THE SOLUTION GAP OF THE BREZIS-NIRENBERG PROBLEM ON
THE HYPERBOLIC SPACE

SOLEDAD BENGURIA!

ABSTRACT. We consider the positive solutions of the nonlinear eigenvalue problem —Apgnu =
Au 4 uP, with p = 222 and u € H}(Q), where € is a geodesic ball of radius #; on H". For
radial solutions, this equation can be written as an ODE having n as a parameter. In this
setting, the problem can be extended to consider real values of n. We show that if 2 <n < 4
this problem has a unique positive solution if and only if A\ € (n(n — 2)/4+ L*, \;). Here L*
is the first positive value of L = —¢(¢ + 1) for which a suitably defined associated Legendre

function P, *(coshf) > 0if 0 < 0 < 6, and P, *(coshf;) =0, with a = (2 —n)/2.

1. INTRODUCTION

Given a bounded domain €2 in R", Brezis and Nirenberg [5] considered the problem of
existence of a function u € H} () satisfying

—Au = Au+u’ on Q (1)
u > 0 on )
u = 0 on 0f),

where p = (n 4 2)/(n — 2) is the critical Sobolev exponent. If A > X, where \; is the first
Dirichlet eigenvalue, this problem has no solutions. Moreover, if the domain is star-shaped,
there is no solution if A < 0. Thus, when 2 is a ball, for any given value of n there may exist a
solution only if A € (0, A;). It was shown in [5] that in dimension n > 4, there exists a solution
for all A in this range. However, in dimension n = 3 Brezis and Nirenberg showed there is
an additional interval where there is no solution, which we will refer to in this article as the
solution gap of the Brezis-Nirenberg problem. When the domain is the unit ball, the solution

gap when n = 3 is the interval (0, %} .

The dimensions for which semilinear second order elliptic problems with a nonlinear term
of critical exponent (of which (1) is an example) have a solution gap are referred to in the
literature as critical dimensions. This definition was first introduced by Pucci and Serrin
in [13]. In [9], Jannelli studies a general class of such problems, and the associated critical
dimensions. He gives an alternative proof to the existence results obtained in [5] for problem
(1). When Q is a ball, and n = 3, Jannelli shows that (1) has no solution if A\ < j2 |, where
a = (2—mn)/2 and j, 1 denotes the first positive zero of the Bessel function .J,.

If w is radial, problem (1) can be written as an ordinary differential equation,
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where n can be thought of as a parameter in the equation, rather than the dimension of the
space. By doing so one can study the behavior of the solution gap with respect to n by taking
n to be a real number instead of a natural number. Jannelli’s methods in [9] can be easily
extended to the case 2 < n < 4, thus concluding that the solution gap of the Brezis-Nirenberg
problem defined in the unit ball is the interval (O, jfy,l} . In particular, it follows that n =4 is
the first value of n for which there is no solution gap.

The solution gap of the Brezis-Nirenberg problem can also be studied in non-Euclidean
spaces. On the sphere S", for a fixed n, the solution gap is the subinterval of (—n(n—2)/4, A1)
for which (1) has no solution. As in the Euclidean case, n = 3 is a critical dimension, whereas
n > 4 are not. It was shown in [1] that if Q is a geodesic cap of radius 6; in S* the solution
gap is the interval (—n(n — 2)/4, (7% — 460%)/462]. If u is radial, then (1) can be written as an
ordinary differential equation that still makes sense when n is a real number. It was shown in
3] that if 2 < n < 4, the solution gap is the interval (—n(n — 2)/4, (26 + 1) — (n — 1)?) /4],
where ¢* is the first positive value of ¢ for which the associated Legendre function P*(cos6;)
vanishes. Here o = (2 —n)/2.

In this article we consider the Brezis-Nirenberg problem on the hyperbolic space H". That
is, we consider the problem

—Agrnu = Au+u’ on (2)
u > 0 on )
u = 0 on 02,

where p = (n+2)/(n — 2), 2 is a geodesic ball on H" of radius 6, € (0,00), and Agn is the
Laplace-Beltrami operator.

It is not hard to show (see, e.g., page 285 in [15]) that there can be no solutions for
A& (n(n—2)/4,\) . Stapelkamp [15] showed that if n > 4 there is no solution gap, that is,
that there is a solution for all values of A in this interval. When n = 3, however, she showed
there is no solution if A\ € (n(n — 2)/4, \*]. Here

,n.2
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where R is the radius of the ball that results by taking the stereographic projection of the
geodesic ball onto R3. Moreover, Stapelkamp shows that for each A € (\*, )\;), there exists
a unique solution, and this solution is radial. A full characterization of the solutions to this
problem in dimension n € N (and any p > 1) is given in [2]. After the results of Stapelkamp
and Bandle, there has been a vast literature on Brezis-Nirenberg type equations on hyperbolic
spaces (see, e.g., [11], [7], [8], [4])-

AN=1+

For radial functions u, problem (2) can be written as an ordinary differential equation, with
n now simply representing a parameter in the equation rather than the dimension of the space.
Our main result is that the solution gap of the Brezis-Nirenberg problem on the hyperbolic
space has width L*, where L* is the first positive value of L = —¢(¢ + 1) for which a suitably
defined (see equation (6)) associated Legendre function P, *(cosh #) is positive if 0 < 6 < 6
and P, “(cosh ;) = 0. Here, as before, « = (2 — n)/2.
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More precisely, we show the following:
Theorem 1.1. For any 2 <n < 4 and 0 € (0,00), the boundary value problem
—u"(0) — (n — 1) coth§u/(0) = Au + ui—2 (3)
with uw € H(Q), w'(0) =u(h;) =0, and 0 € [0,6,] has a unique positive solution if and only if

)\e<n(n4_2)+L*,)\1>. (4)

In Figure 1 the graph A(n) illustrates the results of Theorem 1.1 when ¢; = 1. The shaded
region represents the solution gap, and the region between the dotted and the solid lines
corresponds to the region of existence of solutions given by (4).
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F1GURE 1. The shaded region depicts the solution gap of the Brezis-Nirenberg
problem in the hyperbolic space. The solid line corresponds to A, the dashed
line to A = n(n —2)/4 + L*, and the dotted line to A = n(n — 2)/4.

In Section 2 we derive an expression for the first Dirichlet eigenvalue in terms of the param-
eter ¢ of an associated Legendre function, and use this expression to show that the interval of
existence given by (4) is non-empty if 2 < n < 4. In Section 3 we use a classical Lieb lemma to
show the existence of solutions for A as in (4). In Section 4 we use a Pohozaev type argument
to show that if 2 < n < 4 there is a solution gap of the Brezis-Nirenberg problem. That is,
we show there are no solutions if A € (n(n —2)/4, n(n —2)/4 4+ L*]. Finally, in Section 5 we
show that the uniqueness of solutions follows directly from [10].

2. PRELIMINARIES

The associated Legendre functions P (cosh ) and P, *(cosh #) are solutions of the Legendre
equation

2

y"(0) + coth 6 y'(0) + (—ﬁ(f +1) — suifﬁ) y(6) = 0. (5)
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We will adopt the following convention for the associated Legendre functions:

o 1 ol e
Pg (COSh@) = mcoth <2> 2F1 [ g,é‘f’ ]_, 1 a sinh <2>] s (6)

where for complex numbers a, b, and ¢, the hypergeometric function oF|a, b, ¢; 2] is given by

o Fila, b, c; 2] Z In (7)
n=0 C '

where (8),, :=II"Zg(3 + j), for 3 € C.

Remark 2.1. Notice that the associated Legendre functions P(cosh@) depend on £ through
the product £(¢ 4 1), rather than from { and ¢ + 1 independently.

The associated Legendre functions given by (5) satisfy the following raising and lowering
relations (see, e.g., [14], page 55, equations (20.11-1) and (20.11-2) with & = cosh 6):

h
P (cosh 0) + 04(:01: ;Pg (cosh 0), (8)

sinh sin

P?(cosh ) =
and
(l+1)—ala+1) (o +1)coshd
sinh 0 sinh?

Here P® means the derivative of P{* with respect to its argument. That is,

Pt (cosh §) = P (cosh f). 9)

P(cosh ) —

;;Pg (cosh §) = sinh O P (cosh ).

Equations (8) and (9) are used in the proof of the non-existence result on Section 4.

Definition 1. Let L = —(({ +1). For2 <n <4, a = (2—n)/2, and 6, € (0,00), let Ly be
the smallest positive value of L such that P(coshf) > 0 if 0 < 6 < 0y and P*(cosh6;) = 0.
Similarly, let L* be the smallest positive value of L such that P, “(cosh) > 0 if 0 < 6 < 6,
and P, %(cosh ;) = 0.

In the next lemma we derive an expression for the first Dirichlet eigenvalue of —Agnu = A\u
on a geodesic ball in terms of L;. In Lemma 2.4 we use the expression for \; obtained in Lemma
2.2 to show that the interval of existence given in equation (4) is non-empty if 2 < n < 4.

Lemma 2.2. The first Dirichlet eigenvalue of equation

—u" — (n — 1) coth 6u’ = \u. (10)

is given by

n(n —2)

)\1: 4

+ L.
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Proof. Making the change of variables u(f) = sinh® v(f), we can write equation (10) as

v"(0) + (2acoth @ + (n — 1) coth 8)v'(0) + (a(a +n — 2) coth? 6 + o + Ay )v(8) = 0.

Choosing o = Z’T”, one obtains

v"(0) 4+ coth 80/ () + (a + A\ — a? coth? §)v(f) = 0.
That is,

052

v"(0) + coth0v'(0) + | A\ — aa— 1) — —— | v(d) = 0.
sinh” 0
The solutions to this equation are Pj*(cosh 6) and P, “(cosh 6), where £({+1) = a(a—1)—\;.

Since « is negative if 2 < n < 4, the regular solution of (10) is

u(f) = sinh® O P;*(cosh 6).
To satisfy the boundary condition u(6,) = 0, while having u(#) > 0 in (0, 6,), we must choose
¢ such that —¢(¢ 4+ 1) = L,. Thus,

-2
)\1 — M + Ll-
4
OJ
Remark 2.3. [t is known by [12] that Ay > @. Thus, —L, < w — @ = —i.
Lemma 2.4. Let Ly and L* be as in Definition 1. Then L* < L.
Proof. Let y,(0) = P (coshf), and y2(6) = P;.“(cosh ). Then y;, j € {1,2}, satisfy
y}/ + coth Hy} + kjy; =0, (11)
where )
a
k=L — ——.
! ' sinh?6
and
2
a
ko =L" — ———.
2 sinh? 6

Let W = ¢iya — yhyr and W’ = y]ys — y1y5. Then it follows from equation (11) that
W/ + coth W = (]{?2 - kl)ylyg.
Multiplying by sinh # and integrating one has that

0 01
/ (W sinh6)' df = [L* — L] / y1ya sinh 6 d6.
0 0
By choice of L; and L* it follows that y; and y, are positive on [0, 6;) and vanish at 6y, so that
01
/ y1y2 sinh 0 df is positive and W (#;) = 0. Thus, it suffices to show that limg_,o W (6) sinh 6
0

is negative.
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It follows from equation (6) that the behavior of y; and y near zero is

o o [0
NETa—a) ™ \2)

and

~ 1 tho (7
P11 2]

Therefore,

SIS

. . —a o tanh (§)
élil(l) W(0)sinh 6 = TI— ol 1a) élil(l) sinh 6 (sth()>
B —2a
I'l—a)l'(1+a).
Finally, since ['(1 + o) = al'(a), I'(a)T(1 — a) = wsin"!(7a), and 0 < @ < 1, we conclude
that

—2sin(ra)

lim W (#) sinh 6 = < 0.
6—0

T
O
From Lemmas 2.2 and 2.4 it follows that the interval of existence given by (4), that is,
(n(n—2)/4+ L*,n(n —2)/4+ Ly), is nonempty if 2 < n < 4.
3. EXISTENCE OF SOLUTIONS
In this section we present the proof of the following theorem:
Theorem 3.1. For any 2 <n <4 and 0; € (0,00), the boundary value problem
—u"(0) — (n — 1) coth O (0) = \u+ w2 (12)
with w € HJ (), v/(0) = u(,) =0, and 0 € [0,6] has a positive solution if

—9
\e <”(”4)+L*,A1>.

Here L* is as in Definition 1.

For natural values of n, the positive solutions of

—Apnu = Au + uP,

on a geodesic ball with Dirichlet boundary conditions correspond to minimizers of

/|Vu|2p"_2 dr — /\/u2p” dx
Q)\(u) - n—2 .

(Joora)”
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Here p(x) = is such that ds = pdz.

2
1—|zf?
If w is radial, we can write

R R
wn/ "2 dr — )\wn/ uw?p"r™t dr
Qx(u) = 0 0 : (13)

R, ) e
wn/ un=2p"r" " dr
0

Here r = tanh (0/2), R = tanh (0;/2) < 1, and w,, represents the surface area of the unit
sphere in n-dimensions, and is explicitly given by w, = 272 /I'(n/2). This quotient is well
defined if n is a real number instead of a natural number.

Lemma 3.2. There exists a functionu € H}(Q), with v/ (0) = u(6;) = 0, such that Q(u) < S,
-2
for all X > n(n4) + L*. Here S,, is the Sobolev constant.

Proof. Let ¢ be an arbitrary cutoff function such that ¢(0) =1, ¢/(0) = 0 and p(R) = 0, and
let

As in [15], let

u(r) = p°7 (ryud(r).

With this choice of u., and after integrating by parts, we have

R —2) _9
/ u pn 2 n 1 dT — (n / IOZ'UQT‘TH_I d?" + (n ) / v prn—l dT
0

+ / vfr"’l dr.
0

2
Using the fact that 72+ = = 1 to combine the first two terms of equation (14), it follows that,
p

) R R
W (Lng ) _ )\) / v?p2r”_1 dr + wn/ vfr”_l dr
Qx(ue) = 0 0 : (15)

R 2n 1 2
Wh / v 2 r" T dr
0

Claim 3.3.
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Proof. Let

R 4—n
Then [(0) = /0 ©?p*r* " dr. Thus, it suffices to show that |I(e) — I(0)| = O (ET) .

2 2
If0<r<R<1,then p(r) = 2 < 1_RQ.ThuS,
1 1
-1
[1(e) — 1(0)] S ( (e + 7,.2)7172 - r2(n2)> dr
2 -1
(" +Dr dadr .
(a+r2)n-t
Let
L ()
1(€) _/0 </0 (a + r2)n1 r) “
and

R € 1
L= [ [
2(6) 0 (()0 )T‘ 0 (CL + r?)n—l aar
Making the change of variables = uy/a in the inner integral of L;(e), we have
1 n—1

R T’I’L—l f un 2-m 0 U
—d / 76[ <az / —d
/0 (a+r2ynt T T L Y N CISYE) o

Since we are considering n > 2, this last integral converges. Thus, and since n < 4,
€ —-n —n
E)SC/ aQTda:(’)(e%).
0

On the other hand, since ¢(0) = 1 and ¢'(0) = 0, for 0 < r < 1 we have that ¢* — 1 < Cr?
for some C' > 0. Thus,

<C’/ ”+1/ o dadr
a—l—r2

<C/ ”“/ —— dadr = C’e/ 37" dr
0

Since n < 4, this last integral converges. Thus Ls(¢) = O(¢), and in particular (9(64_7").
U

Claim 3.4.
R R 2—n 4—n
wn/ A dr = wn/ O’ dr + Kie 2 +O(e 2 ),
0 0

where
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m2n(n—2)0 (%)

R )

Proof. Let
R
J = wn/ o2 dr
0
Then we can write

2

R . / 220 9\2
szn/ -1 [( ¢ 2(n = 2)rpy’ | r’*(n - 2) ] "
0

€+ 7»2)1172 (E + 7«2)7171 (E + 7»2)71
Integrating by parts the second term, and since by hypothesis ¢(R) = 0, we have

1

R 12, .n—1 R 2 n—
pr e r
J = n/ L d n —2/ —d
w 0o (e4r2)n-2 r+ wan(n ) 0o (e4r2)n-t "

R 2,.n+1 R 2,.n+1
pr 2 pr

— 2w, (n — 2 —1/7d ., —2/7d.

wnln=2)(n 1) o (er2)n rtwn(n—2) o (er2)n '
Thus, since (n —2)2 —2(n — 2)(n — 1) = —n(n — 2), combining the last three terms we have

R 12,.n—1 R 2,.n—1
pr pr

J = n/ Pt wn(n—2 / LI 16
“ Jo (€4 1r2)n—2 r o+ wan(n = 2e o (e+r2)n " (16)

Let us now estimate n
Ji(e) = / ' (r)?(e+r*)* " dr.
Notice that i n
J1(0) :/ o (r)*r3 " dr.
In what follows we estimate the difference, Oi.e., A(e) = Ji(e) — J1(0). We write,

where
A=1—(e+r) " =1 (1+e )" >0,
since n > 2. Using the fact that
(14+2z)™>1—mx
for z =¢/r?* > 0 and m =n — 2 > 0, we conclude that
A< (n—2)er

Thus,

R

IA(e)] < e(n — 2) / o' (r) 2" dr. (17)
0

Notice that the integral on equation (17) converges. In fact, since p(0) = 1 and ¢'(0) = 0,
for 0 < r < 1 one has ¢'(r)? < C%? for some positive constant C; thus ¢'(r)*r!=" < Cr3—",
which is integrable near 0 for all 2 < n < 4. Hence |A(¢)| = O(e). Thus, from equation (16)
we have



10 BENGURIA

2,.n—1

R R (2
J— Wn/ O " dr + wan(n — 2)6/ s dr + O(e).
0 0

€+ r2)n

Now let

B R <(702 _ 1) T,nfl + T,nfl
Jo(€) = /0 et dr.

Making the change of variables r = sy/€, we have

R 7’"—1 i n ) Sn—l q 00 Sn—l q
) (e </o (1+s2)" S‘/;z (1+s2)" )

But

007 s = < .
/ (1+ %) _/ nR"

Notice that making the change of variables u = 52, we can write

2
0 (1—1—52 T2 (T4 u)» 2 T'(n)

Here we have used the standard integral

/00 ahl dp — L(k)['(m)
o (14 z)ktm C(k+m)

(see, e.g., [6], equation 856.11, page 213), which holds for all m, & > 0. Thus,

2 —_n

[ PO S
o (e+r2)n 2T'(n)

(18)

(19)

On the other hand, since ¢?(r) < 1+ Cr?, and setting once more 7 = sy/€, we have that

R 2 _ n—1 9m ) n+1 00 n+1
/ udrgCeT / Sids—/ Sids )
0 (e +r2)n o (1+4s?)n 2 (1+ s%)»

But
oo n+l 0 n—
/R %dé’ S /R Slinds =0 <€T2> s
% (1+s7) Ve
0o Sn+1
and / ————ds is finite. Thus, and since 2 < n < 4,
o (142

/OR (SO(Q(—: C/ e—i-r r:O<€27Tn)'

Therefore, from equations (19) and ( 0) it follows that

LGS e

Jo(€) = 2T () +O0(e2).

(20)
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Finally, from equation (18) it follows that

1 -n
J = wn/o O3 dr + wan(n — 2)62T 2T (1)

But we are taking w, = ﬁ Thus,
r(3)
1 orn [(n(n—2)m3T (%) .
J = n/ 2 3—nd =" Ole 3"
wn |9 r+e () +0(e2)
O
Claim 3.5. .
R 2n_ n% 2—n 4—n
0
where
L(n/2)\ "
K, = n/2 n
2(” Nm>
Proof. Let
R _2n R 2n/(n—2)
H(e) = wn/ v 2" dr = wn/ plr)™ 7 " Ldr.
0 o (e+7r?)"
Since ¢(0) = 1, this integral diverges when ¢ — 0. Denote by H; the leading behavior of
H(e), that is,
H Ly
1) = n/o (e+1r2)n "
As in equation (19), we have
Hi(e) = coe™? + 0(1), (21)
where )
nI'(n/2 ['(n/2
e T0/2? _aT(n/2) -
2 I'(n) I'(n)
It suffices now to show that
R 2n/(n=2) _
o 90(7“) 1 n—1 _ 2-n
H(e)—Hl(e)—wn/O (c+ 12y r dr—(’)(ez )
But since p(r) < 1+ C'r? for some positive constant C, then
T’n+1 2—n
dr=0 ("), (23)

-l <C, [

where the last equality follows from equation (20). Thus, from (21) and (23), we conclude
that
H(e) = € "[en + O(e)],

where ¢, is given by (22).
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Replacing the estimates obtained in the three previous claims in the definition of @ (u.)
given in equation (15), we obtain

n—2

Kl € 2 Wy n—2 2 3_ 2 R 2 33—
. n d / /3nd
R A (( >/“0 rEThL e

+ O(e).

Here
m2n(n —2)T (%)
A (O R

and
(D2
o= (i)

But

Ky

O
&zwn(n—Q) ((2)) )

which is precisely the Sobolev critical constant S, (see, e.g., [16], with p =2, m =n and ¢ =
21, Therefore, to conclude that Qx(uc) < Sy, it suffices to show that for A > n(n—2)/4+L*,
there exists a choice of ¢ such that

_ ”_2 2 3-n 2 B 2 sn
F(p) = /go pd?“—l—/ogor dr

is negative.

Let
R
M(y) :/ O3 dr,

and let ¢; be the minimizer of M (y) subject to the constraint / ©*r3"p*dr = 1. Then ¢,

satisfies the Euler equation

— () = porr® R, (24)
Here p is the Lagrange multipher Multiplying equation (24) by ¢; and integrating this
equation by parts, and since / ©3r® " p? dr = 1, we obtain

R
/ O dr = pu. (25)
0

n(n — 2)
4

—2
It follows that F(ioy) = "~ 2)

Notice that from (25) one has that p is positive.

— A+ . Thus, F(¢q) is negative as long as A > + .
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3

It suffices now to show that = L*. Multiplying equation (24) by —r"*°, we obtain

3—n
o'+ 4 - )\ + o = 0. (26)

Making the change of variables ¢(r) = r"Tﬂv(r), and after some rearrangement of terms, we
can write equation (26) as

v n —2)?
’U”‘f'?‘f’ (Mp2—(4762)>?}:0 (27)

Changing back to geodesic coordinates, and since r = tanh g, we can rewrite equation (27)
as

042
UH + coth QU/ + <M — Slnh20> v = 0, (28)

where a = 2%" Equation (28) is a Legendre equation, whose solutions are Pj* and P, “, where
—{({ + 1) = p. It follows from equation (6) that the regular solution to equation (26) is

©(f) = tanh™ (Z) P, %(cosh 0).

Since the solution must vanish at the boundary, it follows that L = L*. Thus, u = L*. This
finishes the proof of Lemma 3.2.
O

The proof of Theorem 3.1 now follows easily from a result by Lieb. In fact, by Lemma 1.2 in
[5], it follows that if there exists some u such that Qy(u) < S, then there exists a minimizer
of @,. Given any constant > 0, the quotient @, (u) is invariant under the transformation
u — nu. In order to compute the corresponding Fuler equation, we minimize the numerator

R n
of equation (13) subject to the constraint w, / uns p"r"tdr = 1. We obtain
0

(U/,On_an_l)/ + /\upn,rn—l + 77uppn,'ﬂn—l _ O, (29)

where 7 is a Lagrange multiplier. Multiplying through by w,u, integrating between 0 and R,
and integrating by parts, we obtain

R R
n = wn, / ulQpn—an—l dr — )\/ UQPnTn—l dr
0 0

R
> (N — )\)wn/ w?p" ™ dr.
0

This last inequality follows from the variational characterization of A;. It follows that n > 0
-1
provided that A < \;. Setting u = n*=Tv in (29) one has that v satisfies

(u/pn—an—l)/ + /\upnrn—l + uppnrn—l =0. (30)

Finally, setting » = tanh g,

3.1

equation (30) becomes (12). This finishes the proof of Theorem
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4. NONEXISTENCE OF SOLUTIONS

In this section we use a Pohozaev type argument to show that if 2 < n < 4 then problem
(3) has a solution gap.

Theorem 4.1. For any 2 <n < 4 and 6 € (0,00), the boundary value problem

—u"(0) — (n — 1) coth 0 (6) = \u + un2 (31)
with u € Hy (), v/(0) = u(6;) =0, and 0 € [0, 6,], has no solution if
-2 -2
A€<n(n4 ),”(”4 ) 1] (32)

Here L* is as in Definition 1.

Proof. Let g be a smooth nonnegative function such that ¢g(0) = ¢’(0) = 0. Writing equation
(31) as

—(sinh™ ' Q')

sinh” 1 6

multiplying through by g(6)u/()sinh® 2@, and integrating, we obtain

= \u+ u”, (33)

2

01 . hn—l 9 N2\’ 01 /
_ / <(Sm“)> gdf =)\ / <“> gsinh?"~2 0 df
0 2 0 2

01 up+1 !
+ / ( ) gsinh?" ™26 dé.
o \p+1

Integrating by parts, and since u(f;) = 0, we obtain

Lo ) o o2 A0 o gy
5/ u'? g’ sinh do + 5/ u”(gsinh™ ™ 0)" do
0 0

4 /01 uerl (g Sinh2n72 6)/ de — Sinh2n_2 01 (U’I(Ql))Zg(el) )
o p+1 2
Let f(0) = 3¢ sinh” ™' §. Multiplying equation (33) by f(#)u(6)sinh™ '@ and integrating,
we obtain

(34)

61 01 01
- / (sinh" ' 0u') fudf = )\/ fsinh™ ' g u?df + / uPt fsinh" 1 6 db.
0 0 0

After integrating by parts, this last equation can be written as

01 01 ]_
/ W fsinh™ 0 d6 = / 2 ()\ im0 4 S (fsinh" ! 9)') d6
0 0

o (35)
—I—/ uPtt fsinh™ ' 0 db.
0
By subtracting equation (34) from equation (35) we obtain
61 61 s K2n—2 / 2
/ A(0)u(6)? do + / BO)u(0)* do — S0 91(;‘ (61))"9(61) (36)
0 0
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where

A(9) = ;( f/(0)sinh™ ' 0) + A f(#) sinh™ ' 0 + ;\(g(é’) sinh®" 2 9)’;

and

(9(0) sinh™*(6) )

p+1 '
Notice that the right-hand side of equation (36) is nonnegative. We will show that the left-
hand side of (36) is negative, thus arriving at a contradiction.

B(#) = f(#)sinh" "6 +

Using the definition of f and simplifying, we can write

"

A() = sinh®" 20 lg4 - i(n — 1) coth 0g"

n—1 (n—1)(2n-3)
4 + 4

+ ()\ + coth? 9) g + A(n — 1) coth Gg] :

Finally, making the change of variables T(f) = g(6) sinh® #, we obtain

"

A(f) = sinh®"* 0 [Z + i(n —3)cothT" + (i coth?#(n — 3)(2n — 11)

+A+ i(n — 7)> T + (n—3) (coth O(\ —2) — coth® f(n — 4)) T] :

Simplifying B, we obtain

Bo) = =Y Sjl“h "0 60) + (n — 2) coth )

As before, we make the change of variables T'(f) = g(#) sinh®#, to obtain

B(0) = (n ; 2 sinh®" ™ 0 (T + (n — 4) coth 0 T')..

We will show that there is a choice of T for which A(f) = 0. We will then show that for
this choice of T, B(0) is negative as long as

Ae (”(”4_ 2 ”(”4_ 2) 4 L*] . (37)

Lemma 4.2. Consider the equation

" 1, 1

i Zm- e - —11 Sth—7))T

Tt 4(n 3)cothOT" + <4 coth® 6(n — 3)(2n )+ A+ 4(n 7)) (38)
+ (n —3) (coth O(\ —2) — coth®(n — 4)) T =0.

Then
T(0) = sinh*" 0 P2 (cosh ) P, *(cosh 6)
is a solution of (38), where a = (2 —n)/2 and {({ + 1) = a(av — 1) — A.
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Proof. Let v(0) = y1(0)y2(0), where y,(0) = Pf*(cosh 8) and y(6) = P, *(cosh @). Then y; and

1o are solutions of

y"(0) + coth 0y (0) + k(0)y(9) = 0, (39)
where

It follows from equation (39) that

Y1 Y2 + Yy y1 = — coth 0 — 2kv,

and from the above that

V" = 291y — coth v — 2kw.

Similarly, we can write

Y1y + Y1y = —2coth Oyyy, — kv,

from which it follows that

1
V" = —coth 6v” + (2 — 4k> v' — 2k'v — 4 coth Oy 5.
sinh” 0
Using the fact that yjy, = 1 (v” + coth §v' + 2kv) , we obtain
V" + 3coth 6" + (2 coth? 0 + 4k — —— 9) v' + (2K’ + 4k coth 0) v = 0. (40)
sin

Finally, replacing v() = T(6)sinh” *# in equation (40), using the fact that £(¢ + 1) =
ala — 1) — A\, and after significant simplification and rearrangement of terms, we obtain
precisely equation (38).

O

It suffices now to show that for T" as in the previous lemma, B is negative. We do so in the
following lemma.

Lemma 4.3. Let
T(0) = sinh®" 0 P (cosh 6) P, *(cosh 6)
where o = (2 —n)/2,0 € (0,01), and L =—L({ +1) =X — a(a—1). Then

B(6) = (n;l) sinh®* ™10 (T + (n — 4) coth 0 T') (41)

s negative if 0 < L < L*.

Proof. Notice that the condition 0 < L < L* is precisely the same as (37). Substituting
T(6) = sinh®" 0 P2 (cosh ) P, *(cosh ) in equation (41), we obtain

-1 . .
B(o) = "~ it (Pep™ + PPP™).
n

Since sinh @ is positive for § > 0, and since PP, “ > 0if 0 < L < L*, it suffices to show that
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Py + 7 <0
Py P ’
Let
1 szﬂrl v

yu (0) sinh§ P/ +2sinh2§ (42)

Then, by the raising relation given by equation (8) it follows that

Pgoe P[a 1 Pfa+1 P[oﬂrl

Pa + — = : - = yOl + y—a'

P P sinh 6 \ P} P,
We will show that for 6 € (0,6,), and if —1 < v < 1, then y,(f) < 0. This will imply that
Yo (0) + y_o(0) < 0, and therefore that B is negative.

From equations (6) and (7) it follows that

7= g (§) 4523 0o (3]

Then, and since I'(1 — v) = —vI'(—v), we can write

Pyt B 0 (+1) . 4 (0 a0
ng = —U COth <2> (1 — m Slnh 5 + O Slnh 5 .
Therefore, and since coth (g) /sinh @ = (2 sinh? (g))_l , we have
L+ 1) ..o [0
Yo = 72(1 —2) +0 (smh (2>> )

Thus, if —1 < v < 1, and since /(¢ + 1) < 0,

: 0(l+1)

lim 4, (0) = T <0.
We will show by contradiction that there is no point at which y, changes sign, thus concluding
that y, () is negative for all > 0.

Taking the derivative of equation (42), we obtain

N

)
)

Using the raising and lowering relations given in equations (8) and (9), we can write

~ coshd PZH N PZH Pg” PZ”+1 v cosh (
W = sinh?6 Py Py Py Py 2 sinh? (

/

N

, —1 (P! ? (—2v — 2)cosh @ [ Pyt
Y, = +
Y sinh@ \ P/ sinh? 0 Py
(l+1)—v(v+1) l/coshg
sinh 6 2 sinh?® g '
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v+1

P,
Solving for ( ¢

v

> from equation (42), and after rearranging terms, we obtain
¢

2(v — cosh 6) 0(l+1)
v : 4
sinhg 7 + sinh (43)
Now suppose there was a point 0* at which y,(6%) crossed the #-axis. At this point, we
would have y,(0*) = 0 and y/,(0*) > 0. But evaluating equation (43) at 6*, we obtain

Yy, = —sinh Oy? +

ey LL+1T)
b (07) = sinh 0*

< 0,

arriving at a contradiction.

O
This completes the proof of Theorem 4.1.
O
5. UNIQUENESS
Lemma 5.1. The problem
u”"(0) + (n — 1) coth(0)u'(0) + Mu(f) + u(9)? =0 (44)

n(n — 2)

with v/ (0) =wu(f1) =0, 2<n <4, and A > , has at most one positive solution.

Proof. The proof of this lemma follows directly from [10]. In fact, making the change of

2 —
variables u — v given by u() = sinh®(0)v(0), where a = ?n’ equation (44) can be written
as

sinh?(0)v” () + sinh @ cosh 6v'(0) + G (0)v(6) + v(6)* = 0, (45)

where

n(n

GA(0) = —a® + [)\ — 4_2)] sinh? 0.

We define the energy function

E[v] = sinh® v’ (0)* + ——v ()P + G (0)v(h)? = 0.

p+1
Then if v(#) is a solution of (45),

dE

= GA(6)v(0)”.

n(n —2)

The function G, (0) is increasing as long as A > . That is, G(0) is a A — function

and it follows from [10] that v (and therefore u) is unique. U
Remark 5.2. Uniqueness of solutions to this problem for A € (n(n —2)/4,(n —1)?/4] was
obtained by Mancini and Sandeep (see Proposition 4.4 in [11]). Notice that A = (n — 1)2/4

corresponds to the first eigenvalue in the limiting case 81 = oo. The interval considered in [11]
is a strict subinterval of the interval we consider here.
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