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Abstract. We prove that, for every n, the topological space ωωn
(where ωn has the discrete topology) can be partitioned into ℵn
copies of the Baire space. Using this fact, the authors then prove
two new theorems about completely ultrametrizable spaces. We
say that Y is a condensation of X if there is a continuous bijection
f : X → Y . First, it is proved that ωω is a condensation of ωωn
if and only if ωω can be partitioned into ℵn Borel sets, and some
consistency results are given regarding such partitions. It is also
proved that it is consistent with ZFC that, for any n < ω, c = ωn
and there are exactly n + 3 similarity types of perfect completely
ultrametrizable spaces of size c. These results answer two questions
of the first author from [1].

1. Introduction

Every zero-dimensional Polish space can be represented as the end
space of a countable tree. This fact is exploited in many classical proofs:
that every perfect Polish space is a condensation of ωω, the Alexandrov-
Urysohn characterization of ωω, Brouwer’s characterization of 2ω. All
these can be proved by combining a bit of topology with a bit of clever
reasoning with trees.

In [1], the first author explores to what extent these classical proofs
involving countable trees can be translated to the context of uncount-
able trees. The end spaces of arbitrary trees are precisely the com-
pletely ultrametrizable spaces, and several classical results for Polish
spaces extend to this class. However, many proofs break down in the
uncountable case. In general, it seems that, while many strong results
for countable trees are provable in ZFC, the corresponding results for
uncountable trees often require extra set-theoretic hypotheses.

One recurring theme in the analysis of uncountable trees is that of
partitioning the spaces 2ω and ωω. For example, it is proved in [1]
(Theorem 6.2) that ωω is a condensation of κω whenever ωω can be
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partitioned into κ Borel sets. It is also proved (Theorem 5.1) that 2ω is
a condensation (that is, a continuous bijective image) of every perfect
completely ultrametrizable space of size |2ω| if and only if 2ω can be
partitioned into κ copies of 2ω for every κ ≤ c.

Theorem 3.5 below, which is our main lemma for what follows, can
be viewed as another partition theorem for completely ultrametrizable
spaces. It states that ωωα+1 can be partitioned into ℵα+1 copies of ωωα .
For κ below the first singular cardinal, a simple induction then allows
us to write κω as a union of κ copies of the Baire space ωω.

The second author, in [7], develops methods for finding models of
ZFC in which ωω can be partitioned in nice ways. Here we refine these
techniques (see Theorem 3.11) and, using the partition theorem of the
previous paragraph, obtain nice partitions of the spaces κω for κ < ℵω.
This allows us to obtain several new consistency results for completely
ultrametrizable spaces. These consistency results will be the topic of
Section 3.

In Section 4, we present a more complex application of Theorem 3.11
to answer an open question from [1]. Specifically, we show that, for any
value of c < ωω, it is consistent to have the minimum possible number
of similarity classes of perfect completely ultrametrizable spaces of size
c (X and Y are similar if each is a condensation of the other).

2. Completely ultrametrizable spaces and trees

In what follows, if an ordinal or cardinal is treated as a topological
space then it is assumed to have the discrete topology. As usual, every
ordinal is equal to the set of its predecessors. Most of our terminology
is standard, and the rest follows [1]. In the interest of making this
paper self-contained, we will review in this section some definitions and
preliminaries from [1] concerning trees and completely ultrametrizable
spaces.

A tree is a connected, nonempty, infinite graph in which every two
nodes are connected by exactly one path, together with a distinguished
node called the root. If T is a tree and s, t ∈ T , we say that t extends
s if the unique path from the root to t goes through s. We denote the
extension relation by ≤.

The extension relation allows us to think of trees as partial orders,
and in what follows we will freely confuse trees with “tree-like” partial
orders. Especially ubiquitous is κ<ω, the set of all finite sequences in
κ, ordered by inclusion.
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Two nodes of a tree T are incomparable if neither one extends
the other. A tree is pruned if each of its elements has a proper ex-
tension, and is perfect if each of its elements has two incomparable
proper extensions. In what follows, a “tree” will always mean a pruned,
nonempty tree.

If T is a tree and s is a node of T , then

Ts = {t ∈ T : t ≤ s or s ≤ t}

is the set of all nodes of T that compare with s under the extension
relation. If s � t and there is no r such that s � r � t, then t is a
child of s.

In every tree T , there is a unique path from the root to a given
node. This naturally divides T into levels. We say that a node s is
at level n, denoted lev(s) = n, if the unique path from the root to
s has n − 1 elements. Thus the root is the unique node at level 0,
the children of the root are all at level 1, etc. We write Levn(T ) for
{s ∈ T : lev(s) = n}.

A branch of a tree T is an infinite sequence x of nodes in T such
that x(0) is the root and x(n + 1) is a child of x(n) for every n. [[T ]]
is the set of all branches of T . [[T ]] has a natural topology defined by
taking {[[Ts]] : s ∈ T} to be a basis. This space is sometimes called the
end space of T .

Proposition 2.1. If T is a (perfect) tree, then [[T ]] is a (perfect) com-
pletely ultrametrizable space. If X is a (perfect) completely ultrametriz-
able space, then there is a (perfect) tree T such that [[T ]] ∼= X.

Proof. See [3] for a thorough treatment. �

We will say that a spaceX is represented by a tree T wheneverX ∼=
[[T ]]. Thus Proposition 2.1 can be rephrased by saying that the (perfect)
completely ultrametrizable spaces are precisely those representable by
(perfect) trees. Note that, for all cardinals κ, κ<ω represents κω. In
particular, 2<ω represents the Cantor space and ω<ω represents the
Baire space.

Let T be a tree and let X be a topological space. A T -scheme on
X is a family (Bs)s∈T of subsets of X such that

• Bt ⊆ Bs whenever t is an extension of s.
• Bs ∩Bt = ∅ whenever s and t are incompatible.

If d is a metric on X then (Bs)s∈T has vanishing diameter (with
respect to d) if limn→∞ diam(Bx(n)) = 0 whenever x ∈ [[T ]]. If X is
a metric space and (Bs)s∈T is a T -scheme with vanishing diameter,
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then let D =
{
x ∈ [[T ]] :

⋂
n∈ω Ax(n) 6= ∅

}
and define f : D → X by

{f(x)} =
⋂
n<ω Bx(n). We call f the associated map.

Lemma 2.2. Let (Bs)s∈T be a T -scheme with vanishing diameter on
a metric space (X, d). If f : D → X is the associated map, then

(1) f is injective and continuous.
(2) if Bs =

⋃
{Bt : t is a child of s} for all s ∈ T , then f is surjec-

tive.
(3) if Bs is open for every s ∈ T , then f is open.

Proof. See [1], Lemma 2.3. �

3. Partitions of large spaces

As mentioned in the introduction, the existence of well-behaved par-
titions of completely ultrametrizable spaces determines a good deal
about the maps between them. In this section we prove our main
lemma concerning partitions of the spaces ωωn , and use this lemma to
derive some consistency results.

Lemma 3.1. Let T be any tree. Then every open subset of [[T ]] can be
written as a disjoint union of sets of the form [[Ts]].

Proof. Let U be any open subset of [[T ]]. For each s ∈ [[T ]], say s ∈ A
if and only if [[Ts]] ⊆ U and [[Tt]] 6⊆ U for any t such that t � s. No two
elements of A are comparable, and if x ∈ U then x(n) ∈ A for some n,
namely the smallest n such that [[Tx(n)]] ⊆ U . Therefore U =

⋃
s∈A[[Ts]],

and this is a disjoint union. �

Lemma 3.2. Let κ be an infinite cardinal. Every nonempty open subset
of κω is homeomorphic to κω.

Proof. Let U be an open subset of κω. Since κω ∼= [[κ<ω]], we may apply
Lemma 3.1 to obtain U as a disjoint union of sets of the form [[κ<ωs ]].
Each such set is clearly a copy of κω, and we have at most κ of them
since |κ<ω| = κ. Thus, for some λ ≤ κ, U ∼= λ× κω ∼= κω. �

Lemma 3.3. Let κ be an infinite cardinal and d any metric on κω com-
patible with its topology. If ε > 0, then there is a partition {Bα : α ∈ κ}
of κω into κ clopen sets such that diam(Bα) < ε for every α.

Proof. See [1], Lemma 6.7. �

Lemma 3.4. Let κ be an infinite cardinal. If X is a dense Gδ subset
of κω, then X ∼= κω.



PARTITIONS OF 2ω AND COMPLETELY ULTRAMETRIZABLE SPACES 5

Proof. Recall (e.g., from [6], Corollary 5) that a metric space is com-
pletely ultrametrizable if and only if it is zero-dimensional and Čech
complete. Since metrizability, zero-dimensionality, and Čech complete-
ness are all inherited by Gδ subsets, X is completely ultrametrizable.

Suppose that U is any clopen subset of X. There is some s ∈ κ<ω
such that [[κ<ωs ]] ∩ X ⊆ U . Because X is dense in κω, [[κ<ωs_α]] ∩ X
is a nonempty clopen subset of U for every α < κ. Consequently,
{X \ [[κ<ωs ]]}∪{[[κ<ωs_α]] ∩X : α ∈ κ} is a partition of U into clopen sets.
Thus every open neighborhood of U can be partitioned into κ disjoint
clopen subsets.

Fix a compatible complete metric on X. We will show that X ∼= κω

by constructing an appropriate κ<ω-scheme in X.
Let B∅ = X and fix s ∈ κ<ω. Suppose Bs has been defined, is a

clopen subset of X, and has diameter at most 1
lev(s)+1

. As we have al-

ready noted, it is possible to partition Bs into κ disjoint clopen subsets.
If necessary, we may use Lemma 3.3 to partition each of these further
into sets smaller than 1

lev(s)+2
; thus we may assume that Bs is parti-

tioned into κ clopen sets, each smaller than 1
lev(s)+2

. Enumerate these

as {Bs_α : α ∈ κ} to define Bt for every child t of s. By recursion, this
defines a κ<ω-scheme (Bs)s∈κ<ω in X.

By construction, this scheme has vanishing diameter, B∅ = X, each
Bs is clopen, and Bs =

⋃
{Bt : t is a child of s} for every s. By Lemma

2.2, the associated map of (Bs)s∈κ<ω is a homeomorphism. It remains
to show that the domain of this map is X: that is, we must show that⋂
n∈ω Bx(n) 6= ∅ for every x ∈ [[κ<ω]]. Since each Bs is clopen, we have⋂
n∈ω Bx(n) =

⋂
n∈ω Bx(n), and this is nonempty because the Bx(n) have

decreasing diameter with respect to a complete metric. �

Note that, if we set κ = ω, then Lemma 3.4 reduces to a variant of
a classical theorem of Alexandrov and Urysohn (see [4], Theorem 7.7).

Theorem 3.5. Let α be any ordinal. Then ωωα+1 can be partitioned
into ℵα+1 homeomorphic copies of ωωα.

Proof. Fix an ordinal α. For every β with ωα ≤ β < ωα+1, let

Xβ = βω \
⋃
{γω : ωα ≤ γ < β} .

Because ωα+1 is a regular uncountable cardinal, the range of every
x ∈ ωωα+1 is bounded by some β < ωα+1, so that x ∈ βω. Therefore
{Xβ : ωα ≤ β < ωα+1} is a partition of ωωα+1. Of course Xωα = ωωα . For
β 6= ωα, we will show that Xβ is empty if and only if β has uncountable
cofinality, and otherwise is homeomorphic to ωωα .
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First suppose that β has uncountable cofinality. Then every element
of βω is bounded inside some γω, γ < β, so that βω =

⋃
γ<β γ

ω. If

β 6= ωα, then this implies Xβ = ∅.
Next suppose that β = γ + 1 is a successor ordinal. Because γ is

closed in β, γω is closed in βω. Also, βω \ γω 6= ∅ (explicitly, βω \ γω
is the set of all sequences in β with the point γ in their range). By
Lemma 3.2, Xβ

∼= ωωα .
Finally, suppose that β is a limit ordinal with countable cofinality.

Let 〈γn : n < ω〉 be a sequence of ordinals with limit β. As in the
previous paragraph, each γωn is closed in βω. Also, each γωn is nowhere
dense in βω. To see this, let s ∈ β<ω so that U = [[β<ωs ]] is a basic
open set of βω, and consider that [[β<ωs_γn ]] is an open subset of U that
is disjoint from γωn . Since Xβ = βω \

⋃
n<ω γ

ω
n , X is Gδ in βω, and X is

dense in βω by the Baire Category Theorem. Since βω ∼= ωωα , it follows
from Lemma 3.4 that Xβ

∼= ωωα . �

Theorem 3.5 can be seen as a topological version of the basic fact of
cardinal arithmetic that ℵℵ0α+1 = ℵα+1 · ℵℵ0α .

Corollary 3.6. Let n < ω. Then ωωn can be partitioned into ℵn copies
of ωω.

Proof. By induction, using Theorem 3.5 �

Corollary 3.6 cannot be extended to κ ≥ ℵω using ZFC alone, be-
cause the induction breaks down at the first singular cardinal. In fact,
it always fails when κ has countable cofinality:

Theorem 3.7. If κ is an uncountable cardinal with cofinality ω, then
κω is not the union of κ many subspaces homeomorphic to ωω.

Proof. If X ⊆ κω is homeomorphic to ωω, then X ⊆ Γω for some
countable Γ ⊆ κ. To see this, note that for any n < ω if πn : κω → κ is
the projection map π(x) = x(n), then πn(X) must be countable since
otherwise X would contain an uncountable family of pairwise disjoint
open sets.

Suppose Xα ⊆ κω for α < κ are homeomorphic copies of ωω. Let
Γα ⊆ κ be countable with Xα ⊆ Γωα. Let κn be a cofinal sequence in κ
and choose

x(n) ∈ κ \
⋃
α<κn

Γα

for each n. Then x ∈ κω \
⋃
α<κXα. �

Note that for any κ the space κω can be partitioned into |κω| copies of
ωω. This is because ωω × κω is homeomorphic to κω. Hence, assuming
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GCH, for every κ with uncountable cofinality the space κω can be
partitioned into κ many copies of ωω. This would also follow from the
weaker assumption that |κω| = κ for every κ > ℵω with uncountable
cofinality.

Question 3.8. Suppose ℵω < κ < c and κ has uncountable cofinality,
then can κω be partitioned into κ many copies of ωω?

In [1] it is proved that ωω is a condensation of κω whenever ωω can be
partitioned into κ Borel sets. Theorem 3.5 allows us to prove a partial
converse.

Theorem 3.9. Let n < ω. Then ωω is a condensation of ωωn if and
only if ωω can be partitioned into ℵn Borel sets.

Proof. Theorem 6.2 of [1] states that ωω is a condensation of κω when-
ever ωω can be partitioned into κ Borel sets. For the converse, suppose
that f : ωωn → ωω is a condensation. By Corollary 3.6, there is a par-
tition {Nα : α ∈ ωn} of ωωn into ℵn copies of ωω. By an old theorem of
Lusin and Souslin, every bijective continuous image of ωω is Borel (see
[4], Theorem 15.1). Thus {f(Nα) : α ∈ ωn} is a partition of ωω into ℵn
Borel sets. �

The following corollary answers Question 6.4 from [1].

Corollary 3.10. It is relatively consistent with ZFC that c = ω3 and
there is no condensation ωω2 → ωω.

Proof. In [8], Theorem 3.7, the second author proves that if ω3 Cohen
reals are added to a model of CH then there is no partition of 2ω into
ℵ2 Borel sets. Since ωω can be identified with a co-countable subset of
2ω, this model also has no partition of ωω into ℵ2 Borel sets. It follows
from Theorem 3.9 that this model has no condensation ωω2 → ωω. �

Contrast this result with the result of Hausdorff in [2], where it is
proved from ZFC that ωω can be partitioned into ℵ1 Borel sets (and
hence ωω is a condensation of ωω1 ). The next theorem gives the opposite
consistency result:

Theorem 3.11. It is consistent with any possible value of c that for
every κ ≤ c there is a partition of 2ω into κ closed sets.

Proof. It is proved in [7], Theorem 4, that for any possible value of c
and any fixed κ < c, there is a model in which 2ω can be partitioned
into κ copies of 2ω. Here we show how to modify that construction to
obtain a partition into κ copies of 2ω for all κ < c simultaneously.
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If CH holds then the conclusion is trivial. Let M be any model in
which CH fails. We will show how to construct a finite support iterated
forcing such that extending M by this forcing preserves cardinals, does
not change the value of c, and adds for every ω1 ≤ κ < c a partition of
2ω into κ closed sets.

For X ⊆ 2ω, define P(X) as follows. Conditions are finite mutually
consistent sets of sentences of the form “[[2<ωs ]] ∩ Cn = ∅” or “x ∈ Cn”
where n ∈ ω, x ∈ X, and s ∈ 2<ω (this is as in [7]). In an extension of
M by P(X),

⋃
n∈ω Cn will be an Fσ set that covers X and misses every

element of (2ω)M \X. For any X, P(X) has the c.c.c.
Our iterated forcing will have length α · ω1, where α is the unique

ordinal such that c = ωα (alternatively, this can be thought of as a
length-ω1 iteration of length-α iterations). For each κ with ω1 ≤ κ < c,
let X0

κ be a subset of 2ω with |X0
κ| = κ. Let δ < α ·ω1, and let β and γ

be the unique ordinals such that γ < α and δ = α ·β+γ (see [5], Ch. I,
Ex. 3 to see that such ordinals exist and are unique). In our iteration,
Mδ+1 is obtained by forcing with P(2ω \ (Xωγ ∪

⋃
{F ξ

ωγ : ξ < β})) in

Mδ; this creates a generic Fσ set which we call F β
ωγ .

Since each P(X) has the c.c.c., our iteration has the c.c.c., and since
|α · ω1| ≤ ωα = cM , Mα·ω1 |= “c = ωα”. Fix γ < α and let κ = ωγ < c.
For every x ∈ 2ω \Xκ, there is smallest β < ω1 such that x ∈ Mα·β+γ,
in which case x ∈ F β

κ . Thus Mα·ω1 |= “2ω = Xκ ∪
⋃
β<ω1

F β
κ ”. In other

words, {{x} : x ∈ Xκ}∪
{
F β
κ : β < ω1

}
is a partition of 2ω in Mα·ω1 , and

(because our iteration preserves cardinals) this partition has cardinality
κ when κ is uncountable.

To obtain a partition of 2ω into κ closed sets in Mα·ω1 , it is sufficient
to note that every Fσ subset of 2ω can be partitioned into countably
many compact sets. This is showed in [7] (the last part of the proof of
Theorem 4) or, alternatively, in [1] (Proposition 3.5). �

Corollary 3.12. It is consistent with any possible value of c that when-
ever ω ≤ κ ≤ c there is a condensation κω → ωω.

Proof. Because ωω can be identified with a co-countable subset of 2ω,
the model in Theorem 3.11 has, for every κ < c, a partition of ωω into
κ Borel sets. The corollary now follows from Theorem 3.9. �

One might notice that the κ-sized partition given by our forcing
consists of κ singletons and at most ℵ1 nontrivial closed sets. However,
it is easy to modify these partitions to obtain κ copies of 2ω:

Proposition 3.13. If 2ω can be partitioned into κ closed sets, then 2ω

can be partitioned into κ copies of 2ω.
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Proof. Let {Kα : α ∈ κ} be a partition of 2ω into closed sets. Then
{Kα × 2ω : α ∈ κ} is a partition of 2ω × 2ω ∼= 2ω into copies of 2ω. �

Corollary 3.14. It is consistent with any possible value of c that 2ω

is a condensation of every perfect completely ultrametrizable space X
with |X| = c.

Proof. Combine Theorem 3.11, Proposition 3.13, and Theorem 5.1 of
[1]. �

A result of Hausdorff states that there is always a partition of ωω

into ℵ1 Borel sets (see [2]). Theorem 3.7 of [8], together with the
comments that follow it, says that it is consistent with any value of c
that every uncountable partition of ωω into Borel sets has size ℵ1 or
c (this is strengthened below in Corollary 3.16). Theorem 3.11 gives
the opposite result, but it remains an open problem to find models in
which some intermediate property holds. Is it consistent, for example,
to have c = ω9 with uncountable partitions of sizes ℵ1, ℵ4, ℵ8, and
ℵ9, but of no other sizes? The following propositions provide partial
answers to such questions.

Let FIN(κ, 2) be the partial order of finite partial functions from κ
to 2, i.e., Cohen forcing.

Theorem 3.15. ([8] 3.7) Suppose M is a countable transitive model
of ZFC + GCH. Let κ be any cardinal of M of uncountable cofinal-
ity. Suppose that G is FIN(κ, 2)-generic over M , then in M [G] the
continuum is κ and for every family F of Borel subsets of ωω with
size ω1 < |F| < κ, if

⋃
F = ωω then there exists F0 ∈ [F ]ω1 with⋃

F0 = ωω.

This is only stated in [8] for κ = ω3 but it is clear from the proof
that it is true in more generality.

Corollary 3.16. Suppose M is a countable transitive model of ZFC
+ GCH. Let κ be any cardinal of M of uncountable cofinality which is
not the successor of a cardinal of countable cofinality. Suppose that G
is FIN(κ, 2)-generic over M , then in M [G] the continuum is κ and for
every uncountable γ < κ if F : γω → ωω is continuous and onto, then
there exists a Q ∈ [γ]ω1 such that F (Qω) = ωω.

Proof. Let Σ = [γ]ω ∩M . Note that |Σ| < κ since in M |γω| > γ if and
only if γ has cofinality ω, but in that case |γω| = γ+ < κ. Since the
forcing is c.c.c.

M [G] |= γω =
⋃
{Xω : X ∈ Σ}
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For any X ∈ Σ the continuous image F (Xω) is a Σ1
1 set, and hence the

union of ω1 Borel sets. Given a family F of |Σ|-many Borel sets whose
union is ωω there is a subfamily F0 of size ω1 whose union is ωω and
hence a Q as required. �

If κ = λ+ where λ has cofinality ω, then the result holds for γ < λ
but since λω = κ holds in M we do not know whether it is true for λ.

Proposition 3.17. It is consistent that the continuum be arbitrarily
large, ωω can be partitioned into ω2 Borel sets, and ωω is not the con-
densation of κω whenever ω2 < κ < c

Proof. Let M be a model of ZFC satisfying Martin’s Axiom and c = ω2.
Using transfinite induction in M , it is possible to construct a sequence
〈Cα : α < ω2〉 of closed nowhere dense subsets of 2ω such that for ev-
ery non-atomic Borel probability measure µ on 2ω there are countably
many of the Cα whose union has µ-measure 1.

In M , force with the measure algebra on 2λ for any λ with un-
countable cofinality not the successor of a cardinal of countable cofi-
nality. In the generic extension we have c = λ, and every new real
is random with respect to some non-atomic Borel probability measure
in the ground model. Because of our choice of the Cα, this implies
that every new real will be in some Cα. Therefore {Cα : α < ω2} ∪{
{x} : x ∈ 2ω \

⋃
α<ω2

Cα
}

has size ℵ2 in the generic extension. Be-
cause the Cα are disjoint, it is a partition of 2ω into closed sets.

The proof of Theorem 3.7 in [8] uses Cohen reals, but the same idea
shows that this generic extension has the property that for every family
F of Borel subsets of ωω with size ℵ2 < |F| < λ, if

⋃
F = ωω then there

exists F0 ∈ [F ]ω2 with
⋃
F0 = ωω. As in the proof of Corollary 3.16 we

get that ωω is not the condensation of any κω whenever ℵ2 < κ < c. �

Note the similarity of this argument to the argument of Stern in [9]
(later rediscovered by Kunen), where he proves that 2ω can be parti-
tioned into ℵ1 closed sets in any random real extension of a model of
CH.

Note also that trivial modifications to the proof of Proposition 3.17
allow us to replace ω2 with any cardinal µ of uncountable cofinality.
However, doing so will not guarantee partitions of all sizes smaller than
µ. This is because it is not currently known whether Martin’s Axiom
implies (or even permits) Borel set partitions of ωω of all sizes less than
c. Thus this proof does not give “small partitions without large,” but
only “partitions of a given size without larger ones.”
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Question 3.18. If ω1 < κ < c, does Martin’s Axiom imply the exis-
tence of a size-κ partition of ωω into Borel sets? Is this consistent with
Martin’s Axiom?

4. Similarity types

This section deals mostly with perfect completely ultrametrizable
spaces of size c. For the sake of brevity, we will henceforth refer to
such spaces as PCU spaces.

Say that two spaces are similar if each condenses onto the other.
In [1], it is proved that there are exactly three similarity types of sep-
arable PCU spaces, that is, of perfect zero-dimensional Polish spaces.
Furthermore, it is proved that these three types are totally ordered by
the relation “X condenses onto Y ” (this is called the condensation
relation). It is also proved in [1] that if CH is assumed then there
are exactly four similarity types of PCU spaces, and these four types
are totally ordered by the condensation relation. That is, the inclusion
of non-separable spaces (equivalently, of uncountable trees) introduces
only one new similarity type, namely those spaces representable with
trees of size c.

In general, neither

(1) the total orderability of similarity types by condensation
(2) the similarity of spaces represented by uncountable trees of the

same size

necessarily holds when CH fails. If MA holds, for example, then ωω1
and ω1 × 2ω are not similar, and neither of ω1 × 2ω and ωω condenses
onto the other (see [1], Proposition 5.10 and Corollary 6.3). It is left
an open question in [1] whether it is consistent for (1) and (2) to hold
when CH fails.

We will show in this section that it is consistent for (1) and (2) to
hold with c equal to any ωn < ωω. In fact the appropriate model has
already been constructed in Theorem 3.11, and here we merely need to
show that (1) and (2) hold in this model.

Lemma 4.1. The following are equivalent:

(1) 2ω can be partitioned into κ closed sets.
(2) 2ω can be partitioned into κ copies of 2ω

(3) ωω can be partitioned into κ copies of 2ω.

Proof. If κ is countable then the result is trivial, so suppose κ ≤ c is
uncountable.
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(3) ⇒ (1): Let D be a countable dense subset of 2ω; then 2ω \D ∼=
ωω. If {Kα : α ∈ κ} is a partition of 2ω \ D into copies of 2ω, then
{Kα : α ∈ κ} ∪ {{x} : x ∈ D} is a partition of 2ω into κ closed sets.

(1)⇒ (2): This is given by Proposition 3.13.
(2) ⇒ (3): Let {Kα : α ∈ κ} be a partition of 2ω into κ copies of

2ω. We say that a partition is “nice” if each partition element is
nowhere dense. Assuming our partition is nice, we can pick a se-
quence 〈xn : n < ω〉 of points in 2ω such that {xn : n ∈ ω} is dense
in 2ω and no two points of our sequence are in the same Kα. Then
X = 2ω \ {xn : n ∈ ω} ∼= ωω, and {Kα ∩X : α ∈ κ} is a partition of X.
For each α, either Kα contains no xn, in which case Kα∩X = Kα

∼= 2ω,
orKα∩X = Kα\{xn} for some xn ∈ Kα, in which caseKα∩X ∼= ω×2ω.
This lets us obtain a partition of X into κ copies of 2ω.

Given any partition {Kα : α ∈ κ} of 2ω into closed sets, we will now
show how to find a nice partition. The basic idea is to do something
like a Cantor-Bendixson derivative to eliminate partition elements with
non-empty interior. Set C0 = 2ω. Given Cα, let

Cα+1 = Cα \
⋃
{U ⊆ Cα : U is clopen and, for some α, U ⊆ Kα} ,

and if α is a limit ordinal take Cα =
⋂
β<αCβ. By transfinite recursion,

this defines a decreasing sequence 〈Cα : α ∈ Ord〉 of closed subspaces
of C0. Because each Cα is closed and 2ω is second countable, there is
some countable ordinal α such that Cβ = Cα for all β ≥ α. If x were
an isolated point of Cα then we would have x /∈ Cα+1, so Cα is perfect.
By induction, again using the fact that 2ω is second countable, there
are for any β ≤ α at most countably many γ such that Kγ ∩ Cβ = ∅.
Since κ is uncountable, {Kγ : γ ∈ κ} restricts to a partition of size
κ on Cα. In particular, Cα 6= ∅; since we have already seen that
Cα is closed in 2ω and has no isolated points, Cα ∼= 2ω. If Kγ ∩ Cα
had nonempty interior, there would be some clopen U ⊆ Cα with
U ⊆ Kγ, contradicting the fact that Cα = Cα+1. Thus each Kγ ∩Cα is
closed and nowhere dense in Cα. As in the proof of Proposition 3.13,
{(Kγ ∩ Cα)× 2ω : Kγ ∩ Cα 6= ∅} is a partition of Cα × 2ω ∼= 2ω into
nowhere dense copies of 2ω. �

Lemma 4.2. If |T | < |S|, then [[S]] is not a condensation of [[T ]].

Proof. See [1], Proposition 5.5. �

Theorem 4.3. Assume c = ωn < ωω. The following are equivalent:

(1) There are n + 3 similarity types of PCU spaces, and these are
totally ordered by condensation.

(2) There are n+ 3 similarity types of PCU spaces.
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(3) The similarity types of PCU spaces are totally ordered by con-
densation.

(4) 2ω is a condensation of every PCU space.
(5) For every κ ≤ c, there is a partition of 2ω into κ closed sets.

Proof. (1) implies (2) and (3) trivially. No Hausdorff space is a non-
trivial condensation of 2ω, so (3) implies (4). For every κ ≤ c, κ × 2ω

is a completely ultrametrizable space. If f : κ× 2ω → 2ω is a conden-
sation, then {f({a} × 2ω) : α ∈ κ} is a partition of 2ω into κ copies of
2ω. Thus (4) implies (5).

Next we show that (2) implies (5). Suppose there are exactly n + 3
similarity types of PCU spaces. By Lemma 4.2, there are at least n
similarity types corresponding to PCU spaces arising from uncountable
trees: one for each possible tree size. Because there are exactly three
similarity types for PCU spaces arising from countable trees (see [1],
Theorem 3.9), we have exactly n types for uncountable trees, and [[T ]]
and [[S]] are similar if and only if |S| = |T |.

In particular, if 0 < m < n then ωm× 2ω and ωωm are similar. Let f :
ωωm → ωm×2ω be a condensation. By Lemma 3.2, f−1({0}×2ω) ∼= ωωm.
Thus f �f−1({0}×2ω) is a condensation from (a homeomorphic copy of)
ωωm to {0} × 2ω ∼= 2ω. Composing with a condensation ωm × 2ω → ωωm,
we see that there is a condensation g : ωm × 2ω → 2ω. Since any
Hausdorff condensation of 2ω is simply 2ω, {g({α} × 2ω) : α ∈ ωm} is a
partition of 2ω into ℵm copies of 2ω. Thus (2) implies (5).

It remains to show that (5) implies (1). We will show that if T is a
tree with κ nodes, with ω < κ < c, then [[T ]] is similar to κω. This shows
that each uncountable κ < c corresponds to a single similarity type,
consisting precisely of the spaces arising from trees of size κ (and these
types are distinct by Lemma 4.2). Given our assumptions on c and the
fact that there are exactly three types corresponding to countable trees
(Theorem 3.9 from [1]), we then have exactly n+ 3 types. We will also
show that κω condenses onto λω whenever ω ≤ λ < κ ≤ c, which will
show that these types are totally ordered by condensation. It will be
convenient to prove the latter of these propositions first.

Claim. If ω ≤ λ ≤ κ ≤ c, then λω is a condensation of κω.

Proof of claim. Combining Corollary 3.6 and Lemma 4.1 with (5), we
see that there is a partition of λω into κ copies of 2ω. In particular,
λω is a condensation of κ × ωω. By Theorem 3.9 and (5), κ × ωω is
a condensation of κ × κω ∼= κω. Composing condensations, we have a
condensation from κω to λω. �
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Let T be a tree and |T | = κ, with ω < κ ≤ c. We will show that [[T ]]
is similar to κω by showing (in the following three claims) that there
are condensations [[T ]]→ κ× 2ω → κω → [[T ]].

Claim. κ× 2ω is a condensation of [[T ]].

Proof of claim. Because κ is uncountable and regular, and because T =⋃
n∈ω Levn(T ), there is some n such that |Levn(T )| = κ. [[T ]] is the

disjoint union of {[[Ts]] : lev(s) = n}, and each [[Ts]] is clopen in [[T ]].
Thus it suffices to show that 2ω is a condensation of each [[Ts]]. This
follows immediately from (4), and (4) follows from (5) by Theorem 5.1
of [1]. �

Claim. κω is a condensation of κ× 2ω.

Proof of claim. It follows from Corollary 3.6, Lemma 4.1, and (5) that
κω can be partitioned into κ copies of 2ω. This is equivalent to being a
condensation of κ× 2ω. �

Claim. [[T ]] is a condensation of κω.

Proof of claim. We will prove this claim by induction. Our inductive
hypothesis is that whenever S is a tree of size λ then there is a con-
densation λω → [[S]]. If λ = ω then the inductive hypothesis becomes:
every perfect zero-dimensional Polish space is a condensation of ωω.
This is a well-known classical result (see, e.g., Exercise 7.15 in [4]).
Assume now that the inductive hypothesis holds for every λ < κ.

By Theorem 4.3 in [1], we may assume that every node s of T has
exactly |Ts| children. We will build a κ<ω-scheme (Bs)s∈κ<ω in [[T ]] by
recursion.

Set B∅ = [[T ]]. Assume now that Bs has been defined and is equal
to [[Tt]] for some node t ∈ T . If |Tt| < κ, then by hypothesis there is a
condensation |Tt|ω → [[Tt]]. Since we have already proved that there is a
condensation κω → |Tt|ω (our first claim above), there is a condensation
g : [[κ<ωs ]] → [[Tt]]. Define Br = g([[κ<ωr ]]) for every extension r of s. If
|Tt| = κ, then t has κ children in T by our choice of T . Enumerating
these as {tα : α < κ}, we let Bs_α = [[Ttα ]]. This recursion defines a
κ<ω-scheme (Bs)s∈κ<ω .

Let x ∈ [[κ<ω]]. If there is some n such that Bx(n) = [[Tt]] for some
t with fewer than κ children, then Bx(m) is defined by some embed-
ding g : Bx(n) → X for all m ≥ n. Because g is an embedding,
limm→∞ diam(Bx(m)) = 0 and

⋂
n∈ω Bx(n) = g(x). Otherwise, Bx(n) is

always equal to some [[Tt]], where t has κ children in T . Then (by an
easy induction) Bx(n) = [[Ty(n)]] for some y ∈ [[T ]] and every n. Since{

[[Ty(n)]] : n < ω
}

is a local basis for y, limn→∞ diam(Bx(n)) = 0 in this
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case too; also, clearly,
⋂
n∈ω Bx(n) = y. Thus (Bs)s∈κ<ω has vanishing

diameter, and
⋂
n∈ω Bx(n) 6= ∅ for every x ∈ [[κ<ω]]. Furthermore, it

is clear from our construction that Bs =
⋃
{Bt : t is a child of s} for

every s ∈ κ<ω. It follows from Lemma 2.2 that the associated map of
(Bs)s∈κ<ω is a condensation.

This shows that the inductive hypothesis holds at κ and completes
the induction. �

This shows that uncountable trees of the same size represent similar
spaces and completes the proof that (5) implies (1). �

Corollary 4.4. Let n < ω. It is consistent with ZFC that c = ωn and
the five propositions listed in the statement of Theorem 4.3 all hold.

Proof. Combine Theorem 3.11 with Theorem 4.3. �

This corollary provides partial answers to Questions 5.11 and 5.12
from [1]. It leaves open the question of whether the similarity types
can be totally ordered when c > ωω.

It is worth pointing out that the proof of Theorem 4.3 does not
depend on c being small. If we consider a model guaranteed by Theo-
rem 3.11 in which c > ωω, then the proof of Theorem 4.3 shows that
two PCU spaces arising from trees of size κ with ℵ0 < κ < ℵω will
be similar. This gives countably many similarity types of spaces with
weight less than ωω, with the types totally ordered (with order type ω)
by condensation.
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