial converse to the following statement.

Theorem 3.13. If f is a Cm function, then its Fourier coefficients, un, are
o(|n|−m).

Proof. By integration by parts we know that the norm of the Fourier coefficients
of the kth derivative of f is |n|k|un|. Then |n|m|un| goes to zero since f is Cm. �

Then we know that Cm ⊂ Hm−1. This doesn’t quite match up with the Sobolev
embedding. To know a function is Cm from only its Fourier coefficients, we need
the stronger condition that it is Hk for k ≥ [n/2]+1+m. For example, the absolute

value function has Fourier coefficients which are o(|n|−2) but it is not differentiable.

3.2. Difference Quotients. A useful technique to see the differentiability of func-
tions in terms of Sobolev spaces is to consider their difference quotient.

Recall from calculus that given a function f , we have the difference quotient

fh(x) =
f(x+ h)− f(x)

|h|
=
Th(f)− f
|h|

where

Th(f)(x) := f(x+ h)

is the translate of f by h.
If φ is a periodic function with Fourier coefficients φξ, then Th(φ) has Fourier

coefficients eihξφξ.
Then it makes sense to define translates and difference quotients on Hk in the

following way.
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Definition 3.14. Let u ∈ Hk. We define the translate by

Th(u) := {eihξuξ}

and the difference quotient by

uh :=
Th(u)− u
|h|

= {
(
eihξ − 1

|h|

)
uξ}.

Some computations show that Th is an isometry, that is

|Th(u)|k = |u|k

and that if u ∈ Hk+1 then

|uh|k ≤ |u|k+1.

We also have a converse to this statement which will be important.

Lemma 3.15. If u ∈ Hk and for all h the difference quotients

|uh|k ≤ C

are bounded by some constant C, then u ∈ Hk+1.

Proof. We use two tricks. The first trick is to truncate the sequence u. That is
for every positive integer N , define uN to be the sequence such that (uN )ξ = uξ
if |ξ| ≤ N and 0 otherwise. Then as long as |uN |k+1 is bounded uniformly in N ,
|u|k+1 is bounded which will show that u ∈ Hk+1.

The second trick is to restrict to a line tei where ei is a standard basis vector of
Rn. Let h = tei for some constant t. We know that∑

|ξ|≤N

(1 + |ξ|2)k|uξ|2|
eihξ − 1

|h|
|2 ≤ |uh|k ≤ C2.

Now take t → 0. Then limt→0
eihξ−1
|h| is just the derivative of eitξi with respect

to t so this is ξie
itξi which has norm ξi. From this, we know that∑

|ξ|≤N

(1 + |ξ|2)k|uξ|2|ξi|2 ≤ C2.

Then

|uN |2k+1 =
∑
|ξ|≤N

(1 + |ξ|2)k+1|uξ|2

=
∑
|ξ|≤N

(1 + |ξ|2)k|uξ|2 +
∑
|ξ|≤N

(1 + |ξ|2)k|uξ|2|ξ|2

≤
∑
|ξ|≤N

(1 + |ξ|2)k|uξ|2 +

n∑
i=1

∑
|ξ|≤N

(1 + |ξ|2)k|uξ|2|ξi|2

≤ |u|2k + nC2.

This shows that |uN |k+1 is uniformly bounded which completes the proof. �
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4. Differential Operators

In this section, we will introduce differential operators. We are interested in a
specific type of differentiable operator called an elliptic operator. The highest order
part of these operators is strictly positive.

Definition 4.1. A differential operator L of order ` on complex valued C∞(Rn)
functions is an operator of the form

L =
∑̀
|α|=0

aαD
α,

where the coefficients aα are complex valued C∞ functions on Rn and for some
|α| = `, aα 6= 0.

A differential operator L =
∑`
|α|=0 aαD

α is periodic if the coefficients aα are

periodic.

Definition 4.2. A differential operator L of order ` on Cm-valued C∞(Rn) func-
tions is a m by m matrix {Lij} where each Lij is differential operator on complex
valued C∞(Rn) functions, and is periodic if each matrix entry is periodic.

Remark 4.3. We can similarly define differential operators on other function spaces
such as the periodic functions P.

There are a couple of inequalities that will be useful.

Lemma 4.4. Let L be a differential operator on P, the periodic functions, of order
`. Let M be a bound on the norms of the coefficients of L. Then we can find
constants c, c′ such that for all ϕ ∈ P,

|Lϕ|k ≤ cM |ϕ|k+` + c′|ϕ|s+`−1.

Lemma 4.5. Let L be a differential operator of order `, and ω a C∞ periodic
function. Then for u ∈ Hk+`, there exists a constant c such that

|〈L(ω2u), Lu〉k − |L(ωu)|2k| ≤ c(|u|k+`|u|k+`−1).

For proofs see [5] 6.25, 6.27.

4.1. Elliptic Operators. We now turn to elliptic operators.
Let L be a differential operator of order `.
For each matrix entry Lij , we look at the highest order part∑

|α|=`

aijαD
α.

Replacing Dα with ξα, we get a function on Rn

Pij(ξ)(x) =
∑
|α|=`

aijα (x)ξα.

Definition 4.6. The symbol of L is the function p on Rn × Rn given by (ξ, x) 7→
{Pij(ξ)(x)}.

Definition 4.7. A differential operator L is elliptic if, for all x and nonzero ξ,
p(ξ, x) is nonsingular.
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Definition 4.8. If L is an operator on P, with entries

Lij =
∑̀
|α|=0

aijαD
α,

we define its adjoint L∗ to be the operator with entries

L∗ij =
∑̀
|α|=0

Dαajiα .

The adjoint L∗ satisfies the adjoint property for the L2 norm on P. That is for
all ϕ,ψ ∈ P, we have that

〈Lϕ,ψ〉 = 〈ϕ,L∗ψ〉.
This follows from integration by parts. We restrict to operators on periodic func-
tions P since the boundary term in integration by parts is 0.

We look at a couple of examples of elliptic operators.

Example 4.9. The simplest differential operator is L = d
dx . The symbol of this

differential operator is the 1 by 1 matrix (ξ) which is nonsingular at each nonzero
ξ. Thus, this is an example of an elliptic operator. To find its adjoint, we use
integration by parts. We see that

〈Lϕ,ψ〉 =

∫
ϕ′ψ =

∫
ϕψ
′

= 〈ϕ,Lψ〉.

Thus, integrating by parts tells us that the adjoint L∗ = L which matches the
definition given.

Example 4.10. Consider the operators

L1 =
∂2

∂x2
− ∂2

∂y2

and

L2 =
∂2

∂x2
+

∂2

∂y2
.

The operator L1 has symbol (ξ2 − ξ2) = (0), so it is not elliptic. The operator
L2 has symbol (2ξ2) so it is an elliptic operator.

The second operator is the classical Laplacian operator. Since it is elliptic, we
wonder if the generalization, the Laplace-Beltrami operator, is also elliptic. How-
ever, this question doesn’t make any sense since the Laplace-Beltrami operator
is defined on p-forms and isn’t a differential operator according to our definition.
Using the manifold structure, the Laplace-Beltrami operator locally defines a differ-
ential operator. We can then investigate the ellipticity of these induced operators.

Since M is a manifold we have a collection of coordinate charts. Fix a coordinate
chart U . Using transition maps, each p-form can be thought of as a C∞ function
from Rn to Rm where Rm where Rm is identified as the pth wedge of the space of
1-forms which has dimension n, so m =

(
n
p

)
.

Under this process, the Laplacian ∆ induces an operator L on C∞ functions
from Rn to Rm. Now we can talk about the ellipticity of the operator L.

Theorem 4.11. The induced operator L is an order 2 elliptic differential operator.

Proof. The proof is in 6.35 in [5]. �
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We need to be careful that this is invariant under coordinate changes.

Proposition 4.12. Let ϕ : U → V be a diffeomorphism and L an order ` elliptic
operator on U . Then (ϕ−1)∗Lϕ∗ is an order ` elliptic operator on V .

Proof. The computation can be found in [4]. The idea is that changing coordinates
doesn’t affect the highest order part which preserves order and ellipticity. �

Why do we care about this specific class of differential operators? The main
reason stems from the fundamental inequality which we prove next. In essence, it
says that we can understand something about higher order derivatives using lower
order ones.

This idea will be applied in the following framework. We are looking at some
equation Lu = f , and we have a weak solution. We will see that this corresponds
to finding some u ∈ Hk satisfying the equation. But now we can use the special
property of ellipticity to gain more derivatives of u in the weak sense. We will
continuously repeat this process to get higher and higher derivatives. Then the
Sobolev embedding theorem will tell us something about the regularity class, i.e.
which Cm the function u belongs to.

Theorem 4.13. (Fundamental Inequality) Let L be an elliptic operator on P of
order `. For all u ∈ Hk+`, there exists a constant c > 0 such that

|u|k+` ≤ c(|Lu|k + |u|k).

We will prove this inequality in three steps. We will first show that this inequality
holds for elliptic operators which have constant coefficients. Step 2 will show that
this inequality holds in a neighborhood of every point. Step 3 will show that we
can patch these local solutions to a global one.

One piece of machinery we will use is partitions of unity.

Definition 4.14. Let (Uα) be cover of the manifold M . A partition of unity
subordinate to this cover is a collection of C∞ functions ϕi such that ϕi ≥ 0, each
ϕi has support in some Uα and for all p ∈ M ,

∑
i ϕi(p) = 1. Another variation of

partitions of unity has
∑
i ϕ

2
i (p) = 1.

Theorem 4.15. If M is a differentiable manifold and (Uα) is an open cover, then
a countable partition of unity (and the variation) subordinate to this cover exists.

Proof. See [5, Thm. 1.11]. �

Now we will prove the fundamental inequality. We follow the proof in [5, Thm.
6.29].

Step 1: First consider the case when L is an elliptic operator of order `, with only
degree ` terms with constant coefficients and let p denote its symbol. Since
we have constant coefficients, p only depends on ξ and not on x. We have
that

|Lu|2k =
∑
ξ

|p(ξ)uξ|2(1 + |ξ|2)k.

Let ξ′, ϕ be arbitrary of norm 1. By ellipticity, we know that |p(ξ)ϕ|2 >
0. By compactness of unit sphere, we have that |p(ξ′)ϕ|2 ≥ c for some

constant c. Now applying this with ξ′ = ξ
|ξ| and ϕ =

uξ
|uξ| gives that

|p(ξ)uξ|2 ≥ c|ξ|2`|uξ|2.
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Since the coefficients are constant, c doesn’t depend on u. Thus, we get
that

|Lu|2k =
∑
ξ

|p(ξ)uξ|2(1 + |ξ|2)k ≥ c
∑
ξ

|ξ|2`|uξ|2(1 + |ξ|2)k.

Now we have that

(|Lu|k + |u|k)2 ≥ |Lu|2k + |u|2k
≥ c

∑
ξ

|ξ|2`|uξ|2(1 + |ξ|2)k +
∑
ξ

|uξ|2(1 + |ξ|2)k

=
∑
ξ

|uξ|2(1 + |ξ|2)k(1 + c|ξ|2`)

= c′
∑
ξ

|uξ|2(1 + |ξ|k+`)2 + additional terms

≥ c′
∑
ξ

|uξ|2(1 + |ξ|k+`)2 = c′|u|k+`

where c′ a constant depending on c. This shows the fundamental inequality
in this case.

Step 2: Now let L be any elliptic operator of order `. Let us consider this operator
locally at some point p ∈ Rn. We can define an operator L0 with constant
coefficients and only order ` terms as follows. Suppose the order ` terms of
Lij are ∑

|α|=`

aijαD
α.

We can then define the operator L0 with matrix entries

L0ij = aijα (p)Dα.

Applying step 1 to the operator L0, we see that

|u|k+` ≤ C(|L0u|k + |u|k)

for some constant C. Then,

|u|k+` ≤ C(|Lu|k + |(L0 − L)u|k + |u|k).

Using continuity of the coefficients of L, for a small enough neighborhood
U . the coefficients of the operator L0 − L have norm less than 1/(2cC),
where c is the constant in Lemma 4.4. By possibly shrinking we can choose

a periodic operator L̃ which agrees with L0−L on U and the coefficients of

L̃ have norm less than 1/(2cC) everywhere. Now we have that by lemma
4.4

|L̃u|k ≤
1

2C
|u|k+` + c′|u|k+`−1.
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Now if u has support in U , L̃u = (L0 − L)u so

|u|k+` ≤ C(|Lu|k + |(L0 − L)u|k + |u|k)

= C(|Lu|k + |L̃u|k + |u|k)

≤ C(|Lu|k +
1

2C
|u|k+` + c′|u|k+`−1 + |u|k)

= C|Lu|k +
1

2
|u|k+` + Cc′|u|k+`−1 + C|u|k.

By the Peter-Paul inequality,

|u|k+`−1 ≤
1

4Cc′
|u|k+` + C ′|u|k

where C ′ is a constant. Plugging this in, we get that

1

4
|u|k+` ≤ const(|Lu|k + |u|k).

The upshot is that for any point p, we can find a neighborhood U of p such
that the fundamental inequality holds for all functions with support in U .

Step 3: Since we are looking at operators on 2π periodic functions P, the domain
is the torus Tn. At each point p, we have a neighborhood Up such that the
inequality holds for all functions with support in Up. By compactness of Tn,
finitely many of these open sets U1, ..., Us cover Tn. We have a partition of
unity ω1, ..., ωs subordinate to this cover such that

s∑
i=1

ω2
i = 1.

Then

|ϕ|2k+` = 〈ϕ,ϕ〉k+` = 〈
∑
i

ω2
i ϕ,ϕ〉k+` =

∑
i

〈ω2
i ϕ,ϕ〉k+`.

The second equality comes from the fact that
∑
i ω

2
i = 1. Now by Proposi-

tion 3.9, in 〈ω2
i ϕ,ϕ〉k+` we can move one of the ωi to the other side which

introduces an error term of c|ϕ|k+`|ϕ|k+`−1. We now see that

|ϕ|2k+` ≤
∑
i

〈ωiϕ, ωiϕ〉k+` + c|ϕ|k+`|ϕ|k+`−1.

But now ωiϕ is supported in one of the neighborhoods constructed in step
2. We can then apply the fundamental inequality to each ωiϕ. Some further
computations show that the fundamental inequality is satisfied.

5. Regularity

5.1. Periodic Elliptic Operators. We start by proving a regularity result on pe-
riodic elliptic operators. This shows how ellipticity is used to gain more derivatives.

Theorem 5.1. Let u ∈ H−∞, v ∈ Hk and L a periodic elliptic operator of order
`. If

Lu = v,

then u ∈ Hk+`.
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Proof. By iterating, it is enough to show for the case when u ∈ Hs and v ∈ Hs−`+1.
Here we want to show that u ∈ Hs+1, i.e. we get one more derivative. The proof
then follows from using difference quotients and the fundamental inequality. We
define the operator Lh to be the operator L where we replace its coefficients by
their difference quotients.

One can check that Lh satisfies

(5.2) L(uh) = (Lu)h − Lh(Thu).

�

The fundamental inequality states that

|uh|s ≤ c|L(uh)|s−` + c|uh|s−`.
Using (5.2), we see that

(5.3) |uh|s ≤ c|(Lu)h|s−` + c|Lh(Thu)|s−` + c|uh|s−`.
Now since the coefficients of L are periodic and C∞, their difference quotients

are uniformly bounded. For |α| = `, |DαThu|s−` ≤ |Th(u)|s by 3.5. Then by using
the triangle inequality we see that

|Lh(Thu)|s−` ≤M |Th(u)|s
where M is a constant depending on the bound of the coefficients of Lh. Also recall
that Th is an isometry and that |Luh|s−` ≤ |Lu|s−`+1. Then the right side of (5.3)
is bounded by |Lu|s−`+1, |u|s and |u|s−`+1 which are all finite by our assumptions.
Then Lemma 3.15 tells us that u ∈ Hs+1.

5.2. Laplacian. The goal of this section is to prove the following regularity theo-
rem. For notation, we will denote 〈·, ·〉′ to be the inner product on Ωp given by the
∗ operator. We will use 〈·, ·〉 to denote the standard L2 inner product.

Theorem 5.4. (Regularity) Let f be a differentiable p-form and `′ : Ωp → R a
bounded linear functional satisfying

`′(∆ϕ) = 〈f, ϕ〉′

for all ϕ ∈ Ωp. Then there exists a differentiable p-form u such that `′(t) = 〈u, t〉′
for all t ∈ Ωp.

We will use the regularity theorem in the following way. This says that if we
have a weak solution to the equation ∆ω = α, we can find an actual solution.

Corollary 5.5. Let α be a p-form and ` a weak solution to the equation ∆ω = α.
Then there exists a p-form u such that ∆u = α.

Proof. Using the regularity theorem, there exists a p-form u such that

`(β) = 〈u, β〉
for all p-forms β. Now we compute `(∆β) in two ways. By definition of weak
solution

`(∆β) = 〈α, β〉.
We also have that

`(∆β) = 〈u,∆β〉 = 〈∆u, β〉.
Now for all β

〈∆u, β〉 = 〈α, β〉
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so ∆u = α.
�

We now prove the regularity theorem. We follow the proof in [5, 6.32]. Recall
we have the following local situation. We make a choice of coordinate charts for
our manifold M . We work locally on a fixed chart U . Here we can view p-forms as
vector valued C∞ functions on Rn. In this setting, the Laplacian ∆ is an order 2
elliptic operator we denote by L.

We let C∞0 denote the space of C∞ functions with compact support. For any
subspace V , we denote by C∞0 (V ) to be the C∞ functions with support in V . If
V is contained in a 2π cube, we can identify C∞0 (V ) as a subspace of the periodic
functions P by extension. Moreover, by extending by 0, any element of C∞0 is a
complex-valued p-form.

An issue we run into is that we now have two inner products. One inner product
〈·, ·〉′ is induced by the star operator (compose the inner product (2.2) by charts).
The other is the standard L2 inner product which we denote by 〈·, ·〉. Note that
these inner products are integrals of the metric on M and the standard dot product.
Thus there exists a hermitian positive definite matrix A such that

〈ϕ,ψ〉′ = 〈ϕ,Aψ〉.
We denote by L∗ the adjoint of L under the L2 inner product.

Now we define the functional ` on C∞0 by

`(ϕ) = `′(A−1ϕ).

We wish to show that there exists a C∞ function u such that `(t) = 〈u, t〉 for
all t ∈ C∞. Hence we have now reduced the problem on our fixed chart to one
involving elliptic differential operators acting on functions. Here ` is a weak solution
to Lu = f where we view f as a function. We want to show that this weak solution
can be represented by some u ∈ C∞.

The idea of the proof is as follows. At each point p, we wish to find a neigh-
borhood Wp such that for all C∞ functions t with support in Wp we have that
`(t) = 〈up, t〉 for some up ∈ C∞0 . These up glue together to a C∞ function u which
solves the problem on the chart U .

Lemma 5.6. Let p ∈ Rn. There exists a neighborhood Wp of p and up ∈ C∞0 such
that for all t ∈ C∞0 (Wp)

`(t) = 〈up, t〉.

Proof. We will use the general framework described earlier. First we show that on
a neighborhood, ` corresponds too some element in H−∞. In the next step, we
show using periodic elliptic regularity that after restricting to a possibly smaller
neighborhood, this element actually belongs to Hk for all k. Finally, we use the
Sobolev embedding theorem to show that this corresponds to a C∞ function.

Step 1: Choose V to be an open set containing p such that V is contained in a 2π

cube. Let ˜̀ denote the restriction of ` to C∞0 (V ). We will use two facts

about ˜̀.
First, ˜̀ is bounded. That is, for all ϕ ∈ C∞0 (V ), we have that

|˜̀(ϕ)| ≤ c|ϕ|
for some constant c.
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Next, we have that ˜̀ is a weak solution to Lu = f. That is, for all
ϕ ∈ C∞0 (V ), we have that˜̀(L∗ϕ) = 〈f, ϕ〉.

Using that ˜̀ is bounded, we can extend ˜̀ to a bounded linear functional
on H0 using Hahn-Banach where the sublinear functional is the L2 norm.
Then we can find a ũ ∈ H0 such that˜̀(t) = 〈ũ, t〉

for t ∈ H0. This is almost what we want, except we need differentiability.
This is where ellipticity is needed. We will use the differentiability of Lu = f
to get more and more derivatives of ũ.

Step 2: Let O0 be a neighborhood of p contained in V such that on O0 there is

a periodic elliptic operator L̃ which agrees with L. We then choose a
sequence of neighborhoods as follows. Let O be a neighborhood of p such
that O ⊂ O0. Now for each n choose a neighborhood On of p such that
O ⊂ On and On ⊂ On−1. For each n, let ωn be a C∞ function, 0 ≤ ωn ≤ 1,
and ωn equal to 1 on On with support in On−1.

Now set v1 = ω1ũ ∈ H0. Let M1 denote the operator L̃ω1 − ω1L̃. This

is an order 1 operator since L̃ is order 2. We see that

L̃v1 = ω1L̃ũ+M1ũ.

Since M1 is order 1 and ũ ∈ H0, M1ũ ∈ H−1 using Proposition 3.5.

Next we want to show that ω1L̃ũ = ω1f . Using Proposition 3.6, we just
need to show that for all ϕ ∈ P, we have that

〈ω1L̃ũ− ω1f, ϕ〉 = 0.

Notice that

〈ω1L̃ũ, ϕ〉 = 〈L̃ũ, ω1ϕ〉 = 〈ũ, L∗ω1ϕ〉 = ˜̀(L∗ω1ϕ).

The first equality comes from Proposition 3.9. The second equality from
adjoint and the final equality comes from the construction of ũ.

We also have that

〈ω1f, ϕ〉 = 〈f, ω1ϕ〉 = ˜̀(L∗ω1ϕ).

Here the first equality comes from Proposition 3.9 again, and the second

equality comes from the fact that ˜̀ is a weak solution to Lu = f.
Then by additivity

〈ω1L̃ũ− ω1f, ϕ〉 = 0,

so ω1L̃ũ = ω1f . In particular ω1L̃ũ is C∞0 , so it belongs to every Sobolev

space. But now we see that L̃v1 belongs to H−1. Then periodic elliptic
regularity tells us that v1 belongs to H1.

Now suppose that that vn−1 = ωn−1ũ ∈ Hn−1. We want to show that

vn = ωnũ ∈ Hn. Set Mn = L̃ωn − ωnL̃. Now ũ = vn−1 on On−1 since
ωn−1 is 1 on On−1. Then since Mn has support on On−1 we see that

Mnvn−1 = L̃vn − ωnL̃ũ. Thus,

L̃vn = ωnL̃ũ+Mnvn−1.
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By similar computation as before, ωnL̃ũ ∈ C∞0 . The operator Mn has

order 1 and by assumption vn−1 ∈ Hn−1, so Mnvn−1 ∈ Hn−2. Then L̃vn ∈
Hn−2 so by periodic elliptic regularity, vn ∈ Hn.

Step 3: Now choose Wp to be a neighborhood of p such that Wp ⊂ O, and ω a
function between 0 and 1 with support in O such that it is exactly 1 on
Wp. Then ωũ = ωωnũ so ωũ ∈ Hn for all n. Then the Sobolev embedding
theorem says that ωũ is a C∞ function which we denote by u. The function
u has support in a 2π cube, so u ∈ C∞0 . Now if t ∈ C∞0 (Wp), then

`(t) = ˜̀(t) = 〈ũ, t〉 = 〈ωũ, t〉 = 〈u, t〉.
Take up to be this u.

�

With this lemma we are ready to complete the proof to Theorem 5.4. Note that
for any two points p, q, and any t ∈ C∞0 (Wp ∩Wq) we have that

〈up, t〉 = `(t) = 〈uq, t〉
, so by proposition 3.6, we have that up = uq on Wp ∩Wq. Then these up glue to
form a C∞ function u which restricts to up on each Wp.

Now let φi be a partition of unity for the cover given by the open sets Wp. For
any t ∈ C∞0 ,

`(t) =
∑

`(φit) =
∑
〈up, φit〉 =

∑
〈u, φit〉 = 〈u, t〉.

Remember that each up ∈ C∞0 so it is viewed as a p-form. These glue together
to a p-form u with support in the coordinate chart U . For any ϕ a p-form with
support on U , we see that

`′(ϕ) = `(Aϕ) = 〈u,Aϕ〉 = 〈u, ϕ〉′.
Thus, we have solved the problem locally on the chart U . But by similar argu-

ment as before, the p-forms u we get on each chart agree on the overlaps so they
glue to a global p-form.

6. Hodge Decomposition

With the regularity theorem, we are now ready to prove the Hodge decomposition
theorem. We need one additional lemma.

Lemma 6.1. Let (αn) be a sequence of p-forms on M such that for a constant c,
|αn| ≤ c and |∆αn| ≤ c. Then there exists a Cauchy subsequence of (αn).

Proof. See [5, Prop. 6.33]. �

Corollary 6.2. The space of harmonic p-forms Hp is finite dimensional.

Proof. Suppose that Hp is not finite dimensional. Then we can find an orthonormal
basis of infinite length (αn). The norms of elements of this basis are 1, and since
they are harmonic for all n, ∆αn = 0. Then this sequence satisfies the conditions
in Lemma 6.1, so there is a Cauchy subsequence. However, this is absurd since the
distance between any two basis elements is 1. �

Corollary 6.3. Let β ∈ (Hp)⊥. Then there exists a constant c such that

|β| ≤ c|∆β|.
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Proof. Suppose no such constant exists. Then we can find a sequence (βi) in (Hp)⊥

such that |βi| = 1 and |∆βi| → 0. Using Lemma 6.1, we have a Cauchy subsequence.
Without loss of generality, we suppose (βi) is Cauchy. We can define a functional
` by

`(φ) = lim
i
〈βi, φ〉

and the limit exists since (βi) is Cauchy. Using self-adjointness of the Laplacian

`(∆α) = lim
i
〈βi,∆α〉 = lim

i
〈∆βi, α〉 = 0,

so ` is a weak solution of the equation ∆ω = 0. Then regularity tells us that there
exists an actual solution β such that ∆β = 0, so β ∈ Hp. On the other hand, we
know lim〈βi,∆α〉 = 〈β,∆α〉 for all α, so β = limβi. But then β 6= 0 since |βi| = 1,
so |β| = 1 and β ∈ (Hp)⊥ since βi ∈ (Hp)⊥. This is a contradiction. �

Theorem 6.4. (Hodge Decomposition) Let M be a compact, Riemannian n-manifold
and 0 ≤ p ≤ n. Then we have an orthogonal direct sum decomposition

Ωp(M) = ∆(Ωp)⊕Hp.

Proof. Since Hp is finite dimensional, we have an orthogonal decomposition

Ωp = Hp ⊕ (Hp)⊥.

Then it is enough to show that (Hp)⊥ = ∆(Ωp). One inclusion is easy to see.
Suppose that ω ∈ Ωp and α ∈ Hp. Then by self-adjointess of ∆ we see that

〈∆ω, α〉 = 〈ω,∆α〉 = 〈ω, 0〉 = 0.

Thus, ω ∈ (Hp)⊥ so (Hp)⊥ ⊃ ∆(Ωp).
It remains to show that (Hp)⊥ ⊂ ∆(Ωp). Let α ∈ (Hp)⊥. We can define a

operator ` on ∆(Ωp) by

`(∆φ) = 〈α, φ〉.
Let H denote the projection operator to the space of harmonic forms. Consider
ψ = φ−H(φ). In particular, ψ ∈ (Hp)⊥ and ∆φ = ∆ψ. Then

|`(∆ψ)| = |〈α,ψ〉| ≤ |α||ψ|.
Since ψ ∈ (Hp)⊥, we can use corollary 6.3, so there exists a constant c such that

|ψ| ≤ c|∆ψ|.
Now

|`(∆φ)| = |`(δψ)| ≤ c|α||∆ψ| = c|α||∆φ|.
This shows that we can apply the Hahn-Banach theorem with the sublinear

functional p(φ) = c|α||φ| to extend ` to all of Ωp. Then ` is a weak solution of ∆u =
α, so by regularity, there exists a p-form ω such that ∆ω = α. Thus, α ∈ ∆(Ωp)
which shows the other inclusion. �

We end with an application to de Rham cohomology.
Let α ∈ Ωp be a p-form. From Hodge decomposition, we can write α = ∆β+Hα

where H is the projection to harmonic p-forms. We denote β by G(α). The operator
G is called a Green’s operator.

Lemma 6.5. The operator G commutes with d.

Proof. See [5, Prop. 6.10]. �
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Theorem 6.6. Every de Rham cohomology class has a unique harmonic represen-
tative.

Proof. A cocycle in de Rham cohomology is a closed p-form α. Then we have by
Hodge decomposition

α = ∆Gα+Hα = dδGα+ δdGα+Hα = dδGα+ δGdα+Hα.

Since α is closed, dα = 0, so

α = dδGα+Hα.

Coboundaries consist of exact forms, so α and Hα belong to the same cohomology
class. Thus, we have a harmonic representative. We claim that this representative
is unique. If α, α′ are two harmonic forms in the same class, they differ by some
exact form, i.e. α′ = α+dβ. Then since α′ is harmonic dδdβ = 0. Using adjointness
〈δdβ, δdβ〉 = 0, so δdβ = 0. Then δα′ − δα = 0. Now

〈dβ, α− α′〉 = 〈β, δα− δα′〉 = 0.

Now we have 0 = dβ + (α− α′) and dβ and (α− α′) are orthogonal. But then by
uniqueness of orthogonal decomposition, dβ = 0 which shows that α = α′. �
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