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Abstract2

A function of two variables F (x, y) is universal if for every function
G(x, y) there exists functions h(x) and k(y) such that

G(x, y) = F (h(x), k(y))

for all x, y. Sierpiński showed that assuming the Continuum Hypothesis
there exists a Borel function F (x, y) which is universal. Assuming Mar-
tin’s Axiom there is a universal function of Baire class 2. A universal
function cannot be of Baire class 1. Here we show that it is consistent
that for each α with 2 ≤ α < ω1 there is a universal function of class
α but none of class β < α. We show that it is consistent with ZFC
that there is no universal function (Borel or not) on the reals, and we
show that it is consistent that there is a universal function but no Borel
universal function. We also prove some results concerning higher-arity
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2Universal Functions

universal functions. For example, the existence of an F such that for
every G there are h1, h2, h3 such that for all x, y, z

G(x, y, z) = F (h1(x), h2(y), h3(z))

is equivalent to the existence of a binary universal F , however the
existence of an F such that for every G there are h1, h2, h3 such that
for all x, y, z

G(x, y, z) = F (h1(x, y), h2(x, z), h3(y, z))

follows from a binary universal F but is strictly weaker.

1. Introduction

A function F : X ×X → X is said to be universal if for any

G : X ×X → X

there is g : X → X such that for all x, y ∈ X

G(x, y) = F (g(x), g(y)).

In the Scottish book (problem 132, see Mauldin [15]) Sierpiński asked
if there always is a Borel function which is universal, when X is the real
line. He had shown that there is a Borel universal function assuming
the Continuum Hypothesis (Sierpiński [29]). This notion of universal
function is also studied in Rado [21] (see Theorem 6 there).

Remark 1.1. Without loss of generality we may use different func-
tions on the x and y coordinates, i.e., G(x, y) = F (g0(x), g1(y)) in the
definition of universal function F . To see this suppose we are given F ∗

such that for every G we may find g0, g1 with G(x, y) = F ∗(g0(x), g1(y))
for all x, y. Then we can construct a universal F which uses only a
single g. Take a bijection, i.e., a pairing function, between X ×X and
X, which write as: (x0, x1) 7→ 〈x0, x1〉. Define

F (〈x0, x1〉, 〈y0, y1〉) = F ∗(x0, y1).

Given any g0, g1 define g(u) = 〈g0(u), g1(u)〉 and note that

F (g(x), g(y)) = F ∗(g0(x), g1(y))

for every x, y.
In the case X = 2ω there is a pairing function which is a homeomor-

phism and hence the Borel complexity of F and F ∗ are the same. For
abstract universal F a pairing function exists for any infinite X. For
finite sets X, universal functions exist if and only if |X| ≤ 1.
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Remark 1.2. The definition of universal function is not changed by
requiring the function g to be injective, as, given a function π : X → X
for which |π−1(x)| = |X| for all x ∈ X, we can replace a given F (x, y)
in the original sense with F (π(x), π(y)).

The notion of universal function naturally generalizes to functions of
the form f : X × Y → Z, as follows.

Definition 1.3. Given sets X, Y and Z, a function F : X × Y → Z
is universal if for each function

G : X × Y → Z

there exist functions h : X → X and k : Y → Y such that for all
(x, y) ∈ X × Y ,

G(x, y) = F (h(x), k(y)).

We record a few simple observations about functions of this type.

Remark 1.4. If f : X × Y → Z is universal, Z ′ ⊆ Z and z0 ∈ Z ′,
then the function f ′ : X × Y → Z ′ defined by setting

f ′(x, y) =

{
f(x, y) if f(x, y) ∈ Z ′
z0 otherwise

is also universal.

The following observation shows that the existence of a universal
function from 2ω×2ω to 2ω is equivalent to the existence of a universal
function from 2ω×2ω → 2, even when one asks for a universal function
in a particular complexity class. Similarly, for all infinite sets X and
Y , and any n ∈ ω, the existence of a universal function from X × Y to
Z implies the existence of a universal function from X × Y to Zn.

Proposition 1.5. If κ is a cardinal, f : X × Y → Z is a universal
function, |Xκ| = |X| and |Y κ| = |Y |, then there is a universal function
F : X × Y → Zκ.

Proof
Fix bijections π : Xκ → X and ν : Y κ → Y . For each (x, y) ∈ X × Y ,

let F (x, y) be

〈f(π−1(x)(α), ν−1(y)(α)) : α < κ〉.

To see that F is universal, fix G : X ×Y → Zκ. For each α < κ, define
gα : X × Y → Z by setting gα(x, y) = G(x, y)(α). By the universality
of f , there exist functions hα : X → X and kα : Y → Y (α < κ) such
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that for all α < κ and all (x, y) ∈ X × Y , gα(x, y) = f(hα(x), kα(y)).
Define H : X → X and K : Y → Y by setting

H(x) = π(〈hα(x) : α < κ〉)
and K(y) = ν(〈kα(y) : α < κ〉). Then for all (x, y) ∈ X × Y ,
F (H(x), K(y)) = 〈f(hα(x), kα(y)) : α < κ〉 = 〈gα(x, y) : α < κ〉 =
G(x, y).
QED

In Section 2 we show that the existence of a Borel universal function
is equivalent under a weak cardinality assumption to the statement that
every subset of the plane is in the σ-algebra generated by the abstract
rectangles. We also show that a universal function cannot be of Baire
class 1.

In Section 3 we prove some results concerning Martin’s axiom and
universal functions. We show that although MA implies that there is
a universal function of Baire class 2 it is consistent to have MAℵ1 hold
but no analytic universal functions.

In Section 4 we consider universal functions of special kinds, for
example, F (x, y) = k(x + y). We also discuss special versions due to
Todorcevic and Davies.

In Section 5 we consider abstract universal functions, i.e., those de-
fined on a cardinal κ with no notion of definability, Borel or otherwise.
We show that if 2<κ = κ, then they exist. We also show that it is
consistent that none exist for κ = 2ℵ0 , and we construct some weak
abstract versions of universal functions from the assumption MAℵ1 .

In Section 6 we take up the problem of universal functions of higher
arity. We show that there is a natural hierarchy of such notions and
we show that this hierarchy is strictly descending.

In Section 7 we compare the notion of universal function with the
notional of universality from model theory.

1.1. Cardinal characteristics. The following definitions show up at
various points in this paper. We let c denote the cardinality of the
continuum, i.e., 2ℵ0 . The cardinal p is the psuedo-intersection number,
the smallest cardinality of a collection of infinite subsets of ω having the
finite intersection property (i.e., all finite subcollections have nonempty
intersection) but no pseudo-intersection (i.e., no infinite subset of ω is
contained mod-finite in each member of the collection). Equivalently,
it is the smallest cardinal for which Martin’s Axiom for σ-centered
posets fails. This equivalence is due to Bell [1]; for the proof see also
Weiss [33]. The tower number t is smallest cardinality of a collection
of infinite subsets of ω linearly-ordered by mod-finite containment but
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having no pseudo-intersection. Evidently, p ≤ t, but a recent result of
Malliaris and Shelah [14] shows that p = t (in light of this fact, the
hypotheses of Propositions 6.16 and 7.14 are each equivalent to p = c).
The cardinal b is the smallest cardinality of a set X ⊆ ωω such that
for every f : ω → ω there exist a g ∈ X with {n ∈ ω | g(n) ≥ f(n)}
infinite. See pages 426-427 of [2] for a proof that t ≤ b.

The cardinal q is the smallest cardinality of a set X ⊆ 2ω which is not
a Q-set, i.e., for which there exists a set Y ⊆ X such that Z ∩X 6= Y ,
for every Gδ set Z ⊆ 2ω. The inequality p ≤ q can be proved in ZFC.
This is due to Silver; see Section 5 of [20]. The cardinal characteristic
ap is defined to be the least cardinal κ such that there exist an almost
disjoint family {xα : α < κ} (i.e., each xα is an infinite subset of ω, and
for each distinct pair α, β < κ, xα ∩ xβ is finite) and a set A ⊆ κ such
that for no y ⊆ ω does it hold for all α < κ that α ∈ A if and only if
y ∩ xα is infinite. Standard arguments show that p ≤ ap ≤ q.

For any cardinal κ, MAκ implies that p ≥ κ, which means that
Martin’s Axiom implies that p = b = ap = q = c. See [2] for more on
cardinal characteristics of the continuum.

2. Borel universal functions

Definition 2.1. We let R denote the family of abstract rectangles,

R = {A×B : A,B ⊆ 2ω}.

Definition 2.2. For α < ω1, Σ0
α(R) and Π0

α(R) are inductively defined
by:

• Σ0
0(R) = Π0

0(R) = the set of finite boolean combinations of sets
from R,
• Σ0

α(R) is the set of countable unions of sets from

Π0
<α(R) =

⋃
β<α

Π0
β(R),

and
• Π0

α(R) is the set of countable intersections of sets from Σ0
<α(R).

Definition 2.3. A Borel function F : 2ω × 2ω → 2ω is at the α-level if
for any n ∈ ω the set {(u, v) : F (u, v)(n) = 1} is Σ0

α.

We write “a function of level α” for “a function which is at the α-th
level”. A Borel function at level α is in Baire class α, but the converse
does not hold. In the context of 2ω, a function is of Baire class α if the
preimage of every clopen set is ∆α+1. For more on the classical theory
of Baire class α, see Kechris [8], p. 190.
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Proposition 2.4. A universal function cannot be of Baire class 1.

Proof
Suppose toward a contradiction that F : 2ω × 2ω → 2ω is a universal
function of Baire class 1. Let {hξ}ξ∈c enumerate all functions with
domain a countable subset of 2ω and range dense in itself. Let {rξ}ξ∈c
enumerate all of 2ω. For each ξ ∈ c, partition the domain of hξ into

Aξ and Bξ such that hξ[Aξ] = hξ[Bξ]. Let G : (2ω)2 → 2ω be any
function such that for each ξ ∈ c and r ∈ 2ω, G(rξ, r) = 1 if r ∈ Aξ
and G(rξ, r) = 0 if r ∈ Bξ.

Now suppose that h : 2ω → 2ω witnesses the universality of F with
respect to the function G. The range of h must be uncountable; oth-
erwise there would be a countable collection {{Ci, Di} : i < ω} of
partitions of 2ω such that for each ξ ∈ c there exists an i ∈ ω such
that hξ[Ci ∩ dom(hξ)] = hξ[Di ∩ dom(hξ)], and it not hard to build a
counterexample to this. Hence, there is ξ such that hξ ⊆ h, and for all
r ∈ Aξ ∪Bξ, G(rξ, r) = F (h(rξ), hξ(r)).

If f is the function defined by setting f(y) = F (h(rξ), y), then f

must be Baire class 1 and, in particular, letting C = hξ[Aξ] (which is

equal to hξ[Bξ]), it follows that f � C is Baire class 1. However,

f(hξ(r)) = F (h(rξ), hξ(r)) = G(rξ, r) = 1 for r ∈ Aξ.

Similarly f(hξ(r)) = 0 for r ∈ Bξ. This is impossible for any Baire
class 1 function on the perfect set C.
QED

Theorem 2.5. If 2<c = c, then the following are equivalent.

(1) There is a Borel function F : 2ω × 2ω → 2ω which is universal.
(2) Every subset of the plane 2ω × 2ω is in the σ-algebra generated

by the abstract rectangles, R.

Furthermore, for any ordinal α, P(2ω × 2ω) = Σ0
α(R) if and only if

there is a universal function from 2ω × 2ω to 2ω at the α-level.

Proof
(1)→ (2).

Suppose that there is a Borel universal F : 2ω×2ω → 2. Let A ⊆ 2ω×2ω

be arbitrary and suppose that g : 2ω → 2ω has the property that

∀x, y (x, y) ∈ A⇔ F (g(x), g(y)) = 1.

Let B be the Borel set F−1[{1}]. Then for all (x, y) ∈ 2ω×2ω, (x, y) ∈ A
if and only if (g(x), g(y)) ∈ B.
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The set B is generated by countable unions and intersections from
sets of the form C×D, for C, D clopen subsets 2ω. Define h on 2ω×2ω

by setting h(x, y) = (g(x), g(y)), and note that

h−1[C ×D] = g−1[C]× g−1[D]

for all sets C,D ⊆ 2ω. Since preimages pass over countable unions
and intersections, for each α < ω1, the h-preimage of each Σ0

α set is in
Σ0
α(R). In particular, if α < ω1 is such that B is Σ0

α, then A = h−1[B]
is Σ0

α(R).

(2)→ (1).
We show first that there exists an X ⊆ 2ω of cardinality c which has
the property that every Y ⊆ X of cardinality strictly smaller than c
is Borel relative to X, i.e., is the intersection of a Borel set with X.
The following argument is modeled after the one in Bing, Bledsoe, and
Mauldin [3]. Let A ⊆ c× c be such that for every B ∈ [c]<c there exists
a δ < c such that

B = Aδ =def {γ < c : (δ, γ) ∈ A}.

This is possible, as 2<c = c. Fix α < ω1 such that A is in Σ0
α(R), and

fix a sequence 〈Bn : n ∈ ω〉 of subsets of c such that A is generated in
α many steps from the sets

{Bn ×Bm : n,m < ω}.

Let f : c → 2ω be the Marczewski characteristic function for the se-
quence 〈Bn : n < ω〉, i.e.,

f(δ)(n) =

{
0 if δ /∈ Bn

1 if δ ∈ Bn

Define the function f 2 : c×c→ 2ω×2ω by setting f 2(α, β) = (f(α), f(β)).
Each set of the form Bn ×Bm is the f 2-preimage of the clopen set

{x ∈ 2ω | n ∈ x} × {x ∈ 2ω | m ∈ x}.

Again using the fact that preimages pass over countable unions and
intersections, we can find a Σ0

α set Z ⊆ 2ω × 2ω whose f 2-preimage is
A.

Let X = f [c]. Let us check that X has the required property. Let Y
be a subset of X of cardinality less than c, and let B be a subset of c
of cardinality less than c such that Y = f [B]. Then Y will be a section
of Z, intersected with X, i.e.,

Y = f [Aδ] = {(x, y) ∈ Z | x = f(δ), y ∈ X},
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where δ < c is such that B = Aδ. It follows then that Y is Σ0
α relative

to X.
Now let U ⊆ 2ω×2ω be a universal Σ0

α set. DefineG : 2ω×2ω → 2ω by

setting G(x, y)(n) = 1⇔ (xn, y) ∈ U, where x
Φ7→ 〈xn : n < ω〉 ∈ (2ω)ω

is a homeomorphism. Let k : c→ X be a bijection.
Let f1 : c× c → 2ω be an arbitrary function with the property that

if γ < δ < c, then f1(δ, γ) = ~0 (the identically zero map). We claim
that there exists a function h1 : c→ 2ω such that

f1(δ, γ) = G(h1(γ), k(δ)) for all (δ, γ) ∈ c× c.

To see this, note that for each n < ω and each γ < c the set

Yn =def {k(δ) : f1(δ, γ)(n) = 1}

is a subset of X of cardinality less that c, so there exists a yn ∈ 2ω

such that Yn = X ∩ Uyn . Let h1(γ) = y be chosen such that the
homeomorphism Φ sends y to the sequence 〈yn : n < ω〉.

By an analogous argument, if f2 : c × c → 2ω is an arbitrary map
with the property that c > γ > δ implies f2(δ, γ) = ~0, then there exists
a functions h2 : c→ 2ω such that

f2(δ, γ) = G(h2(δ), k(γ)) for all (δ, γ) ∈ c× c.

Now define F : 2ω × 2ω → 2ω by letting 〈x, y〉 be a pairing function
(a homeomorphism) from 2ω × 2ω to 2ω and setting

F (〈x1, y1〉, 〈x2, y2〉) = max(G(x2, x1), G(y1, y2)),

where max : 2ω× 2ω → 2ω is the pointwise maximum, i.e., max(u, v) =
w, where w(n) is the maximum of u(n) and v(n) for each n < ω. Then
F (〈x1, y1〉, 〈x2, y2〉)(n) = 1 if and only if 1 ∈ {G(x2, x1)(n), G(y1, y2)(n)}.

We show that F is universal. Given an arbitrary f : c × c → 2ω we
can find f1 and f2 as above so that

f(δ, γ) = max(f1(δ, γ), f2(δ, γ))

for all (δ, γ) ∈ c × c. For each δ, γ < c, set l1(δ) = 〈k(δ), h2(δ)〉 and
l2(γ) = 〈h1(γ), k(γ)〉. Then, for all δ, γ < c, f(δ, γ) = F (l1(δ), l2(γ)).

Also, F is at the α-level, i.e., for any n the set

{(u, v) : F (u, v)(n) = 1}

is in Σ0
α.

QED
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Remark 2.6. By Proposition 1.5, part (1) of Theorem 2.5 is equivalent
to the alternate version where the range of F is 2 instead of 2ω. This
variation allows for an alternate, possibly simpler, proof of the reverse
direction of Theorem 2.5.

Corollary 2.7. For each α with 2 ≤ α < ω1 there is a c.c.c. forcing
extension in which there is a universal function of level α but none of
level β < α. There is a c.c.c. forcing extension in which there is a
universal function but no Borel universal function.

Proof
The first part follows from the corresponding results about the σ-
algebra of abstract rectangles, see Miller [17], Theorems 37 and 52
(c<c = c in the models from these theorems). For the second, the exis-
tence of an abstract universal function follows from c<c = c by Theorem
5.1, and this holds in many models in which not every subset of the
plane is in the σ-algebra generated by the abstract rectangles. For ex-
ample, Kunen in his Ph.D. thesis [9] showed this is true after a finite
support iteration of Cohen forcing of length ω2 over a model of GCH.
QED

Remark 2.8. Theorem 4.8 and Proposition 6.16 each show that if
p = c, then there is a universal function at level 2.

Question 2.9. Suppose that there is a universal function of Baire class
α. Then is there a universal function of level α?

The techniques of Miller [18] can be used to produce models with
an analytic universal function (that is, a universal function which is
analytic), but no Borel universal function.

3. Universal functions and Martin’s Axiom

Proposition 6.16 below shows that if Martin’s Axiom holds then there
are universal functions on the reals of Baire class 2. Here we show that
the axiom MAℵ1 (the restriction of MA to collections of ℵ1 many dense
sets) is not strong enough for this result.

The following lemma will be our tool for showing that a given func-
tion is not universal.

Lemma 3.1. Let F : 2ω × 2ω → 2ω be a function, and suppose that
there exist Sy,z ⊆ 2ω (y, z ∈ 2ω) such that

(1) each Sy,z is a subset of 2ω containing {y, z} and closed under
F ;

(2) no Sy,z contains 2ω;
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(3) for each function h : 2ω → 2ω there exist y, z ∈ 2ω such that
{h(y), h(z)} ⊆ Sy,z.

Then F is not universal.

Proof
Let G : 2ω × 2ω → 2ω be such that each value G(y, z) is an ele-

ment of 2ω \ Sy,z. Then for each h : 2ω → 2ω it is possible to find
reals y and z such that {h(y), h(z)} ⊆ Sy,z. Since Sy,z is closed un-
der F , F (h(y), h(z)) ∈ Sy,z. Since G(y, z) /∈ Sy,z, it follows that
F (h(y), h(z)) 6= G(y, z), so F is not universal.
QED

Combined with Lemma 3.1, Theorem 3.3 below shows that if there is
a model of set theory then there is a model of set theory in which there
is no analytic universal function on the reals. First we note a general
combinatorial fact, which is a generalization of one of Sierpiński’s char-
acterizations of the failure of the Continuum Hypothesis (see [30]). In
our first application of the lemma, δ will be ω; in the second it will be
an arbitrary uncountable cardinal. We let Pκ(λ) denote the collection
of subsets of λ of cardinality less than κ.

Lemma 3.2. Suppose that δ and κ are cardinals with κ > δ+, and let
f : κ × κ → κ be injective. Then for each function H : κ → Pδ+(κ)
there exist α < δ+ and β ∈ κ such that f(α, β) 6∈ H(α) ∪H(β).

Proof
Choose β ∈ κ such that, for all α < δ+, f(α, β) 6∈ H(α). Now choose
α < δ+ such that f(α, β) 6∈ H(β).
QED

The proofs of following theorems apply to any class of functions with
the property that for each F in the class there exists a set of ordinals
x of cardinality less than κ with the property that every inner model
with x as a member is closed under F .

Theorem 3.3. Suppose that κ > ω1 is a cardinal of uncountable cofi-
nality. Then there is no analytic universal function on 2ω in any model
obtained by forcing with a finite support product of κ many nontrivial
c.c.c. partial orders.

Proof
Let Pα be a c.c.c. partial order for each α ∈ κ and suppose that

G ⊆
∏
α∈κ

Pα
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is generic over V . Since infinite finite-support products of nontrivial
partial orders add reals, by grouping together products of countably
many Pα’s we may assume that each Pα adds a real. We work in V [G].
Let F : 2ω × 2ω → 2ω be analytic, and let x ∈ 2ω be a code for F .

For each β ∈ κ, let G∗β denote the restriction of G to
∏

α∈κ\{β} Pα.

Since
∏

α∈κ Pα is c.c.c., each real is in V [G∗β] for all but countably
many β ∈ κ. Fix X ⊆ 2ω with |X| = κ, and let f : X × X → κ
be injective with the property that {x, y, z} ⊆ V [G∗f(y,z)] for each pair

(y, z) ∈ X ×X. Define Sy,z ⊆ 2ω for each y, z ∈ 2ω by setting

Sy,z = 2ω ∩ V [G∗f(x,y)]

whenever (y, z) ∈ X × X, and letting Sy,z = {y, z} otherwise. Then
item (1) of Lemma 3.1 clearly holds, and item (2) follows from the fact
that each Pα adds a real.

To see that (3) holds, fix a function h : 2ω → 2ω. Applying the
c.c.c. of

∏
α∈κ Pα we can find a function H : X → Pℵ1(κ) such that,

for each y ∈ X, h(y) ∈ V [G �
∏

α∈H(y) Pα]. Applying Lemma 3.2, we

can find y, z ∈ X such that f(y, z) 6∈ H(y) ∪H(z), which means that
{h(y), h(z)} ⊆ Sy,z.
QED

Theorem 3.4. Suppose that λ and κ are uncountable cardinals such
that λ+ < κ, κλ = κ and κ has uncountable cofinality. Then there is
a c.c.c. forcing extension in which c = κ, MAλ holds and there is no
analytic universal function.

Proof
Let P be a finite support product of c.c.c. partial orders Pα (α < κ),

such that each Pα has cardinality at most λ and adds a real. Let G ⊆ P
be a V -generic filter, and, for each X ⊆ κ, let GX be the restriction of
G to

∏
α∈X Pα. For each α < κ, let G∗α denote Gκ\{α}, and let aα be an

element of (2ω ∩ V [G]) \ V [G∗α].
Working in V [G], let Q be the direct limit of a finite support iteration
〈Qα, Ṙα : α < κ〉 of c.c.c. partial orders on λ, such that Q forces MAλ.
For each X ⊆ κ, let QX be the subiteration of Q consisting of those
Ṙα’s which depend only on

∏
α∈X Pα (as opposed to all of P) and the

initial segment of QX before stage α. Since P∗Q is in V , each QX is in
V [GX ] and regularly embeds into Q. Furthermore, each Ṙα (and each
countable set of Ṙα’s) is part of QX for some X ⊆ κ of cardinality λ.

Let K be V [G]-generic filter for Q, and for each X ⊆ κ, let KX be
the restriction of K to QX . For each α ∈ κ, let K∗α denote Kκ\{α}.
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Then every element of 2ω in V [G][K] is in V [GX ][KX ] for some X ⊆ κ
of cardinality λ. By mutual genericity, no aα is in V [G∗α][K∗α].

Now suppose that F is an analytic function in V [G][K], coded by
some x ∈ 2ω. Fix X ⊆ κ of cardinality λ such that x is in V [GX ][KX ].
Let

i : {aα : α ∈ κ}2 → {aα : κ \X}
be an injection such that {aα, aβ} ⊆ V [G∗i(aα,aβ)][K

∗
i(aα,aβ)] for all α, β ∈

κ. Let Sy,z = 2ω∩V [G∗i(y,z)][K
∗
i(y,z)], for each pair (y, z) ∈ {aα : α ∈ κ}2,

and let Sy,z = {y, z} for all other pairs (y, z) from 2ω× 2ω. Then items
(1) and (2) of Lemma 3.1 are clearly satisfied.

Fix a function h : 2ω → 2ω. For each α ∈ κ, we have a set H(α) ⊆ κ
of size λ, containing X, such that h(α) is in V [GH(α)][KH(α)]. By
Lemma 3.2, there are α and β in κ such that i(aα, aβ) is not equal to
aγ for any γ ∈ H(α) ∪ H(β). It follows that {h(aα), h(aβ)} ⊆ Saα,aβ .
Then item (3) of Lemma 3.1 is satisfied, showing that F is not universal
in V [G][K].
QED

4. Universal functions of special kinds

Elementary functions in the calculus of two variables can be obtained
from addition, the elementary functions of one variable and closing
under composition. For example, xy = 1

2
((x+y)2−x2−y2). We might

ask if there could be a universal function which uses addition.

Proposition 4.1. Suppose that U : 2ω × 2ω → 2ω is a universal func-
tion. Then there is a universal function F (x, y) = k(x + y), where
k : 2ω → 2ω has the same Borel complexity as U and x + y refers to
pointwise addition in 2ω.

Proof
Given any u ∈ 2ω let u0 be u shifted onto the even coordinates, i.e,
u0(2n) = u(n) and u0(2n + 1) = 0. Similarly for v ∈ 2ω let v1 be v
shifted onto the odd coordinates. Note that (u, v) is easily recovered
from u0 + v1. Hence we can define k by k(w) = U(u, v) where w =
u0 + v1. Then, given H : 2ω × 2ω → 2ω there is g : 2ω → 2ω such
that H(u, v) = U(g(u), g(v)). Let g0(x) = (g(x))0 and g1(x) = (g(x))1.
Then H(u, v) = U(g(u), g(v)) = k((g(u))0 +(g(v))1) = F (g0(u), g1(v)).
Now apply Remark 1.1.
QED

Proposition 4.3 gives a generalization of the result above which ap-
plies, for example, to any Borel subgroup of a Polish group or even a



Universal Functions 13

Borel subsemigroup of a Polish cancellation3 semigroup. First we prove
a general result about Borel binary operations. We say that a binary
operation * on a set B is separately one-to-one if for every x, y, z ∈ B,
if x ∗ y = x ∗ z or y ∗ x = z ∗ x then y = z.

Lemma 4.2. Suppose that ∗ is a Borel binary operation on an un-
countable Borel B ⊆ 2ω, and that ∗ is separately one-to-one. Then
there exist perfect subsets P1, P2 of B such that ∗ is one-to-one and
continuous on P1 × P2.

Proof
Let Q ⊆ B be a perfect set. Let M be the transitive collapse of a

countable elementary substructure X of H(c+) which contains reals
coding Q and (B, ∗). Let T ⊆ 2<ω be the tree whose infinite branches
are the elements of Q. Forcing with T is equivalent to forcing with the
poset 2<ω. It is well-known (see [4], where it is credited to Folklore)
that there is a countable partial order forcing a perfect set P ⊆ Q with
the property that every finite sequence of distinct elements (x1, . . . , xn)
of P is T n-generic. Let P be such a generic set over M , and let P1 and
P2 be any pair of disjoint perfect subsets of P .

To see that ∗ is continuous on P1 × P2 suppose that (x1 ∗ x2)�n =
s. Then there must be m such that (x1�m,x2�m) forces in T 2 that
(g1 ∗ g2)�n = s where g1 and g2 are the generic reals added by T 2. It
follows that (x′1 ∗ x′2)�n = s for all (x′1, x

′
2) in P1×P2 which agree with

(x1, x2) up to m.
To see that ∗ is one-to-one on P1 × P2, suppose that

z = x1 ∗ x2 = x′1 ∗ x′2.
Since P1 and P2 are disjoint and ∗ is separately one-to-one, either
(x1, x2) and (x′1, x

′
2) are the same pair or all four reals are distinct. If

all four are distinct, then ((x1, x2), (x′1, x
′
2)) is T 2× T 2-generic over M .

A well-known lemma on product forcing (see page 13 of Solovay [31])
gives that in this case,

M [x1, x2] ∩M [x′1, x
′
2] = M,

so z ∈ M . Then there exists an n ∈ ω such that (x1�n, x2�n) forces in
T 2 that g1 ∗ g2 = z. Since P2 is perfect, there exists a y ∈ P2 \ {x2} for
which y�n = x2�n. This contradicts our assumption that ∗ is separately
one-to-one.
QED

3A semigroup is a cancelation semigroup if it satisfies that for all a, b and c, if
ac = bc then a = b.
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Proposition 4.3. Suppose that U : 2ω × 2ω → 2ω is a universal func-
tion, and (B, ∗) consists of an uncountable Borel set with a Borel binary
operation * on B which is separately one-to-one. Then there exists a
function F : B → 2ω such that for each g : c× c → 2ω there exist h, k
mapping c to B with

g(α, β) = F (h(α) ∗ k(β)) for all α, β ∈ c

Furthermore, if U is Borel then F can be taken to have the same Borel
rank as U .

Proof
Fix P1 and P2 as in the conclusion of Lemma 4.2. Let R be the range of
the binary operation ∗, so that ∗ : P1 × P2 → R is a homeomorphism.
Let f1, f2 be the continuous functions with domain R such that f1(x ∗
y) = x and f2(x∗y) = y. Since P1 and P2 are each homeomorphic to 2ω

we may assume without loss of generality that U : P1×P2 → 2ω. Define
F : B → 2ω by setting F (z) = U(f1(z), f2(z)) if z ∈ R and F (z) = 0
otherwise. Then F (x∗ y) = U(x, y) for each (x, y) ∈ P1×P2. To verify
that F is universal, fix an arbitrary function g : c × c → 2ω. Since U
is universal there are h : c → P1 and k : c → P2 such that g(α, β) =
U(h(α), k(β)) for all α, β ∈ c. Then F (h(α) ∗ k(β)) = U(h(α), k(β)) =
g(α, β) for all such α, β.
QED

The following proposition shows that functions which are universal
with respect to symmetric functions can have a simpler form.

Proposition 4.4. Suppose that F : 2ω × 2ω → 2ω is a universal func-
tion. Then there exists a function f : 2ω → 2ω such that for each sym-
metric function H : 2ω × 2ω → 2ω there exists a function g : 2ω → 2ω

such that H(x, y) = f(g(x) + g(y)) for every two distinct x, y ∈ 2ω.
Furthermore if F is Borel, then f can be taken to be Borel.

Proof
Let Ps ⊆ ω for s ∈ 2<ω partition ω into infinite sets. Given s ∈ 2<ω,
we say that y : Ps → 2 codes x : ω → 2 if y(an) = x(n) where
a0 < a1 < a2 < . . . is the increasing listing of Ps.

Define q : 2ω → 2ω by letting q(x) be such that q(x)�Px�n codes x
for every n < ω and q(x)�Ps is identically 0 for any s which is not an
initial segment of x.

Notice that it is possible to recover u and v from q(u) + q(v) as long
as neither u nor v is the constant 0 function. To see this let

Σ = {s ∈ 2<ω : ∃n ∈ Ps (q(u) + q(v))(n) 6= 0}.
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Suppose that u(m) 6= v(m) and recall that neither u nor v is identically
zero. Then for every s ∈ Σ of length greater than m, exactly one of
the following must hold:

• q(v)�Ps is identically zero and (q(u) + q(v))�Ps codes u;
• q(u)�Ps is identically zero and (q(u) + q(v))�Ps codes v.

In other words, for sufficiently large values of s the uncoding of

(q(u) + q(v))�Ps

will take on only one of two possible values and these two values will
be u and v.

Using this, f(w) is defined as follows. If there are distinct, non-zero,
u and v such that w = q(u) + q(v) then these are unique. In this case
define f(w) = F (u, v) where u < v (for the sake of avoiding arbitrary
choices in the definition). Otherwise, define f(w) to be the constant 0
function. If F is Borel, then f can be defined in a Borel way, although
its rank might increase.

To see that this definition works, let a symmetric function

H : 2ω × 2ω → 2ω

be given. By assumption there exists h such that

H(x, y) = F (h(x), h(y))

for all x, y ∈ 2ω. Without loss of generality we may assume that h is
one-to-one and h(x) is not equal to the constant 0 function for any x.

To see this, note that we may replace any h with ĥ(x) = 〈1_x, h(x)〉
and then alter F so that it ignores the first coordinate of ĥ(x); that is,
define

F0(〈u0, u1〉, 〈v0, v1〉) = F (u1, v1).

Now let g = q ◦ h. Then f(g(x) + g(y)) = f(q(h(x)) + q(h(y)))
and keep in mind that h(x) and h(y) are non-zero and distinct. Hence
f(q(h(x)) + q(h(y))) = F (h(x), h(y)) = H(x, y) as required. Note that
the symmetry of H allowed the arbitrary choice of ordering of u and v
in the definition of f .
QED

The proof of the following result is similar to Mansfield and Rao’s
proof [12, 13, 23] that the universal analytic set in the plane is not in
the σ-algebra generated by rectangles with measurable sides. See also
Miller [19].

Proposition 4.5. There does not exist a Borel function

F : 2ω × 2ω → 2ω
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such that for every Borel G : 2ω × 2ω → 2ω there exist functions h and
k from 2ω to 2ω such that k is Borel and

G(x, y) = F (h(x), k(y))

for all x, y ∈ 2ω.

Proof
Let F : 2ω × 2ω → 2ω be a Baire class α function, let U ⊆ 2ω × 2ω

be a universal Σ0
α+1 set and let G be the characteristic function of U .

Suppose that h and k are functions from 2ω to 2ω such that k is Borel
and

G(x, y) = F (h(x), k(y))

for all x, y ∈ 2ω. Let P ⊆ 2ω be a perfect set on which k is continuous,
and fix x0 so that Ux0 ⊆ P and Ux0 is not ∆0

α+1. If we define q : P → 2ω

by setting q(y) = F (h(x0), k(y)), then then q is Baire class α and
Ux0 = q−1(1), giving a contradiction.
QED

Remark 4.6. The second author has recently shown that consistently
the Borel subsets of the plane are not in contained any bounded level of
the σ-algebra generated by the abstract rectangles. The proof of Theo-
rem 2.5 shows that in this situation, there does not exist a Borel func-
tion

F : 2ω × 2ω → 2ω

such that for every Borel H : 2ω × 2ω → 2ω there exist functions g and
h from 2ω to 2ω such that

H(x, y) = F (g(x), h(y))

for all x, y ∈ 2ω. The proof is a modification of arguments in [17].

The following type of universal function was introduced by Stevo
Todorcevic.

Definition 4.7. Given a cardinal κ and k ∈ ω, a sequence of continu-
ous functions

Fn : (2ω)k → 2ω (n < ω)

is κ limit-universal if for each X ⊆ 2ω of cardinality at most κ and each
function G : Xk → 2ω there exists an injective function h : X → 2ω such
that for all x1, . . . , xk ∈ X,

G(x1, . . . , xk) = lim
n→∞

Fn(h(x1), . . . , h(xk)).

Theorem 4.8 (Todorcevic [32]). For each k ∈ ω, there exists a p
limit-universal sequence of functions Fn : (2ω)k → 2ω, for n < ω.
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Remark 4.9. In the model from Theorem 3.3, p = ℵ2 and c = ℵ3.

Recall that a function F : 2ω × 2ω → 2ω being of level 2 means that
for every n ∈ ω the set {(x, y) : F (x, y)(n) = 1} is Fσ. The following
proposition shows that the existence of a c limit-universal sequence of
functions is equivalent to the existence of a level 2 universal function.

Proposition 4.10. For any cardinal κ the following are equivalent:
(1) There exists continuous functions Fn : 2ω × 2ω → 2ω (n < ω)

with the property that for each function G : κ × κ → 2ω there exists a
function h : κ→ 2ω such that

G(α, β) = lim
n→∞

Fn(h(α), h(β))

for all α, β ∈ κ.
(2) There exists a level 2 function F : 2ω×2ω → 2ω with the property

that for each function G : κ×κ→ 2ω there exists a function h : κ→ 2ω

such that
G(α, β) = F (h(α), h(β))

for all α, β ∈ κ.

Proof
(1)→ (2). Given the sequence of continuous functions Fn : 2ω × 2ω →
2ω (n < ω) define F : 2ω × 2ω → 2ω by setting F (x, y)(k) = 1 if and
only if Fn(x, y)(k) = 1 for all but finitely many n < ω.

(2)→ (1). Using a continuous pairing function 〈·, ·〉 on 2ω×2ω, define
for each k ∈ ω the pair of (nondisjoint) Fσ subsets of 2ω, P 0

k and P 1
k ,

by setting
(〈u0, u1〉, 〈v0, v1〉) ∈ P i

k

if and only if F (ui, vi)(k) = 1. By the reduction property for Fσ sets,
for each k ∈ ω there exist disjoint Fσ sets Q0

k, Q
1
k with Qi

k ⊆ P i
k and

Q0
k ∪Q1

k = P 0
k ∪P 1

k . Write each Qi
k as an increasing sequence of closed

sets Qi
k =

⋃
n∈ω C

i
k,n. For each n, k ∈ ω, C0

k,n and C1
k,n are disjoint

closed sets, so there exists a clopen set Dk,n with C0
k,n ⊆ Dk,n and C1

k,n

disjoint from Dk,n.
Define the continuous map Fn : 2ω × 2ω → 2ω by setting

Fn(u, v)(k) = 1

if and only if (u, v) ∈ Dk,n. Now we verify that this works. Given
G : κ × κ → 2ω, let G0 be G and define G1 : κ × κ → 2ω by setting
G1(α, β)(n) = 1 − G0(α, β)(n) (that is, we switch 0 and 1 on every
coordinate of the output). Let h0 and h1 be the results of applying (2)
to G0 and G1, respectively. We have then that for every k ∈ ω and all
α, β < κ,
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• G(α, β)(k) = 1 implies
F (h0(α), h0(β))(k) = 1 and F (h1(α), h1(β))(k) = 0

• G(α, β)(k) = 0 implies
F (h0(α), h0(β))(k) = 0 and F (h1(α), h1(β))(k) = 1

Define h : 2ω → 2ω by setting h(γ) = 〈h0(γ), h1(γ)〉. Then for all
α, β < κ and all k ∈ ω the following hold.

• If G(α, β)(k) = 1, then (h(α), h(β)) ∈ P 0
k \P 1

k so (h(α), h(β)) ∈
Q0
k and Fn((h(α), h(β)))(k) = 1 for all but finitely many n.

• If G(α, β)(k) = 0, then (h(α), h(β)) ∈ P 1
k \P 0

k so (h(α), h(β)) ∈
Q1
k and Fn((h(α), h(β)))(k) = 0 for all but finitely many n.

QED

Davies [6] showed that the Continuum Hypothesis is equivalent to
the assertion that the function

F (~x, ~y) =
∑
n<ω

xnyn

has the following universal property: for every H : R × R → R there
are functions fn, gn for n < ω such that

H(x, y) =
∑
n<ω

fn(x)gn(y)

for all x, y ∈ R. Moreover, the functions fn and gn (n < ω) can be
taken so that the sum

∑
n<ω fn(x)gn(y) has only finitely many nonzero

terms. If this requirement is relaxed to ordinary convergence of the infi-
nite sum, then the function F (~x, ~y) =

∑
n<ω xnyn is still universal under

the assumption p = c (Shelah [27]). However, it is not universal after
adding ℵ2 many Cohen reals with finite support ([27]). These consid-
erations suggest the following context for studying universal functions.
Let (B, ·) be a Banach algebra and ψ ∈ B∗. The linear functional ψ
can be said to be κ-universal if for every f : κ × κ → R there are
h : κ→ B and g : κ→ B such that f(α, β) = ψ(h(α) · g(β)). This will
be examined elsewhere.

5. Abstract universal functions

This section considers the question of universal functions without
regard to any definability properties. The notion of universal function
naturally generalizes to functions of the form F : α× β → γ.

Theorem 5.1. If α and κ are cardinals such that α<κ = κ, then there
is a universal function from κ× κ to α.
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Proof
Let F be the set of functions f : κ→ α for which {γ < κ | f(γ) 6= 0}

is a bounded subset of κ. Then |F| = α<κ = κ. Define U : (κ×F)2 → α
by setting

U((γ, f1), (β, f2)) =

{
f1(β) if β < γ
f2(γ) if γ ≤ β

By Remark 1.1, it is enough to show that for each g : κ × κ → α
there exist h : κ→ (κ×F) and k : κ→ (κ×F) such that

U(h(γ), k(β)) = g(γ, β)

for all γ, β in κ. Fix g : κ× κ→ α. Define h : κ→ (κ× F) by setting
h(γ) = (γ, f1,γ), where f1,γ : κ → α is such that f1,γ(β) is g(γ, β) for
all β < γ and 0 for all β ≥ γ. Define k : κ → (κ × F) by setting
k(β) = (β, f2,β), where f2,β : κ → α is such that f2,β(γ) is g(γ, β) for
all γ ≤ β and 0 for all γ > β.

Now fix γ, β in κ. If γ > β, then U(h(γ), k(β)) = f1,γ(β) = g(γ, β).
If γ ≤ β, then U(h(γ), k(β)) = f2,β(γ) = g(γ, β).
QED

It follows from Theorem 5.1 that if κ<κ = κ, then there is a universal
function U : κ× κ→ κ. So, for example, there is a universal function
from ω × ω to ω. If κ<κ = κ, then κ must be a regular cardinal.
Theorem 5.1 implies that if κ is strong limit cardinal, then for every
α < κ there is a universal function from κ× κ to α. However we don’t
know the answer to the following question:

Question 5.2. If κ is a singular strong limit cardinal, does there exist
a universal function from κ× κ to κ?

Proposition 5.3. Suppose that κ is a singular strong limit cardinal
and that α < κ. Then there is a universal function U : κ × α → κ if
and only if α is less than the cofinality of κ.

Proof
Let τ be the cofinality of κ. If α < τ , then there are only κ many maps
from α into κ, so U just needs to list all of them as a cross section
Uβ(·) = U(β, ·) for β < κ.

If α ≥ τ , we can diagonalize against any U by eventually avoiding
the range of any cross section. To see this suppose U : κ × α → κ is
any map. Let κδ for δ < τ be increasing and cofinal in κ. Construct a
map d : τ → κ so that

d(δ) ∈ κ \ { U(β, γ) : β < κδ, γ < α}.
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The map f : κ × τ → κ defined by f(β, δ) = d(δ) witnesses that U is
not universal.
QED

The following proposition, which also applies to singular cardinals,
shows that a negative answer to Question 5.2 for κ = ℵω must use
maps with domain at least ω1 × ω. Its proof is similar to the proof of
Theorem 5.1.

Proposition 5.4. For each infinite cardinal κ there exists a function
U : κ×κ→ κ such that for each G : ω×ω → κ there exists a function
h : ω → κ such that G(n,m) = U(h(n), h(m)) for all n,m ∈ ω.

Proof
Let

F = {F : ω → κ : ∀∞n F (n) = 0}
Define U : (ω ×F)2 → κ by

U((n, F1), (m,F2)) =

{
F1(m) if n > m
F2(n) if n ≤ m

Given any G define h(n) = (n, Fn) where Fn ∈ F has the property that
Fn(m) = G(n,m) whenever m ≤ n. Define k(m) = (m,F ′m) where
F ′m ∈ F has the property that Fm(n) = G(n,m) whenever n ≤ m.
Then

• for any n ≤ m U(h(n), k(m)) = F ′m(n) = G(n,m) and
• for any n > m U(h(n), k(m)) = Fn(m) = G(n,m).

As usual we may encode distinct h, k into a single map.
QED

The following theorem shows that it is relatively consistent with ZFC
that there is no universal function F : c× c→ 2. Given sets X, Y and
a cardinal κ, the partial order Fn(X, Y, κ) consists of partial functions
from X to Y of cardinality less than κ, ordered by inclusion.

Theorem 5.5. If c = ℵ1 and 2ℵ1 = ℵ2, then the partial order

Fn(ω3, 2, ω1)× Fn(ω2, 2, ω)

forces that c = ℵ2 and that there is no F : ω2×ω2 → 2 with the property
that for every f : ω2×ω1 → 2 there exists g1 : ω2 → ω2 and g2 : ω1 → ω2

such that f(α, β) = F (g1(α), g2(β)) for every α < ω2 and β < ω1.

Proof
Suppose that c = ℵ1 and 2ℵ1 = ℵ2. Force with Fn(ω3, 2, ω1) fol-

lowed by Fn(ω2, 2, ω). Let G be Fn(ω3, 2, ω1)-generic over V and H
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be Fn(ω2, 2, ω)-generic over V [G]. We will show there is no such F as
above in the model V [G][H].

By standard arguments4 involving iteration and product forcing we
may regard V [G][H] as being obtained by forcing with Fn(ω3, 2, ω1)V

over the ground model V [H]. Of course, in V [H] the poset Fn(ω3, 2, ω1)V

is not countably closed but it still must have the ω2-cc. Hence for
any F : ω2 × ω2 → 2 in V [G][H] we may find γ < ω3 such that
F ∈ V [H][G�γ].

Use G above γ to define f : ω2 × ω1 → 2, i.e.,

f(α, β) = G(γ + ω1 · α + β).

Suppose towards a contradiction that in V [G][H] there were functions
g1 : ω2 → ω2 and g2 : ω1 → ω2 such that f(α, β) = F (g1(α), g2(β))
for every α < ω2 and β < ω1. Using the ω2-chain condition of
Fn(ω3, 2, ω1) × Fn(ω2, 2, ω), there would be an I ⊆ ω3 in V of size
ω1 such that g2 ∈ V [H][G�(γ ∪ I)]. Choose α0 < ω2 so that γ ∪ I is
disjoint from

D = {γ + ω1 · α0 + β : β < ω1}.
It easy to see by a density argument that the function G�D is not

in V [H][G�(γ ∪ I)]. But this is a contradiction, since G�D is easily
defined from the function f(α0, ·), f(α0, β) = F (g1(α0), g2(β)) for all
β, and F, g2 are in V [H][G�(γ ∪ I)].
QED

Question 5.6. Is it consistent with 2<c > c to have a universal function
F : 2ω × 2ω → 2ω? What about a Borel F?

The two following propositions illustrate two cases where a universal
function with range κ can be lifted to one with range κ+.

Proposition 5.7. For any infinite cardinal κ, there is a universal

F : κ+ × κ+ → κ+

if and only if there is a universal function G : κ+ × κ+ → κ.

Proof
The forward direction follows from Remark 1.4. For the reverse direc-
tion, suppose that we are given a universal G : κ+× κ+ → κ. For each
α < κ+ let bα : κ → α be a bijection. Define F : κ+ × κ+ → κ+ by
setting

F (〈α1, α2, α3〉, 〈β1, β2, β3〉) =

{
bβ3(G(α2, β2)) if α1 ≤ β1

bα3(G(α2, β2)) if α1 > β1

4Kunen[10] p.253, Solovay [31] p.10
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where 〈a, b, c〉 represents a bijection between an infinite set and its
triples, or, equivalently, 〈a, b, c〉 is defined to be 〈〈a, b〉, c〉. To see that
F is universal, fix a function f : κ+ × κ+ → κ+. Let j : κ+ → κ+

be such that f(α, β) < j(max(α, β)) for all α, β < κ+. Define f ∗ :
κ+ × κ+ → κ by setting f ∗(α, β) = ξ, where ξ < κ is such that
f(α, β) = bj(max(α,β))(ξ). As G is universal, there exists a function
h : κ+ → κ+ such that

f ∗(α, β) = G(h(α), h(β))

for all α, β < κ+. This means that for all α, β < κ+,

f(α, β) = bj(max(α,β))(G(h(α), h(β))).

It follows that for all α, β < κ+,

f(α, β) = F (〈α, h(α), j(α)〉, 〈β, h(β), j(β)〉).
QED

Proposition 5.8. For any pair of infinite cardinals κ > λ, there is a
universal function from κ×λ to λ if and only if there is one from κ×λ
to λ+.

Proof
Again, the reverse direction follows from Remark 1.4. For the forward
direction, let F : κ × λ → λ be a universal function and fix bijections
jα : λ → α, for each α in the interval [λ, λ+). Construct F ′ with the
property that for each pair α ∈ κ, β ∈ λ+ there exists a γ < κ such
that F ′γ = jβ ◦ Fα, i.e.,

F ′(γ, δ) = jβ(F (α, δ)) for all δ < λ.

Now we verify that F ′ is universal. Let f ′ : κ × λ → λ+ be arbitrary.
For each α < κ, let

ια = λ+ sup{f ′(α, δ) + 1 : δ < λ}.
Define f into λ by f(α, δ) = j−1

ια (f ′(α, δ)). Since F is universal there
exist g, h with

F (g(α), h(δ)) = f(α, δ) = j−1
ια (f ′(α, δ))

for all (α, δ) ∈ κ × λ. By our definition of F ′ we may construct g′ so
that

F ′(g′(α), h(δ)) = jια(F (g(α), h(δ)))

for all (α, δ) ∈ κ× λ. Then we are done, since

jια(F (g(α), h(δ))) = f ′(α, δ)

for all (α, δ) ∈ κ× λ.
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QED

The following theorem connects the existence of universal functions
on κ× κ with finite range to the existence of universal graphs.

Theorem 5.9. For any infinite cardinal κ the following are equivalent:

(1) For each n ∈ N there is a universal function from κ× κ to n.
(2) For some n ∈ N with n ≥ 2 there is a universal function from

κ× κ to n.
(3) There is a symmetric, irreflexive function from κ × κ to 2

universal for all symmetric, irreflexive functions from κ × κ
to 2; in other words, there is a symmetric, irreflexive func-
tion U : κ × κ → 2 such that for any symmetric, irreflex-
ive function f : κ × κ → 2 there is h : κ → κ such that
f(ξ, η) = U(h(ξ), h(η)) for all ξ and η.

(4) There is a universal graph on κ; in other words, there is a graph
G whose vertex set is κ such that for any other graph G∗ with
vertex set κ there is a graph embedding of G∗ into G.

Proof
Statement (1) clearly implies statement (2); (2) implies (1) by Remark
1.4 and Proposition 1.5 (with finite exponent). To get from (2) to (3),
given a universal function U : κ× κ→ n, define

V (α, β) =

{
1 if α 6= β and either U(α, β) = 1 or U(β, α) = 1
0 otherwise

Then V is universal in the sense of (3).
Statements (3) and (4) are equivalent since the characteristic function
of a graph is symmetric and irreflexive and Remark 1.2 is still in effect.

It remains only to show that one of (3) and (4) implies one of (1)
and (2). We give a proof of (1) from (3). Fix n ∈ ω with n ≥ 2, and
let Ψ : κ→ [κ]n be a bijection. If U : κ× κ→ 2 is a function universal
for symmetric functions, define U∗ : κ× κ→ n by letting U∗(α, β) be max

ξ∈Ψ(α)

∑
η∈Ψ(β)

U(ξ, η)

− 1

if this quantity is nonnegative, and 0 otherwise. To see that U∗ is
universal for functions from κ× κ to n, fix F : κ× κ→ n. Let {Eξ}ξ∈κ
be a partition of κ into sets of size n. We construct a symmetric
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function F ∗ from κ× κ to 2 so that for each α, β ∈ κ

F (α, β) =

max
ξ∈Eα

∑
η∈Eβ

F ∗(ξ, η)

− 1.

We can realize F ∗ as the characteristic function of a graph. For each
α ∈ κ, let α∗ denote min(Eα). Construct the graph on each of the
pairwise disjoint pieces Eα×Eβ by connecting α∗ to F (α, β)+1 elements
of Eβ including β∗ and connecting β∗ to exactly F (β, α) + 1 elements
of Eα. The “plus one” is so that the two minimum elements can always
be connected.

Let g : κ→ κ be one-to-one (see Remark 1.2) such that

U(g(α), g(β)) = F ∗(α, β)

for all α, β in κ. Define H : κ → κ by setting each H(ξ) = Ψ−1g[Eξ].
Then for each α, β in κ,

F (α, β) = (max
ξ∈Eα

∑
η∈Eβ

F ∗(ξ, η))− 1 = (max
ξ∈Eα

∑
η∈Eβ

U(g(ξ), g(η)))− 1,

which, as g is one-to-one, is equal to (maxξ∈g[Eα]

∑
η∈g[Eβ ] U(ξ, η))− 1.

Since this last term is nonnegative, it is equal to U∗(H(α), H(β)).
QED

Question 5.10. Does the existence of a universal F : ω1 × ω1 → 2
imply that there is a universal function G : ω1 × ω1 → ω?

The rest of this section concerns universal functions on ω1 × ω1.

Remark 5.11. Shelah [24, 25, 26] proved that it is consistent with
c > ℵ1 that there is a universal graph on ω1. By Theorem 5.9, in his
model there are universal functions from ω1 × ω1 to n for each n < ω.

Shelah’s result was generalized in Mekler ([16], Theorem 2). In Mek-
ler’s terminology, a 3-amalgamation class K is a class of models of a
universal theory in a relational language which satisfies the following
amalgamation property: if {Ma : a ∈ P−(3)} are structures in K for
which Ma ∩Mb = Ma∩b for all a, b ∈ P−(3), then there is an M ∈ K
such that Ma ⊆ M for each a ∈ P−(3), where P−(3) denotes the set
P(3) \ {3}.
Theorem 5.12 (Mekler [16]). If 2ℵ1 = ℵ2, then there is a c.c.c. partial
order forcing that that c = ℵ2 and that for every 3-amalgamation class
K having only countably many finite models up to isomorphism, there
is a model M in K of cardinality ℵ1 such that every model in K of
cardinality ℵ1 is isomorphic to a substructure of M .
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The following theorem is a corollary of Mekler’s result.

Theorem 5.13. It is consistent that 2ℵ0 > ℵ1 and there is a universal
function from ω1 × ω1 to ω1.

Proof
By Proposition 5.7 it is enough to find a universal function from ω1×ω1

to ω. Let L be the language with countably many binary predicate
symbols Rn(x, y). Let T be the theory with countably many axioms:

∀x, y (Rn(x, y)→ ¬Rm(x, y))

for each n 6= m. Note that T has only countably many finite models
up to isomorphism and is axiomatized by universal sentences.

To verify that the class of models of T satisfies the amalgamation
property of 3-amalgamation classes, note that if Ma (a ∈ P−(3)) are
models of T such that Ma ∩ Mb = Ma∩b for all a, b ∈ P−(3), then⋃
{Ma : a ∈ P−(3)} |= T .
Suppose now that (ω1, {Rn}n<ω) is a universal model of T . Define a

function U : ω2
1 → ω by

U(α, β) =

{
n if Rn(α, β)
0 if ∀n ¬Rn(α, β)

Now given any g : ω2
1 → ω define Rg

n(α, β) if and only if g(α, β) = n.
The structure (ω1, {Rg

n}n<ω) is a model of T . An embedding of this
structure into our universal model gives a map h : ω1 → ω1 such that
g(α, β) = U(h(α), h(β)) for all α, β < ω1.
QED

We take up the question of model-theoretic universality in section 7.
Next we consider the problem of universal functions on ω1 assuming
Martin’s Axiom.

Theorem 5.14. Assume MAω1. Then there exists F : ω1 × ω → ω1

which is universal.

Proof
By Proposition 5.8 we need only produce a universal F : ω1×ω → ω.
Standard arguments show that there exists a family hα : ω → ω for

α < ω1 of independent functions, i.e., for any n, α1 < α2 < · · · < αn <
ω1 and s : {1, . . . , n} → ω there are infinitely many k < ω such that

hα1(k) = s(1)

hα2(k) = s(2)
...
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hαn(k) = s(n).

Define H : ω1 × ω → ω by H(α, n) = hα(n). We show that H is
universal mod finite, in sense which will be made clear. Given any
f : ω1 × ω → ω define the following poset P. A condition p = (s, F )
is a pair such that s ∈ ω<ω is one-to-one and F ∈ [ω1]<ω. We define
p ≤ q if and only if

(1) sq ⊆ sp,
(2) Fq ⊆ Fp, and
(3) f(α, n) = hα(sp(n)) for every α ∈ Fq and n ∈ dom(sp)\dom(sq).

The poset P is c.c.c., and in fact σ-centered, since any two conditions
with the same s are compatible. Since the family {hα : α < ω1} is
independent, for any p ∈ P there are extensions of p with arbitrarily
long s part. It follows from MAω1 that there exists h : ω → ω with
the property that for every α < ω1 for all but finitely many n that
f(α, n) = hα(h(n)).

To get a universal map F : ω1× ω → ω, simply take any F with the
property that for every α < ω1 and any h′ =∗ hα (equal mod finite)
there is β such that F (β, n) = h′(n) for every n. Since the function h
is one-to-one, it easy to find k : ω1 → ω1 such that F (k(α), h(n)) =
f(α, n) for all α and n.
QED

Theorem 5.17 below shows that the existence of a universal function
for ω1 does not follow from Martin’s Axiom. First we have the following
lemmas, the first of which follows from a simple modification of the
Sierpiński partition sending pairs of reals to some rational between.

Lemma 5.15. There exists S : [ω1]2 → ω such that

• for all uncountable X ⊆ ω1 and j ∈ ω there is an uncountable
Z ⊆ X such that S(p) > j for all p ∈ [Z]2

• for all ξ the restriction of the mapping η 7→ S({ξ, η}) to ξ is
one-to-one.

Proof
Let {rξ}ξ∈ω1 enumerate any uncountable set of reals and let Q =
{qn}n∈ω. Any function S : [ω1]2 → ω satisfying qS(ξ,η) falls between
rξ and rη will satisfy the first requirement because, given j and X
there is a ⊆-minimal interval J with endpoints in {qi, q2, . . . qj} such
that Z = J ∩ X is uncountable. It is immediate that S(p) > j for
all p ∈ [Z]2. Any easy inductive argument then yields an S satisfying
both requirements.
QED
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Lemma 5.16. For each r ∈ 2ω, let Gr : ω1 × ω1 → ω be defined by
setting Gr(η, ξ) = r(S({η, ξ})). Fix U : ω1 × ω1 → ω, and let H ∈ 2ω

be Hechler generic over a model V containing U . Then, in V [H], any
partial order P such that

1 
P “(∃h : ω1 → ω1)(∀η)(∀ξ 6= η) U(h(η), h(ξ)) = GH(η, ξ)”

contains an uncountable antichain.

Proof
Let h be a name such that

1 
P “(∀η)(∀ξ 6= η) U(h(η), h(ξ)) = GH(η, ξ)”.

For each ξ ∈ ω1, choose a condition (tξ, Fξ) in Hechler forcing H, a
name pξ for an element of P and an ordinal αξ such that

((tξ, Fξ), pξ) 
H?P “h(ξ̌) = α̌ξ”.

Let t : n → ω be such that there is an uncountable set X ⊆ ω1 such
that tξ = t for all ξ ∈ X. Let Z ⊆ X be uncountable such that
S(w) > n for all w ∈ [Z]2.

For each ξ ∈ ω1 let Dξ be the partial function from ω to ω with
domain {S({ξ, η}) : η < ξ} defined by setting

Dξ(S({ξ, η})) = U(αξ, αη) + 1.

This is well defined by the one-to-one property of S. By extending
the second coordinate of (tξ, Fξ) = (t, Fξ) it may be assumed that
Fξ(j) ≥ Dξ(j) for all j ∈ dom(Dξ) ∩ dom(Fξ). Now if ξ and η belong
to Z and η < ξ then ((t, Fξ), pξ) and ((t, Fη), pη) are incompatible.

To see this suppose that a condition ((s, F ), p) were stronger than
both ((t, Fξ), pξ) and ((t, Fη), pη). By extending (s, F ), it may be
assumed that S({ξ, η}) ∈ dom(s). Since {ξ, η} ⊆ Z, each value
S({ξ, η}) > n, so S({ξ, η}) ∈ dom(s) \ dom(t). Hence, ((s, F ), p) as an
element of H ? P forces the following

s(S({ξ, η})) ≥ Fξ(S({ξ, η})) ≥ Dξ(S({ξ, η})) > U(αξ, αη)

= U(h(ξ), h(η)) = GH(ξ, η) = H(S({ξ, η})) = s(S({ξ, η}))
yielding a contradiction. Since H has the c.c.c. it follows that P does
not.
QED

Lemma 5.16 implies the following.

Theorem 5.17. In the standard model of MA obtained by forcing over
a model of GCH with a finite support iteration of length ω2 of c.c.c.
posets, there is no universal function from ω1 × ω1 to ω.
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5.1. Property R. We conclude this section by connecting the exis-
tence of universal functions from ω1 × ω1 to ω with the existence of
certain functions on pairs from ω1.

Definition 5.18. A function Φ: [ω1]2 → ω has Property R if

• whenever k ∈ ω and {{aξ, bξ} : ξ ∈ ω1} is a family of disjoint
pairs from ω1 with each aξ ≤ bξ, there are distinct ξ and η such
that Φ({aξ, aη}) ≥ Φ({bξ, bη}) ≥ k;
• for each ξ ∈ ω1 and k ∈ ω there are only finitely many η ∈ ξ

such that Φ({ξ, η}) = k.

Functions with similar properties appear in Theorem 6 of [28].

Given a sequence 〈σα : α < ω1\ω〉 such that each σα is an infinite set
of pairwise disjoint pairs from α, one can recursively define a function
Φ: [ω1]2 → ω with the property that for each η < ω1,

• for all distinct ζ, ρ < η, Φ({ζ, η}) 6= Φ({ρ, η});
• for all ζ ∈ [ω, η), all α ∈ [ω, ζ] and all k ∈ ω, there exist δ < γ

such that {δ, γ} ∈ σα and Φ({δ, ζ}) = Φ({γ, η}) ≥ k.

It follows that if 3 holds, and is exemplified by 〈σα : α < ω1 \ω〉, then
functions with Property R exist. It can be verified in a straightfor-
ward manner that functions with Property R are preserved by forcing
by partial orders satisfying Knaster’s condition (i.e., for which every
uncountable set of conditions has an uncountable pairwise compatible
subset). The existence of a function with Property R is then consistent
with the statement b > ℵ1.

Proposition 5.19. If b > ℵ1 and there exists a function Φ: [ω1]2 → ω
with Property R then there is no universal function from ω1×ω1 to ω.

Proof
Let U : ω1 × ω1 → ω be given. Define Fξ : ω → ω for each ξ < ω1 by
setting Fξ(m) to be the largest member of the finite set

{U(ξ, η) + 1 | η < ξ ∧ Φ({ξ, η}) = m} ∪ {0}.
Let F : ω → ω be a non-decreasing function such that F ≥∗ Fξ for
all ξ. Define G : ω1 × ω1 → ω by setting G(ξ, η) = F (Φ({ξ, η})).
Fixing an injection h : ω1 → ω1, we will find ξ and η in ω1 such that
G(ξ, η) 6= U(h(ξ), h(η)).

Let Z ∈ [ω1]ℵ1 be such that h(ξ) ≥ ξ for all ξ ∈ Z. Choose k and
X ∈ [Z]ℵ1 such that F (j) ≥ Fh(ξ)(j) for all ξ ∈ X and j ≥ k. Since
h(ξ) ≥ ξ for all ξ ∈ X, it is possible to choose ξ > η in X such that
h(ξ) > h(η) and k ≤ Φ({h(ξ), h(η)}) ≤ Φ({ξ, η}). It follows that

G(ξ, η) = F (Φ({ξ, η})) ≥ F (Φ({h(ξ), h(η)})),
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and that

F (Φ({h(ξ), h(η)})) ≥ Fh(ξ)(Φ({h(ξ), h(η)}) > U(h(ξ), h(η)),

contradicting that h is an embedding.
QED

The argument of Proposition 5.19 shows that if b > ℵ1 and Property
R holds then there are no universal functions from ω1×ω1 → ω, but it
does not rule out the existence of a universal functions from ω1×ω1 →
2. The following result of Saharon Shelah addresses this question.

Definition 5.20. A graph (V,E) is said to be universal (for ℵ1) if
given any graph (U, F ) such that |U | = ℵ1 there is a function Φ : U →
V such that {x, y} ∈ F if and only if {Φ(x),Φ(y)} ∈ E. The function
Φ will be called an embedding in this case.

Theorem 5.21 (Shelah). Assuming the following two hypotheses:

(1) For every F ⊆ [ωω1
1 ]2

ℵ0 there exist two functions f and g in F
such that {ξ ∈ ω1 | f(ξ) = g(ξ)} is stationary.

(2) There exist fξ for every limit ordinal ξ ∈ ω1 such that
• fξ : ω → ξ is increasing and cofinal in ξ
• for every club C ⊆ ω1 there is a club X such that for each
ξ ∈ X there is some n such that fξ(k) ∈ C for all k ≥ n.

there is no universal graph on ω1.

Proof
Suppose that U is a universal graph on ω1. For any r : ω → 2 define

the graph Gr to consist of all edges {ξ, η} such that there exists n ∈ ω
such that r(n) = 1 and fη(n) ≤ ξ < fη(n + 1). Since U is universal
there exist embeddings hr : ω1 → ω1 of Gr into U .

Now let A ⊆ 2ω be any set of size 2ℵ0 consisting of reals any two of
which differ on an infinite set. The first hypothesis yields r and s in A
such that that E = {ξ ∈ ω1 | hr(ξ) = hs(ξ)} is stationary. Then let C
be any club such that if α and β are in C and α ∈ β then E∩[α, β) 6= ∅.

The second hypothesis then yields ξ ∈ E and n ∈ ω such hat fξ(k) ∈
C for all k ≥ n. Choose k ≥ n such that r(k) = 1 6= s(k) and let η ∈ E
be such that fξ(k) ≤ η < fξ(k + 1). Then {η, ξ} is an edge of Gr but
not of Gs contradicting that hs(η) = hr(η) and hs(ξ) = hr(ξ).

Corollary 5.22. It is consistent with MA that there is no universal
graph on ω1.

Proof
Begin with model of ♦ and GCH and force with ccc partial order P

of cardinality ℵ4 to obtain a model of MA and 2ℵ0 = ℵ4. The second
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hypothesis of Theorem 5.21 is true because it holds in the ground model
satisfying ♦ and clubs in the forcing extension contain clubs in the
ground model.

To see that the first hypothesis is true, let {ḟµ}µ∈ω4 be P-names for
functions from ω1 to ω1. For each µ ∈ ω4 choose a function wµ : ω1 →
ω1 and conditions pµ,ξ ∈ P such that

pµ,ξ 
P “ḟµ(ξ) = wµ(ξ)”

for all ξ ∈ ω1. For each pair µ 6= θ let Ċµ,θ be a P-name for a club such

that 1 
P “(∀ξ ∈ Ċµ,θ)ḟµ(ξ) 6= ḟθ(ξ)”. Because P is ccc there is a club

Dµ,θ in the ground model such that 1 
P “Dµ,θ ⊆ Ċµ,θ”.
First let E ⊆ ω4 be of cardinality ℵ4 such that there is a function

w such that wµ = w for all µ ∈ E. Since the ground model satisfies
ℵ4 → [ℵ1]2ℵ2 it follows that there is an uncountable set B ⊆ E and
a club D such that Dµ,θ = D for {µ, θ} ∈ [B]2. Let δ ∈ D. Then
since P is ccc there are distinct µ and θ in B such that there is p ∈ P
such that p ≤ pµ,δ and p ≤ pθ,δ. This contradicts that δ ∈ D and

p 
P “w(ξ) = wµ(ξ) = ḟµ(ξ) 6= ḟθ(ξ) = wθ(ξ) = w(ξ)”.

Remark 5.23. Justin Moore has shown that under the Proper Forc-
ing Axiom there are no functions with property R — his argument is
included in the appendix to this article. Justin Moore and Stevo Todor-
cevic have independently indicated to the authors that the existence of
a function with Property R follows from the assumption that b = ℵ1.

6. Higher dimensional universal functions

Definition 6.1. Given k ∈ ω and sets Xi (i < k) and Z, a function
F :

∏
i<kXi → Z is universal if for each function G :

∏
i<kXi → Z

there exist functions hi : Xi → Xi (i < k) such that

G(x0, . . . , xk−1) = F (h0(x0), . . . , hk−1(xk−1))

for all (x0, . . . , xk−1) ∈
∏

i<kXi.

As in Remark 1.1, in the case where the Xi’s are all the same set X,
the existence of a universal function is not changed by requiring that
the functions hi are all the same.

Given a set X and a k ∈ ω, we call a universal function F : Xk → X
a k-dimensional universal function on X. The following proposition
shows that the existence of a 2-dimensional universal function on an
infinite set X is equivalent to the existence of a k-dimensional universal
function, for any k > 1. Note however that the Baire complexity of
F (F (x, y), z) can be higher than that of F .
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Proposition 6.2. Let X, Y be sets such that |X × Y | = |X|. If

F : X × Y → X

is a universal function, then the function F ′ : X × Y × Y → X defined
by setting F ′(x, y, z) = F (F (x, y), z) is a universal function.

Proof
Fix functions π0 : X → X and π1 : X → Y such that the function
π : X → X × Y defined by setting π(x) = (π0(x), π1(x)) is a bijec-
tion. Given G : X × Y × Y → X, define G0 : X × Y → X by setting
G0(x, z) = G(π0(x), π1(x), z). By the universality of F there exist func-
tions g : X → X and h : Y → Y such that G0(u, z) = F (g(u), h(z)) for
all (u, z) ∈ X × Y . Again by the universality of F there are functions
g0 : X → X and g1 : Y → Y such that

g(π−1(x, y)) = F (g0(x), g1(y))

for all (x, y) ∈ X × Y . Then for all (x, y, z) ∈ X × Y × Y ,

G(x, y, z) = G0(π−1(x, y), z) = F (g(π−1(x, y)), h(z)),

which is equal to F (F (g0(x), g1(y)), h(z)).
QED

One may also consider universal functions F where the parameter-
izing functions take in more than one variable, for example, a function
F : X3 → Y such that for all G : X3 → Y there exist functions g, h
and k from X2 to X such that G(x, y, z) = F (g(x, y), h(y, z), k(x, z))
for all x, y, z in X. A 3-dimensional universal function is universal in
this sense, since g, h and k can be chosen to each depend on only one
variable. However, we do not know if a universal function in this sense
implies the existence of a 3-dimensional universal function.

The reader will easily be able to imagine many variants. For example,

• G(x, y, z) = F (g(x, y), h(y, z));
• G(x1, x2, x3, x4) = F (g1(x1, x2), g2(x2, x3), g3(x3, x4), g4(x4, x1));

where we have omitted quantifiers for clarity. These two variants are
each equivalent to the existence of 2-dimensional universal function.
To see this in the first example put y = 0 and get

G(x, z) = F (g(x, 0), h(0, z)).

In the second example put x2 = x4 = 0 and get

G(x1, x3) = F (g1(x1, 0), g2(0, x3), g3(x3, 0), g4(0, x1)).
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More generally, suppose that F and the ~xk’s have the property that for
every G there are gk’s such that for all ~x

G(~x) = F (g1(~x1), . . . , gn(~xn)).

Suppose that there are two variables x and y from ~x which do not
simultaneously belong to any ~xk. Then we get a universal 2-dimensional
function simply by setting all of the other variables equal to zero.

For the rest of this section we will often leave implicit the domains
of our universal functions, for notional ease. When we talk of the com-
plexity of universal functions, however, the underlying domain space is
taken to be 2ω.

Definition 6.3. Given n ∈ ω \ {0, 1}, an (n, 2)-dimensional universal

function is an

(
n
2

)
-ary function F such that for every n-ary function

G there is a binary function h with

G(x1, x2, . . . , xn) = F (〈h(xi, xj) : 1 ≤ i < j ≤ n〉)

for all x1, x2, . . . , xn.

Proposition 6.4. If there is a (3, 2)-dimensional universal function,
then for every n > 3 there is a (n, 2)-dimensional universal function
F . Conversely, if there is a (n + 1, 2)-dimensional universal function
for some n ≥ 3, then there is an (n, 2)-dimensional universal function.

Proof
Suppose that F is a (3, 2)-dimensional universal function and F ′ is
an (n, 2)-dimensional universal function, for some n ≥ 3. Given an
(n+1)-ary function G(x1, . . . , xn+1), for each fixed w we get a function
hw(x1, . . . , xn) with

G(x1, . . . , xn, w) = F ′(〈hw(xi, xj) : 1 ≤ i < j ≤ n〉)

for all x1, . . . , xn. Now, considering h(y1, y2, y3) = hy3(y1, y2) we get a
function k(s, t) with h(y1, y2, y3) = F (〈k(yi, yj) : 1 ≤ i < j ≤ 3〉) for all
y1, y2, y3. Then, for all x1, . . . , xn+1, G(x1, . . . , xn+1) =

F ′(〈F (k(xi, xj), k(xi, xn+1), k(xj, xn+1)) : 1 ≤ i < j ≤ n〉).

From this one gets an (n+ 1, s)-dimensional universal function, with k
playing the role of h in the definition.

For the converse, suppose that F is an (n+1, 2)-dimensional universal
function. Consider F as a function of variables pi,j (1 ≤ i < j ≤ n+1),
and, fixing a tripling function 〈·, ·, ·〉, let u1, u2 and u3 be functions so
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that ui(〈x1, x2, x3〉) = xi for all x1, x2, x3 and i ∈ {1, 2, 3}. Let K be
the function which takes in a sequence

〈qi,j : 1 ≤ i < j ≤ n〉
and returns the sequence

〈pi,j : 1 ≤ i < j ≤ n+ 1〉
for which pi,j is

• u1(qi,j) if j ≤ n;
• u2(qi,i+1) if i < n and j = n+ 1;
• u3(qn−1,n) if i = n and j = n+ 1.

Define F ′ by setting

F ′(〈qi,j : 1 ≤ i < j ≤ n〉) = F (K(〈qi,j : 1 ≤ i < j ≤ n〉)).
Given an n-ary function G, there exists a binary function h with

G(x1, . . . , xn) = F (〈h(xi, xj) : 1 ≤ i < j ≤ n+ 1〉)
for all x1, . . . , xn+1. Fix a domain element w, and define a function h′

by setting h′(x, y) = 〈h(x, y), h(x,w), h(y, w)〉. Then

G(x1, . . . , xn) = F ′(〈h′(xi, xj) : 1 ≤ i < j ≤ n〉)
for all x1, . . . , xn.
QED

Next we state a generalization of these ideas.

Definition 6.5. Let X be a set, and n an element of ω. Suppose
that Σ ⊆ P({0, 1, 2, . . . , n − 1}) = P(n) (the power set of n). We let
U(X,n,Σ) be the assertion that there exists a function F : XΣ → X
such that for every G : Xn → X there are hQ : XQ → X for Q ∈ Σ
such that

G(x0, x1, . . . , xn−1) = F (〈hQ(〈xj : j ∈ Q〉) : Q ∈ Σ〉)
for all x0, . . . , xn−1 ∈ X.

Propositions 6.2 and 6.4 can be generalized as follows. The proofs of
the first two parts of Proposition 6.6 are similar to the corresponding
proofs from Proposition 6.4.

Proposition 6.6. For any infinite set X and any positive integer n,

(1) U(X,n+ 1, [n+ 1]n) implies ∀m > n U(X,m, [m]n);
(2) ∃m > n U(X,m, [m]n) implies U(X,n+ 1, [n+ 1]n);
(3) U(X,n+ 1, [n+ 1]n) implies U(X,n+ 2, [n+ 2]n+1).
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Proof
For the first part, we follow the proof of the first part of Proposition

6.4, inducting on m. Fix m > n, and suppose that F0 witnesses the
statement U(X,n+ 1, [n+ 1]n) and F1 witnesses U(X,m, [m]n). Given
G : Xm+1 → X, we can find for each w ∈ X functions hwQ (Q ∈ [m]n)
such that, for all x0, . . . , xm−1 ∈ X,

G(x0, . . . , xm−1, w) = F1

(
〈hwQ(〈xj : j ∈ Q〉) : Q ∈ [m]n〉

)
.

Furthermore, there are functions kR (R ∈ [n+ 1]n) such that (abusing
notation slightly on the left side of the equality)

hxnQ (〈xi : i < n〉) = F0(〈kR(〈xi : i ∈ R〉) : R ∈ [n+ 1]n〉)

for all x0, . . . , xn ∈ X. The functions kR witness in this instance then
that the function F1(〈F0(〈yR : R ∈ [Q∪{m}]n〉) : Q ∈ [m]n〉) witnesses
U(X,m+ 1, [m+ 1]n).

For the second part, we follow the proof of the second part of Propo-
sition 6.4. Suppose that F witnesses U(X,m, [m]n). Fix a bijection
π : X([m]n) → X, and let pR (R ∈ [m]n) be the functions from X to X
such that π−1(x) = 〈pR(x) : R ∈ [m]n〉. Let H : [m]n → [n + 1]n be
such that R ∩ (n+ 1) ⊆ H(R) for all R ∈ [m]n. Let K be the function
which takes in a sequence

〈yQ : Q ∈ [n+ 1]n〉

from X and returns the sequence

〈pR(yH(R)) : R ∈ [m]n〉.

Define F ′ : X([n+1]n) → X by setting

F ′(〈yQ : Q ∈ [n+ 1]n〉) = F (K(〈yQ : Q ∈ [n+ 1]n〉)).

To see that this works, fixG : Xn+1 → X. Since F witnesses U(X,m, [m]n),
there exist functions hR : XR → X (R ∈ [m]n) such that

G(x0, . . . , xn) = F (〈hR(〈xi : i ∈ R〉) : R ∈ [m]n〉)

for all x0, . . . , xm−1 ∈ X. Fix w ∈ X. For each Q ∈ [n + 1]n, let
kQ : XQ → X be defined by setting kQ(〈xi : i ∈ Q〉) to be

π(〈hR(〈ti : i ∈ R〉) : R ∈ [m]n〉),

where each ti is xi if i ∈ Q, and w otherwise. To check that the
functions kQ witness that F ′ is as desired, it suffices to see that for all
x0, . . . , xm−1 in X for which xi = w for all i ∈ {n+ 1, . . . ,m− 1}, and
all R ∈ [m]n, hR(〈xi : i ∈ R〉) is equal to pR(kH(R)(〈xi : i ∈ H(R)〉)).
Now, pR(kH(R)(〈xi : i ∈ H(R)〉)) is hR(〈ti : i ∈ R〉), where each ti is xi
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if i ∈ H(R) and w otherwise. Since R∩ (n+ 1) ⊆ H(R), 〈ti : i ∈ R〉 =
〈xi : i ∈ R〉, as desired.

For the third part, we follow (loosely) the proof of Proposition 6.2.

Suppose that F witnesses U(X,n+1, [n+1]n). Let F ′ : X([n+2]n+1) → X
be such that

F ′(〈zQ : Q ∈ [n+ 2]n+1〉) = F (〈yR : R ∈ [n+ 1]n〉),
where each yR = zR∪{n+1}. Fix functions π0 : X → X and π1 : X → X
such that the function π : X → X ×X defined by setting

π(x) = (π0(x), π1(x))

is a bijection. Given G : Xn+2 → X, define G0 : Xn+1 → X by setting

G0(x0, . . . , xn) = G(x0, . . . , xn−1, π0(xn), π1(xn)).

By the universality of F there exist functions hR (R ∈ [n + 1]n) such
that

G0(x0, . . . , xn) = F (〈hR(〈xi : i ∈ R〉) : R ∈ [n+ 1]n〉)
for all x0, . . . , xn from X. Let kn+1 be any function from Xn+1 to X,
and let kn∪{n+1} : X

n+1 → X be such that

kn∪{n+1}(x0, . . . , xn) = hn(x0, . . . , xn−1)

for all x0, . . . , xn from X. For each Q ∈ [n+2]n+1 containing {n, n+1},
let kQ : Xn+1 → X be the function defined by setting

kQ(x0, . . . , xn) = hQ∩(n+1)(x0, . . . , xn−2, π
−1(xn−1, xn)).

Then for all x0, . . . , xn+1,

G(x0, . . . , xn+1) = G0(x0, . . . , xn−1, π
−1(xn, xn+1)),

which is equal to F (〈hR(〈yi : y ∈ R〉) : R ∈ [n + 1]n〉), where yi = xi
for all i < n, and yn = π−1(xn, xn+1). Furthermore,

F (〈hR(〈yi : i ∈ R〉) : R ∈ [n+ 1]n〉)
is equal to

F ′(〈kQ(〈xi : i ∈ Q〉) : Q ∈ [n+ 2]n+1〉),
as hR(〈yi : i ∈ R〉) = kR∪{n+1}(〈xi : i ∈ R ∪ {n + 1}〉) for each
R ∈ [n+ 1]n.
QED

In the following definition, n is the arity of the inside parameter
functions. The arity of the universal function is less important.

Definition 6.7. For any infinite set X, and any n ∈ ω, we define
U(X,n) to be any of the equivalent propositions U(X,m, [m]n) for m
in ω \ (n+ 1).
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Proposition 6.8 and Theorem 6.9 show that the U(κ, n)’s are the only
generalized multi-dimensional universal functions properties. Clause
(3) of Proposition 6.6 says that U(κ, n) implies U(κ, n+ 1) and we will
show in Corollary 6.13 that none of these implications can be reversed.

Proposition 6.8. Let X be an infinite X, n ∈ ω \ 2, and Σ,Σ0,Σ1

subsets of P(n).

(1) If Σ0 ⊆ Σ1, then U(X,n,Σ0) implies U(X,n,Σ1).
(2) If Q0 ⊆ Q1 ∈ Σ, then U(X,n,Σ) is equivalent to

U(X,n,Σ ∪ {Q0}).
(3) Suppose that Σ is closed under taking subsets, every element of

n is in some element of Σ, and n = {0, 1, 2, . . . , n − 1} /∈ Σ.
Let m+ 1 be the size of the smallest subset of n not in Σ. Then
U(X,n,Σ) is equivalent to U(X,m).

Proof
(1) This follows from the fact that the F which works for Σ0 also

works for Σ1 by ignoring the values of hQ for Q ∈ Σ1 \ Σ0.
(2) One direction follows from part (1). For the other suppose that

F : XΣ∪{Q0} → X witnesses U(X,n,Σ ∪ {Q0}). Let π : X → X × X
be a bijection, and let π0 : X → X and π1 : X → X be such that
π(x) = (π0(x), π1(x)) for all x ∈ X. Define F ′ : XΣ → X by setting
F ′(〈xQ : Q ∈ Σ〉) to be F (〈yR : R ∈ Σ ∪ {Q0}〉), where yQ0 = π0(xQ1),
yQ1 = π1(xQ1) and yR = xR if R 6∈ {Q0, Q1}. Fix G : Xn → X, and let
hR (R ∈ Σ ∪ {Q0}) be as in the definition of U(X,n,Σ ∪ {Q0}). For
each Q ∈ Σ \ {Q1}, let h′Q = hQ. Let h′Q1

be such that

h′Q1
(〈xj : j ∈ Q1〉) = π(hQ0(〈xj : j ∈ Q0〉), hQ1(〈xj : j ∈ Q1〉))

for all x0, . . . , xn−1 from X. Then h′Q (Q ∈ Σ) are as desired.
(3) First suppose that U(X,n,Σ) holds. Choose R ⊆ {0, 1, . . . n−1}

not in Σ with |R| = m+ 1. By the choice of m all subsets of R of size
m are in Σ. By restricting to the case where xi = 0 for i /∈ R, we see
that U(X,m, [m]m+1) holds.

Now assume that U(κ,m) holds. Then U(κ, n, [n]m) holds. Since
[n]m ⊆ Σ, part (1) implies that U(κ, n,Σ) holds.
QED

Proposition 6.8 gives the following. The first two statements in the
theorem are trivial.

Theorem 6.9. For any n ∈ ω, any infinite cardinal κ and any Σ ⊆
P(n), if ⋃

Σ 6= n = {0, 1, 2, . . . , n− 1}
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then U(κ, n,Σ) fails. If n ∈ Σ, then U(κ, n,Σ) holds. If neither of
these is true, then by the Proposition 6.8 there exists m with U(κ, n,Σ)
equivalent to U(κ,m).

The following fact will be used in the proof of Proposition 6.11.
Recall that a linear preorder on a set X is a binary relation � on X
which is reflexive, transitive and total (i.e., for all x, y ∈ X, at least
one of x � y and y � x holds). Every linear preorder is a superset of
a linear order.

Proposition 6.10. Let κ be an infinite cardinal and let m < n be
integers, with m ≥ 2. Suppose that F0 : κ([n]m) → κ has the property
that for each G : κn → κ there exist hQ : κQ → κ (Q ∈ [n]m) such that

G(y0, . . . , yn−1) = F (〈hQ(〈xi : i ∈ Q〉) : Q ∈ [n]m〉)
for all nondecreasing 〈y0, . . . , yn−1〉 ∈ κn. Then U(κ, n, [n]m) holds.

Proof
Let κ, m and n be as given. As in Remark 1.1, we may assume that F0

has the property that for each G : κn → κ there exists a single function
h : κQ → κ such that

G(y0, . . . , yn−1) = F (〈h(〈xi : i ∈ Q〉) : Q ∈ [n]m〉)
for all nondecreasing 〈y0, . . . , yn−1〉 ∈ κn.

Let P be the set of all permutations of n. Let π : κ → κP be a
bijection, and let F = π ◦ F0. Then for each G : κn → κP there exist
an h : κQ → κ such that

G(y0, . . . , yn−1) = F (〈h(〈xi : i ∈ Q〉) : Q ∈ [n]m〉)
for all nondecreasing 〈y0, . . . , yn−1〉 ∈ κn.

Let L be the set of all linear preorders on members of [n]m. Let
r : L×κ→ κ be a bijection. Let e be a function taking linear preorders
on n to linear orders contained in them.

Let F ∗ : κ([n]m) → κ be the function which takes in a sequence

〈r(lQ, αQ) : Q ∈ [n]m〉,
where each lQ is a linear preorder on Q and each αQ is in κ, and
returns a value in κ defined as follows. If

⋃
{lQ : Q ∈ [n]m} is not a

linear preorder, then let F ∗ take any value in κ. Otherwise, let

l = e(
⋃
{lQ : Q ∈ [n]m}),

and let s : n → n be the function that takes each i ∈ n to its l-rank.
For each Q ∈ [n]m, let βQ be αs−1[Q]. Finally, let

F ∗(〈r(lQ, αQ) : Q ∈ [n]m〉) = F (〈βQ : Q ∈ [n]m〉)(s−1).
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Let us see that this F ∗ works. Fix a function G∗ : κn → κ. Let
G : κn → κP be the function defined by letting

G(y0, . . . , yn−1) = 〈G∗(yp(0), . . . , yp(n−1)) : p ∈ P 〉.

Let h : κQ → κ be such that

G(y0, . . . , yn−1) = F (〈h(〈yi : i ∈ Q〉) : Q ∈ [n]m〉)
for all nondecreasing 〈y0, . . . , yn−1〉 ∈ κn. For each Q ∈ [n]m, define
h∗Q : κQ → κ by setting h∗Q(〈xi : i ∈ Q〉) to be

r(lQ(〈xi : i ∈ Q〉), h(〈zi : i ∈ Q〉)),
where lQ is the linear order on Q induced by 〈xi : i ∈ Q〉 and 〈zi : i ∈ Q〉
lists {xi : i ∈ Q} in nondecreasing order.

Now each 〈x0, . . . , xn−1〉 ∈ κn is 〈yp(0), . . . , yp(n−1)〉 for some p ∈ P
and a unique nondecreasing 〈y0, . . . , yn−1〉 in κn. Furthermore, p can be
taken to be s−1, where l = e(

⋃
{lQ : Q ∈ [n]m}), each lQ is the linear

order on Q given by {xi : i ∈ Q} and s is the function taking each
element of n to its l-rank. Then G∗(x0, . . . , xn−1) = G(y0, . . . , yn−1)(p),
which is

F (〈h(〈yi : i ∈ Q〉) : Q ∈ [n]m〉)(p).
Finally, each 〈yi : i ∈ Q〉 = 〈xi : i ∈ s−1[Q]〉, so that

F (〈h(〈yi : i ∈ Q〉) : Q ∈ [n]m〉)(p)
equals

F ∗(〈(r(lQ(〈xi : i ∈ Q〉), h(zi : i ∈ Q)) : Q ∈ [n]m〉)
(where 〈zi : i ∈ Q〉 is 〈xi : i ∈ Q〉 listed in increasing order), which is
equal to

F ∗(〈h∗Q(〈xi : i ∈ Q〉) : Q ∈ [n]m〉).
QED

Since |ω<ω| = ω, U(ω, 1) follows from Theorem 5.1. The following
proposition allows us to propagate this fact, showing for instance that
U(ωn, n+ 1) holds for every n ∈ ω.

Proposition 6.11. For any infinite cardinal κ, and any n ∈ ω, U(κ, n)
implies U(κ+, n+ 1)

Proof
Let Σ = {a∪{n+ 1} : a ∈ [n+ 1]n}. Applying Proposition 6.10, and

the idea behind the first part of Proposition 6.8, it suffices to produce
a function

F : (κ+)Σ → κ+
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such that for every G : (κ+)n+2 → κ+ there exist

HQ : (κ+)n+1 → κ+(Q ∈ Σ)

for which G(ξ0, . . . , ξn+1) = F (〈HQ(〈ξi : i ∈ Q〉) : Q ∈ Σ〉) for all
nondecreasing sequences 〈ξ0, . . . , ξn+1〉 from κ+.

Suppose that f : κ([n+1]n) → κ witnesses U(κ, n + 1, [n + 1]n). For
each α ∈ [κ, κ+), let Bα : α→ κ be a bijection. Let r : κ×κ+ → κ+ be
a bijection.

Let F be a function which takes in a sequence 〈r(αQ, βQ) : Q ∈ Σ〉
and returns a value in κ+ as follows. If βQ is not the same value for
all Q, then F returns any value. Otherwise, letting β be this constant
value, and letting γR be αR∪{n+1} for each R ∈ [n+ 1]n, F returns the
value

B−1
β (f(〈γR : R ∈ [n+ 1]n〉)).

Let us check that this definition works. Suppose we are given

G : (κ+)n+2 → κ+.

For each δ < κ+, let k(δ) be sup(G[(δ + 1)n+2]) + 1. For each δ < κ+

there exist hδR : κn → κ (R ∈ [n+ 1]n) such that

f(〈hδR(〈Bδ+1(αi) : i ∈ R〉) : R ∈ [n+ 1]n〉) = Bk(δ)(G(α0, . . . , αn, δ))

for all α0, . . . , αn ≤ δ.
For each Q ∈ Σ, let HQ : (κ+)n+1 → κ+ be defined as follows. Given

〈ζi : i ∈ Q〉 from κ+, if ζn+1 < ζi for some i ∈ Q, then let HQ(〈ζi :
i ∈ Q〉) take any value in κ+. Otherwise, let HQ(〈ζi : i ∈ Q〉) take the
value r(αQ, k(ζn+1)), where

αQ = h
ζn+1

Q∩(n+1)(〈Bζn+1+1(ζi) : i ∈ Q ∩ (n+ 1)〉).

Now let ξ0, . . . , ξn+1 be a nondecreasing sequence from κ+. Then
G(ξ0, . . . , ξn+1) is equal to

B−1
k(ξn+1)(f(〈hξn+1

R (〈Bξn+1+1(ξi) : i ∈ R〉) : R ∈ [n+ 1]n〉)).
Then we are done, since, as written above, each γR is αR∪{n+1}, which

is h
ξn+1

R (〈Bξn+1+1(ξi) : i ∈ R〉).
QED

The partial order Fn(X, Y, κ) was defined before Theorem 5.5. For
any n ∈ ω and any infinite cardinal κ, the partial order Fn(κn, 2,ℵ0)
is forcing-equivalent to the partial order which adds a subset of κ by
finite conditions.

Proposition 6.12. Suppose that n ∈ ω \{0} and that γ < κ are cardi-
nals with ℵn ≤ γ. Then U(γ, n) fails after forcing with Fn(κn+1, 2,ℵ0).
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Proof
Let G ⊆ Fn(κn+1, 2,ℵ0) be a V -generic filter, and fix a function

F : γn+1 → γ

in V [G]. Since Fn(κn+1, 2,ℵ0) is c.c.c., we may fix an η < κ such that F
is in V [G � ηn+1]. Supposing toward a contradiction that F witnesses
U(γ, n+ 1, [n+ 1]n) in V [G], there exist functions

hi : (
∏

j∈(n+1)\{i}

ωj)→ γ (i < n+ 1)

such that for all (α0, . . . , αn) ∈
∏

i<n+1 ωi, G(α0, . . . , η + αn) is equal
to

F (h0(α1, . . . , αn), h1(α0, α2, . . . , αn), . . . , hn(α0, . . . , αn−1)).

Again applying the fact that Fn(κn+1, 2,ℵ0) is c.c.c., there exists a
δn < ωn such that hn ∈ V [G{n}], where G{n} is the restriction of G
to those members of κn+1 whose last element is not η + δn. For each

i < n, let h
{n}
i be the function on

∏
j∈n\{i} ωj defined by setting

h
{n}
i (α0, . . . , αi−1, αi+1, . . . , αn−1)

to be

hi(α0, . . . , αi−1, αi+1, . . . , αn−1, η + δn).

Applying the c.c.c. of Fn(κn+1, 2,ℵ0) again, we can find a δn−1 < ωn−1

such that, letting G{n−1,n} be the restriction of G to those members

of κn+1 whose last two elements are not δn−1 and η + δn, h
{n}
n−1 ∈

V [G{n−1,n}]. For each i < n, let h
{n−1,n}
i be the function on∏

j∈(n−1)\{i}

ωj

defined by setting

h
{n−1,n}
i (α0, . . . , αi−1, αi+1, . . . , αn−2)

to be

hi(α0, . . . , αi−1, αi+1, . . . , αn−2, δn−1, η + δn).

Continuing in this fashion, we can find (δ1, . . . , δn−1) ∈ ω1× . . .×ωn−1

such that,

• letting G{1,...,n} be the restriction of G to those elements of κn+1

whose last n elements are not δ1, . . . , δn−1, η + δn, and

• letting, for each positive i < n, h
{1,...,n}
i be the function on ω

whose value at n is hi(n, δ1, . . . , δi−1, δi+1, . . . , δn−1, η + δn),
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each h
{1,...,n−1}
i is in V [G{1,...,n}].

Finally, we see that the function g : ω → 2 defined by setting g(n) =
G(n, δ1, . . . , δn−1, η + δn) is Cohen-generic over V [G{1,...,n}]. However,
as h0(δ1, . . . , δn−1, η + δn) is a fixed member of ω2, our assumptions on
F and h0, . . . , hn give that g is an element of V [G{1,...,n}].
QED

Putting together Propositions 6.11 and 6.12, we have the following.

Corollary 6.13. Let γ < κ be cardinals, with ℵω ≤ γ. After forcing
to add a subset of κ by finite conditions, we have that

U(ωn, n+ 1) + ¬U(ωn, n) + ¬U(γ, n),

for all positive n ∈ ω.

If we start with a model M1 of GCH and force with the set of count-
able partial functions from κ = ℵω+1 into 2, then in the resulting model
M2 we have CH so U(ω1, 1) holds by Theorem 5.1. Proposition 6.11
then gives U(ωn, n) for all positive n ∈ ω. By an argument similar to
Proposition 6.12 but raised up one cardinal, we have ¬U(ωn, n− 1) for
n ≥ 2. If we then add κ = ω3 Cohen reals to M2 to get M3, then
we will have in M3 that |2ω| = ω3 and ¬U(ω3, 2) by the argument of
Proposition 6.12 lifted by one cardinal. By Proposition 6.11, U(ω3, 4)
is true in ZFC. This leaves open the question of whether U(ω3, 3) holds
in M3.

Definition 6.14. For Borel universal functions of higher dimensions,
we let U(Borel,Σ, n) and U(Borel, n) denote the versions of Definition
6.5 and 6.7 where X is 2ω and F is required to be Borel.

The following proposition follows from the proofs of part (3) of
Propositions 6.6 and 6.8, using the fact that the composition of Borel
functions is Borel, and the fact that there exist continuous pairing and
unpairing functions. The reader interested in constructing a complete
proof will also have to verify that the universal functions constructed
in Propositions 6.2 and 6.4 are Borel assuming the functions in the
hypothesis are, thus yielding the same conclusion for Proposition 6.6
and 6.8.

Proposition 6.15. The following hold for any n ∈ ω.

(1) U(Borel, n) implies U(Borel, n+ 1)
(2) U(Borel,Σ, n) is equivalent to U(Borel,m) for m + 1 the size

of the smallest subset of n not in the downward closure of Σ.
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We can further refine U(Borel, n) in the special case that our uni-
versal function F is a level α Borel function. The composition of level
α-functions is not necessarily level α, i.e., F (F (x, y), z) need be at the
level α just because F is. Hence it is not immediately obvious that the
binary case of the next proposition implies the n-ary case. The proof
here is similar to that of Rao [22]. Recall from Subsection 1.1 that
the hypothesis of the proposition is implied by Martin’s Axiom. The
hypotheses on cardinal characteristics in Proposition 6.16 (and Propo-
sition 7.14) are used only to get a set of reals of cardinality c which is
wellordered by a Borel relation.

Proposition 6.16. Suppose that t = q = c. Then for every n > 1
there is a level 2 Borel function F : (2ω)n → 2ω which is universal, i.e.,
such that for every G : (2ω)n → 2ω there exist hi : 2ω → 2ω (1 ≤ i ≤ n)
such that for every x in (2ω)n

G(x1, . . . , xn) = F (h1(x1), . . . , hn(xn))

Proof
By Proposition 1.5 and the remarks before, it suffices to find an Fσ
set H ⊆ (2ω)n such that for each A ⊆ cn there exists an h : c → 2ω

such that for all (α0, . . . , αn−1) ∈ cn, (α0, . . . , αn−1) ∈ A if and only if
(h(α0), . . . , h(αn−1)) ∈ H.

Let F ⊆ (2ω)n+1 be an Fσ set with the property that for every Fσ set
K ⊆ (2ω)n there exists x ∈ 2ω with K = Fx, i.e., the set of (y1, . . . , yn)
in (2ω)n with (x, y1, . . . , yn−1) ∈ F .

Define the binary relation ≤∗ on 2ω by setting x ≤∗ y if

x−1[{1}] \ y−1[{1}]

is finite. Let g : c → 2ω be an injection such that for each pair α, β
from c, α ≤ β if and only if g(α) ≤∗ g(β). The existence of such a
function follows from the statement t = c.

For each β < c, let Dβ be the set of (α0, . . . , αn−1) ∈ cn such that
max{α0, . . . , αn−1} ≤ β. Since q = c, every set X ⊆ 2ω with |X| < c
is a Q-set (see Subsection 1.1). Thus given A ⊆ cn, there exists a
function k : c → 2ω with the property that for each β < c and every
(α0, . . . , αn−1) in Dβ, (α0, . . . , αn−1) ∈ A if and only if

(k(β), g(α0), . . . , g(αn−1)) ∈ F.

Let 〈·, ·〉 be the pairing function on 2ω such that 〈x, y〉(2n) = x(n)
and 〈x, y〉(2n + 1) = y(n), for each n ∈ ω. Now let H be the set of
(〈x0, y0〉, . . . , 〈xn−1, yn−1〉) ∈ (2ω)n such that, for some i < n, xj ≤∗ xi
for all j < n, and (yi, x0, . . . , xn−1) ∈ F . Then H is Fσ.
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Given A ⊆ cn, for each α < c, let h(α) be 〈g(α), k(α)〉, where k is as
above with respect to A.
QED

7. Model-theoretic universality

In this section we consider the relationship between the existence
of abstract universal functions and the existence of universal models.
The key difference is that if one were to consider a universal function
as the model of some theory, then embedding would require embedding
the range as well as the domain of the function. This is different than
the notion of universality being considered here since the values in the
range remain fixed. Nevertheless, there is insight to be gained from the
model theoretic perspective. It is well known that saturated models are
universal in the sense of elementary substructures and that saturated
models of cardinality κ exist if κ<κ = κ, see Chapter 5 of Chang and
Keisler [5], for instance.

Definition 7.1. For any cardinal κ let Lκ be the first order language
consisting of a single binary function symbol Φ and constant symbols
{cγ}γ∈κ for distinct constants. Let Tκ be the Lκ-theory consisting of the
sentences cγ 6= cβ for γ 6= β and the sentences Φ(cγ, cβ) = c0 for all
γ, β.

There is some overlap between the following proposition and Theo-
rem 5.1.

Proposition 7.2. If Tκ has a model of cardinality κ which is universal
in the model theoretic sense, then there is a universal function F :
κ× κ→ κ.

Proof
Let (X,Φ, cα)α<κ be a universal Tκ model of cardinality κ, and let
C = {cα : α < κ}. Universality implies that Y = X \C has cardinality
κ. Let 〈dα : α < κ〉 enumerate Y . Define F : κ2 → κ by setting
F (α, β) to be the unique γ such that Φ(dα, dβ) = cγ, if one exists,
and 0 otherwise. Given an arbitrary f : κ × κ → κ, construct a Tκ
model ({bα : α < κ} ∪ C,Φf , cα)α<κ where {bα : α < κ} is disjoint
from C and Φf (bα, bβ) = cγ if and only if f(α, β) = γ. Since a model
theoretic embedding fixes the constant symbols, we get an h showing
that f(α, β) = F (h(α), h(β)) for all α, β ∈ κ.
QED
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In this section we will use the term Sierpiński universal for the notion
of universal function which is the subject of this paper, to distinguish
it from model theoretic universality.

Definition 7.3. A function U : κ×κ→ κ is Sierpiński universal if for
every f : κ× κ→ κ there exists h : κ→ κ such that for all α, β ∈ κ,

f(α, β) = U(h(α), h(β)).

Definition 7.4. A function U : κ × κ → κ is model theoretically
universal if for every f : κ × κ → κ there exists h : κ → κ one-to-one
such that for all α, β ∈ κ,

h(f(α, β)) = U(h(α), h(β)).

In other words, a function U : κ × κ → κ is model theoretically
universal if and only if every structure (X, f) where f : X2 → X and
|X| = κ is isomorphic to a substructure of (κ, U).

We define a common weakening of these notions, as follows.

Definition 7.5. A function U : κ × κ → κ is weakly universal if for
every f : κ × κ → κ there exist h : κ → κ and k : κ → κ one-to-one
such that for all α, β ∈ κ,

k(f(α, β)) = U(h(α), h(β)).

Remark 7.6. The existence of a weakly universal function on κ × κ
is not changed if we allow the codomains of U and k to be any set of
cardinality κ.

Remark 7.7. Model theoretically universal functions are weakly uni-
versal with h = k, and Sierpiński universal functions are weakly uni-
versal with k the identity function. implies weakly universal. For maps
into 2 (or binary relations) all three notions are equivalent.

Question 7.8. Is the existence of a model theoretically universal func-
tion from κ×κ to κ equivalent to the existence of a Sierpiński universal
one? Does the existence of either one imply the existence of the other?

Proposition 7.9. If κ is a singular strong limit cardinal then there is
a model theoretically universal function from κ× κ to κ.

Proof
Let γ be the cofinality of κ, and let 〈κα : α < γ〉 be an increasing
sequence of cardinals cofinal in κ. Let G be the set of functions g from
κ× κ to κ such that g[κα × κα] ⊆ κα for each α < γ. For any function
f : κ × κ → κ, there exist a bijection h : κ → κ and a function g ∈ G
such that for all β, δ < κ, h(f(β, δ)) = g(h(β), h(δ)) (that is, (κ, f)



Universal Functions 45

is isomorphic to (κ, g) via h). This follows from the fact that we can
write κ as a continuous increasing union of a sequence of sets Xα, each
closed under f and having size κα.

It suffices then to find a U : κ× κ→ κ which is model theoretically
universal with respect to functions in G. Since κ is a strong limit
cardinal, we can recursively build U so that for each α < γ and each
function f : κα×κα → κα there exist Xf ⊆ κ and a bijection hf : κα →
Xf such that h(f(β, δ)) = U(h(β), h(δ) for all β, δ in κα. Furthermore,
we can build U so that for all α < α′ < γ and all f : κα′ × κα′ → κα′
such that f [κα × κα] ⊆ κα, hf�κα×κα = hf � κα.

Then for each g ∈ G,
⋃
{hg�κα×κα : α, γ} is the desired function h

witnessing that U is model theoretically universal with respect to g.
QED

Question 7.10. Suppose that κ = ℵω is a strong limit cardinal. For
each α < κ we have a Sierpiński universal U : κ2 → α universal for all
maps of the same type, by Theorem 5.1. By Proposition 5.4 we have
a map U : κ2 → κ which is Sierpiński universal for all maps of the
form G : ω2 → κ. By Proposition 7.9 we have U : κ2 → κ which is
model-theoretically universal for all maps of the same type. Is there a
Sierpiński universal U : κ× κ→ κ for maps of type G : ω × ω1 → κ?

Let E4 be the theory in the language of a single 4-ary relationA that is
an equivalence relation between the first two and last two coordinates.
In other words, it has the following axioms:

• A(a, b, c, d)→ A(c, d, a, b)
• A(a, b, a, b)
• A(a, b, c, d) & A(c, d, e, f)→ A(a, b, e, f)

The transitivity condition on A implies that E4 does not have the 3-
amalgamation property, so Mekler’s argument of [16] (see Theorem
5.12) can not be applied to produce a universal model for this theory
of cardinality ℵ1 along with 2ℵ0 > ℵ1. Nevertheless, the following
observation highlights the connection between Sierpiński universality
and model theoretic universality.

Proposition 7.11. There is a universal model for E4 of cardinality κ if
and only if there is a function U : κ×κ→ κ which is weakly universal.

Proof
Let (κ,A) be a universal model of E4. Let E be the equivalence rela-

tion on κ×κ induced by A and let {Eξ}ξ∈κ enumerate the equivalence
classes of E. Define U : κ × κ → κ × 2 by setting U(α, β) = (ξ, 0) if
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and only if (α, β) ∈ Eξ. We will show that U is weakly universal (using
Remark 7.6).

Given g : κ × κ → κ let G be the 4-ary relation defined by letting
G(α, β, δ, γ) hold if and only if g(α, β) = g(δ, γ). It is clear that G satis-
fies the axioms of E4 hence there exists an injective h : κ→ κ such that
G(α, β, δ, γ) holds if and only if A(h(α), h(β), h(δ), h(γ)) does. It fol-
lows that g(α, β) = g(δ, γ) if and only if U(h(α), h(β)) = U(h(δ), h(γ)).
Then any injection k : κ→ κ× 2 such that k(g(α, β)) = U(h(α), h(β))
for all α, β < κ is as desired.

The converse is proved by running the preceding argument back-
wards — given a Sierpiński universal function U : κ×κ→ κ satisfying
the hypothesis, define A(α, β, γ, δ) to hold precisely when U(α, β) =
U(γ, δ).
QED

The next three propositions concern Borel universal functions.

Proposition 7.12. There exists a Borel U : 2ω × 2ω → 2ω which is
model theoretically universal with respect to all F : ω1 × ω1 → ω1.

Proof
We first describe U . We use some Borel encoding of the structures
below for which the exact details are not important.

Suppose that we are given a, b ∈ 2ω. There are four cases:

Case 1. a codes a pair (n, x), and b codes a pair (m,x), where n,m ∈ ω
and x ∈ 2ω codes a tuple (f,B,<, 〈ck : k ∈ B〉), where f is a function
from ω×ω to ω, B is subset of ω, < is a linear order on ω and each ck
is in 2ω;

Case 2. Case 1 fails and a codes a pair (n, x), where n ∈ ω, x ∈ 2ω

and x codes a tuple (f,B,<, 〈ck : k ∈ B〉) as in Case 1, with b = cm
for some m ∈ B;

Case 3. Cases 1 and 2 fail, and b codes a pair (m,x), where m ∈ ω,
x ∈ 2ω and x codes a tuple (f,B,<, 〈ck : k ∈ B〉) as in Case 1, with
a = cn for some n ∈ B;

Case 4. none of the previous cases hold.

In the first three cases, if f(n,m) = k and k ∈ B, then we let
U(a, b) = ck, otherwise we let it be (a code for) (k, x). In the fourth
case we let U(a, b) = 0.

Now we verify that this works. Given F : ω1 × ω1 → ω1, let C be
a closed unbounded subset of the countable limit ordinals, such that
F [α × α] ⊆ α, for each α ∈ C. We recursively define h : ω1 → ω1 by
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assuming that we have h � α as desired, for some α ∈ C ∪ {0}, and
defining h � min(C \ (α + 1)). Fix such an α, and let α+ denote the
least member of C above α. Let j : ω → α+ be a bijection. Define
f : ω× ω → ω by setting f(n,m) = j−1(F (j(n), j(m)), and the binary
relation < on ω by setting n < m if and only if j(n) < j(m). Let
B = j−1[α], and, for each k ∈ B, let ck = aj(k). Let x ∈ 2ω be a code
for the tuple (f,B,<, 〈ck : k ∈ B〉). For each β ∈ [α, α+), let h(β) be
(a code for) the pair (j−1(β), x).

Now suppose that we are given β, γ < ω1. Fix α ∈ C ∪{0} such that
max(β, γ) is in [α,min(C \ (α + 1))), and let α+ = min(C \ (α + 1))
as above. If {β, γ} ⊆ [α, α+), then the pair (h(β), h(γ)) is in Case 1
above. If β = max(β, γ) and γ < α, then (h(β), h(γ)) is in Case 2,
and if γ = max(β, γ) and β < α, then (h(β), h(γ)) is in Case 3. In any
case, U(h(β), h(γ)) will be h(F (β, γ)).
QED

Remark 7.13. The second author has recently shown that the version
of Proposition 7.12 with ω2 in place of ω1 can consistently hold. More-
over, he has shown the following: if there is a Borel Sierpinski universal
function and 2<c = c, then there is a Borel map H : 2ω× 2ω → 2ω such
that for every cardinal κ < c, and for every function G : κ × κ → κ,
there exist xα (α < κ) in the Cantor space such that for all α, β, γ < ω2

G(α, β) = γ if and only if H(xα, xβ) = xγ. Whether this can hold for
κ = c is still open, as far as we know.

Given an ordinal γ, say that a function f : γ×γ weakly pushes down
if f(α, β) < max(α, β) for all α, β < γ.

Proposition 7.14. If t = ap = c, then there is a Borel function U :
2ω × 2ω → 2ω such that for every f : c × c → c which weakly pushes
down, there exists a one-to-one h : c → 2ω such that h(f(α, β)) =
U(h(α), h(β)) for all α, β < c.

Proof
Assuming ap = c, by the standard almost-disjoint forcing technique
there exists a Borel function F : 2ω × 2ω → 2ω such that for every
function g : X → 2ω with X ⊆ 2ω and |X| < c, there exists y ∈ 2ω

with g(x) = F (x, y) for all x ∈ X (see Lemma 3.7, of [7], for instance).
As in the proof of Proposition 6.16, since t = c we may fix an injection

h : c → 2ω such that for each pair α, β from c, α ≤ β if and only if
h(α) ≤∗ h(β).

Now given any f : c× c→ c which pushes down, recursively choose
xα ∈ 2ω so that xα = 〈yα, zα, h(α〉, tα) where



48Universal Functions

(1) tα is 〈0, xf(α,α)〉 if f(α, α) < α and 〈1, 1〉 otherwise;
(2) for all β < α,

• if f(α, β) < α, then F (xβ, zα) = 〈0, xf(α,β)〉;
• if f(β, α) < α, then F (xβ, yα) = 〈0, xf(β,α)〉;
• if f(α, β) = α, then F (xβ, zα) = 〈1, 1〉;
• if f(β, α) = α, then F (xβ, yα) = 〈1, 1〉.

Let π0 and π1 be such that x = 〈π0(x), π1(x)〉 for all x ∈ 2ω. Using
this we may define the Borel function U by setting U(x, x′), where
x = 〈y, z, s, t〉 and y = (y′, z′, s′, t′) to be

• π1(F (x, y′)) if s <∗ s′ and π0(F (x, y′)) = 0;
• π1(F (x′, z)) if s′ <∗ s and π0(F (x′, z)) = 0;
• x′ if s <∗ s′ and π0(F (x, y′)) = 1;
• x if s <∗ s′ and π0(F (x′, z)) = 1;
• x if x = x′ and π0(F (x, x)) = 1;
• t otherwise.

One can now verify that f(α, β) = γ if and only if U(xα, xβ) = xγ
for all α, β, γ < c by considering the cases α < β, β < α, and α = β.
QED

The identity function satisfies the analogous notion of Sierpiński uni-
versality for unary maps. The corresponding result for model theoretic
universality appear to be more difficult.

Proposition 7.15. Define π : 2ω → 2ω by setting π(x) = y if and only
if ∀n y(n) = x(2n). Then π is a model theoretically universal for all
maps f : c→ c.

Proof
Any function g : X → X from a set X to itself induces a partition
{Q(x) : x ∈ X} of X, where each Q(x) is the smallest subset of X
closed under g-images and g-preimages with x as a member. We will
refer to the sets Q(x) as g-components. For each x ∈ X, the pre-image
tree of x (according to g) is the tree of height at most ω whose root
is x, and for which the immediate successors of each node y are the
members of g−1[{y}]. Let Tg(x) denote the set of nodes of this tree.
A g-component Q either contains a unique cycle of length n, for some
positive n ∈ ω, or it contains none. In the former case, Q consists of
the union of the sets Tg(x), for each member x of the cycle, and we
say that the component has type n. In the latter case, for each x in Q,
Q =

⋃
{Tg(gi(x)) : x ∈ ω}, and we say that the component has type ω.
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Fix a function f : c → c. We seek a function h : c → 2ω such that
h(f(α)) = π(h(α) for all α ∈ c. Since the π-preimage of each sin-
gleton from 2ω has size continuum, the analysis of the previous para-
graph shows that it suffices to prove that there are continuum many
π-components of type n, for each positive n ∈ ω, and continuum many
π-components of type ω, as then the components of f can be embedded
into distinct π-components.

For each x ∈ 2ω, and all i, n ∈ ω, πn(x)(i) = x(2n(i)). Given a
positive n ∈ ω, x is then part of a cycle of length n if x(2ni) = x(i) for
all i ∈ ω. There are continuum many such x, as the values x(i) can
be chosen freely for each odd i ∈ ω. Since each component of type n
contains exactly n such x’s, there are continuum many π-components
of type n.

On the other hand, one can build by recursion an increasing sequence
of natural numbers 〈pi : i < ω〉 and a collection of sequences tσ ∈ 2p|σ|

for each σ ∈ 2<ω such that for each pair n,m ∈ ω there exists an i ∈ ω
such that for each pair σ, σ′ ∈ 2i, if either n 6= m or σ 6= σ′ then there
exists j ∈ ω such that 2nj, 2mj < pi and tσ(2mj) 6= tσ′(2

nj). Then the
sets

⋃
{ty�pi : i < ω} (y ∈ 2ω) are members of distinct π-components of

type ω.
QED

Finally, we indicate another possible distinction between Sierpiński
universal functions and model theoretically universal ones. Let us say
that a function f : κ × κ → κ is Sierpiński universal for regressive
functions if for every function g : κ × κ → κ such that g(α, β) <
max(α, β) for all α, β (other than α = β = 0) there exists h : κ → κ
such that f(h(α), h(β)) = g(α, β) for all α, β in κ.

Proposition 7.16. If κ is regular, then every f : κ × κ → κ which is
Sierpiński universal for regressive functions is Sierpiński universal.

Proof
Let f : κ × κ → κ be Sierpiński universal for regressive functions and
fix g : κ × κ → κ. Let j : κ → κ be an increasing function such that
g(ξ, η) < j(α) for all (ξ, η) ∈ (α + 1)2, and let

g∗(ξ, η) =

{
g(j−1(ξ), j−1(η)) if ξ and η are in the range of j

0 otherwise.

Since g∗(α, β) is either 0 or equal to g(j−1(α), j−1(β)) < max(α, β) and
f is weakly Sierpiński universal there exists an h : κ → κ such that
f(h(α), h(β)) = g∗(α, β) for all α, β in κ. Then f(h(j(α)), h(j(β))) =
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g∗(j(α), j(β)) = g(α, β) for all α, β in κ, so h ◦ j is the required em-
bedding.
QED

Question 7.17. Is Proposition 7.16 is true for the analogous notion
of model theoretically universal for regressive functions?

In the proof of Proposition 7.16, the given function g was embedded
into the regressive function g∗. Note however that if g : κ × κ → κ is
such that g(α, β) < max(α, β) for all α, β (aside from α = β = 0), then
no substructure of (κ, g) is isomorphic to the positive integers under
addition. To see this, suppose toward a contradiction that π : ω → κ
is one-to-one and ∀n,m, k > 0

n+m = k iff g(π(n), π(m)) = π(k)

then

π(2n) = π(n+ n) = g(π(n), π(n)) < π(n)

and therefore (π(2n) : n < ω) is an infinite descending sequence of
ordinals.

8. Appendix

We conclude this section with an argument, due to Justin Moore,
which shows that under the Proper Forcing Axiom there are no func-
tions with property R.5 We begin by introducing some notation.

Given a function Φ: [ω1]2 → ω, a finite set F ⊆ ω1 and k ∈ ω, we let
Bk(Φ, F ) denote the set

{β ∈ ω1 | (∀α ∈ F ) Φ({α, β}) > k} .

Lemma 8.1. Suppose that Φ: [ω1]2 → ω is a function with Property
R. Then for each k ∈ ω there exists an α < ω1 such that for each finite
F ⊆ ω1 either F ∩ α 6= ∅ or Bk(Φ, F ) is uncountable.

Proof
Otherwise, there exist infinitely many pairwise disjoint F for which
Bk(Φ, F ) is countable. Then there exist β ∈ ω1 and an infinite pairwise
disjoint family of finite sets F for which F ⊆ β and β /∈ Bk(Φ, F ). This
yields infinitely many ξ ∈ β such that Φ({β, ξ}) ≤ k contradicting that
Φ satisfies Property R.

5We thank Alan Dow for discussions clarifying this argument.
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QED

Applying Lemma 8.1, we can find for any function Φ with Property
R a minimal ordinal α(Φ) with the property that for any k ∈ ω and
any finite F ⊆ ω1 either F ∩ α(Φ) 6= ∅ or Bk(Φ, F ) is uncountable.

Given a function Φ: [ω1]2 → ω with Property R let P(Φ) be the
partial order consisting of pairs (A,M) such that:

• A is a finite set of pairs from ω1 \ α(Φ), and for all distinct
a, b ∈ A, a ⊆ min(b) or b ⊆ min(a);
• M is a finite ∈-chain of elementary submodels of H(ℵ2), each

having Φ as a member.
• For all a ∈ A, there is M ∈M such that |M ∩ a| = 1.
• For all a ∈ A and b ∈ A such that a ⊆ min(b), there is M ∈M

such that a ⊆M and b ∩M = ∅.
• For all distinct a, b from A,

Φ({min(a),min(b)}) < Φ({max(a),max(b)}).

The ordering on P(Φ) is : (A,M) ≤ (B,N) if B ⊆ A, N ⊆M and, for
all M ∈ N and all a ∈ A, if |M ∩ a| = 1, then a ∈ B.

The partial order P(Φ) adds an uncountable set of pairs from ω1

witnessing the failure of Property R for Φ.

Claim 8.2. Given any (A,M) ∈ P(Φ) and ξ ∈ ω1 there exists a con-
dition (A′,M ′) ≤ (A,M) such that (

⋃
A′) \ ξ 6= ∅.

Proof
By adding a model to the top of M if necessary, we may assume that

there is M ∈ M such that A ∈ M and ξ < ω1 ∩M. Let γ be any
element of ω1 greater than ω1 ∩M, and extend M to M ′ by adding an
elementary submodel M′ on top with γ < ω1 ∩M′. Let k > Φ({α, β})
for all distinct α, β from (

⋃
A) ∪ {γ}. Then Bk(Φ, (

⋃
A) ∪ {γ}) is

uncountable since ((
⋃
A)∪ {γ})∩α(Φ) = ∅. Let δ ∈ Bk(Φ,

⋃
A) \M′.

Then (A ∪ {{γ, δ}},M ′) ∈ P(Φ).

Claim 8.3. P(Φ) is proper.

Proof
Let (A,M) ∈ P(Φ) and (A,M) ∈M ≺ H(κ) for some uncountable κ.

Since M∩H(ℵ2) ≺ H(ℵ2) it suffices to show that (A,M∪{M∩H(ℵ2)})
is P(Φ)-generic for M. To see this, let D ∈M be a dense subset of P(Φ)
and suppose that (B,N) ∈ D is such that (B,N) ≤ (A,M ∪ {M}).
Since there is no a ∈ A with |a∩M| = 1, by the definition of the order
on P(Φ) , there is also no b ∈ B with |b ∩M| = 1. Let {b1, . . . , bj}
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enumerate (
⋃
B) \M in such a way that min(bi) increases with i, and

for each i ∈ {1, . . . , j}, let β2i+1 = min(bi) and β2i+2 = max(bi).
Let S be the set of increasing sequences of ordinals 〈γ1, . . . , γ2j〉 such

that

(1) γ1 is greater than every member of
⋃

(B ∩M);
(2) letting π :

⋃
B → (

⋃
(B ∩ M)) ∪ {γ1, . . . , γ2j} be an order-

preserving bijection, Φ({α1, α2}) = Φ({π(α1), π(α2)}) for all
α1 < α2 from

⋃
B;

(3) for some N ′ containing M ∩N ,

((B ∩M) ∪ {{γ2i+1, γ2i+2} : i ∈ j}, N ′)

is an element of D.

Notice that while the Condition 2 mentions an object outside M, this
object is finite and so the condition can be described by a first order
formula in M∩H(ℵ2). Since the theory H(ℵ2) can be coded by a real
in transitive models, the existence of N ′ posited in Condition 3 can
also be described in M ∩H(ℵ2).

As a consequence, if T0 is defined to be the tree consisting of all initial
segments of members of S, then, since T0 ∈ H(ℵ2), T0 ∈M and T0 is an
element of every model of N containing M∩H(ℵ2). Since 〈β1, . . . , βj〉 ∈
S, and since each β2i+1 is separated by elementary submodels in N from
β2i+2, T0 can be thinned (in M) to a tree T1, still containing 〈β1, . . . , βj〉,
such that every node of T1 on an odd level (where the least level is the
1st level) has uncountably many immediate successors. Finally, still in
M, thin T1 to a tree T , still of height j, such that each node of T on
an even level has infinitely many immediate successors.

We wish to pick a sequence 〈γ1, . . . , γ2j〉 from T such that, for some
N ′ containing N , (B ∪ {{γ2i+1, γ2i+2} : i ∈ j}, N ′) is a condition.
We pick the γi’s recursively, picking any available ordinal when i is
odd. When i is even, we need to pick γi so that, for each b ∈ B \M
Φ({γi−1,min(b)}) < Φ({γi,max(b)}). Since B is finite, and we have
infinitely many possibilities for γi, we can meet this condition, using
the finite-to-one property of Φ.
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