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Abstract

In this paper we give two results about analytic sets. The �rst is

a counterexample to a problem of Fremlin. We show that there

exists !

1

compact subsets of a Borel set with the property that

no �-compact subset of the Borel set covers them. In the second

section we prove that for any analytic subset A of the plane either

A can be covered by countably many lines or A contains a perfect

subset P which does not have three collinear points.

In his book about Martin's Axiom [2] p. 61 D. H. Fremlin shows that,

assuming MA, for any analytic set X and set A � X of cardinality less than

the continuum there exists a �-compact set L such that A � L � X. (�-

compact means countable union of compact sets.) Here we show that the
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set A cannot be replaced by a family of compact sets of cardinality !

1

. This

answers a question of Fremlin [2] p.67.

Let Q be the rationals and let E = Q

!

. E is a �

0

3

set, or equivalently

an F

��

set. For each � < !

1

let C

�

be a compact subset of Q which is

homeomorphic to � + 1 and let H

�

= C

!

�

.

Theorem 1 There does not exists a �-compact set L such that for every

� < !

1

, H

�

� L � E.

Lemma 2 For every compact set K � Q there exists � < !

1

such that for

all � > �, C

�

nK is nonempty.

proof

This follows easily from a well-known theorem of Sierpi�nski that every

countable scattered space is isomorphic to an ordinal. For simplicity we

sketch a proof here.

Let D(X) be the derivative operator, i.e. D(X) is the set of noniso-

lated points of X. Then let D

�

(X) be the usual �

th

iterate of D, de�ned by

induction as follows.

D

�+1

(X) = D(D

�

(X))

D

�

(X) = \

�<�

D

�

(X) if � a limit ordinal

De�ne the rank of any X (rank(X)) as the least � such that D

�

(X) is empty.

Then the lemma follows easily from the following facts:

1. Every compact subset of Q has a countable rank.

2. If X � Y then D(X) � D(Y ).

3. If X � Y then rank(X)�rank(Y).

4. rank(C

!

�

+1

) = �+ 1.

2

To prove the Theorem let L =

S

n2!

L

n

where each L

n

is compact. Let

K

n

� Q be the projection of L

n

onto the n

th

coordinate. By the lemma there
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exists C

�

which is not covered by any K

n

. It follows that H

�

is not covered

by L.

2

We don't know whether the theorem is true for �

0

3

sets (G

��

) or even for

a set which is the union of a countable set and a �

0

2

(G

�

).

Next we prove the following theorem:

Theorem 3 Suppose that A is an analytic subset of the plane, R

2

, which

cannot be covered by countably many lines. Then there exists a perfect subset

P of A such that no three points of P are collinear.

proof

A set is perfect i� it is homeomorphic to the Cantor space 2

!

. The proof

we give is similar to the classical proof that uncountable analytic sets must

contain a perfect subset. A subset A of a complete separable space X is

analytic i� there exists a closed set C � !

!

�X such that A is the projection

of C, i.e.

A = p(C) = fy 2 X j 9x 2 !

!

(x; y) 2 Cg

Every Borel subset of X is analytic.

Let A be analytic subset of the plane R

2

which cannot be covered by

countably many lines. Let S be the unit square ([0; 1]� [0; 1]) minus all lines

of the form x = r or y = r for r a rational number. Without loss of generality

we may assume that A is a subset of S. Since S is a complete separable space

there exists C � !

!

� S a closed set such that A = p(C).

Give S the basis B

s

for s 2 4

<!

described in �gure 1. ( 4

<!

is the set of

�nite sequences of elements from 4 = f0; 1; 2; 3g)

For y 2 S de�ne y � n = s i� y 2 B

s

for s of length n and for x 2 !

!

let

x � n be the restriction of x to the set n = f0; 1; 2; : : : ; n� 1g. Let

T = f(x � n; y � n) j (x; y) 2 Cg

Then

C = [T ] = f(x; y) j 8n (x � n; y � n) 2 Tg

and

A = p[T ]
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Figure 1: B

s

for s 2 4

<!

For any (s; t) 2 T de�ne

T

(s;t)

= f(ŝ;

^

t) 2 T j (ŝ � s ^

^

t � t) or (s � ŝ ^ t �

^

t)g

Let

T

0

= f(s; t) 2 T j p[T

(s;t)

] cannot be covered by countably many lines g

Lemma 4 For any (s; t) 2 T

0

p[T

0

(s;t)

] cannot be covered by countably many

lines, where T

0

(s;t)

= T

(s;t)

\ T

0

.

proof

By de�nition p[T

(s;t)

] cannot be covered by countably many lines. For

any x in p[T

(s;t)

] but not in p[T

0

(s;t)

] there must be some (ŝ;

^

t) in T

(s;t)

but not

in T

0

(s;t)

such that x is in p[T

(ŝ;

^

t)

]. Since each such p[T

(ŝ;

^

t)

] can be covered by

countably many lines, p[T

0

(s;t)

] cannot be covered by countably many lines.

2

Lemma 5 (Split and shrink) Suppose (s

i

; t

i

) 2 T

0

for i = 0; 1; 2; : : : ; n are

given with the properties that for i 6= j B

t

i

is disjoint from B

t

j

and no

line meets three or more of the B

t

j

's. Then there exists (ŝ

i

;

^

t

i

) 2 T

0

for
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Figure 2: Split and shrink lemma

i = 1; 2; : : : ; n with (ŝ

i

;

^

t

i

) � (s

i

; t

i

) and (s

j

0

; t

j

0

) 2 T

0

for j = 0; 1 with

(s

j

0

; t

j

0

) � (s

0

; t

0

) and B

t

0

0

disjoint from B

t

1

0

and no line meets three or more

of the

B

t

0

0

; B

t

1

0

; B

^

t

1

; B

^

t

2

; B

^

t

3

; : : : ; B

^

t

n

;

proof

Since p[T

0

(s

0

;t

0

)

] cannot be covered by countably many lines we can �nd

distinct elements of it x

0

; x

1

. Let l be the line containing x

0

and x

1

. Since

this line cannot cover p[T

0

(s

i

;t

i

)

] for i = 1; 2; : : : ; n we can �nd (ŝ

i

;

^

t

i

) � (s

i

; t

i

)

with eachB

^

t

i

a positive distance from the line l. Now choose (s

j

0

; t

j

0

) � (s

0

; t

0

)

in T

0

with B

t

j

0

a small enough neighborhood of x

j

so as ensure that no line

meets three or more of these squares. See �gure 2.

2

Lemma 6 Suppose (s

i

; t

i

) 2 T

0

for i = 0; 1; 2; : : : ; n are given with the prop-

erties that for i 6= j B

t

i

is disjoint from B

t

j

and no line meets three or more
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of the B

t

j

's. Then there exists (s

j

i

; t

j

i

) 2 T

0

for i = 0; 1; 2; : : : ; n and j = 0; 1

with (s

j

i

; t

j

i

) � (s

i

; t

i

) and B

t

0

i

disjoint from B

t

1

i

and no line meets three or

more of the B

t

j

i

for i = 0; 1; 2; : : : ; n and j = 0; 1.

proof

Apply the split and shrink lemma iteratively n+ 1 times.

2

To prove the theorem construct a subtree T

�

� T

0

with the property that

p[T

�

] = P is perfect and for every n 2 ! no line meets three or more of the

B

t

with (s; t) 2 T

�

for some s and t of length n. Then P is a perfect subset

of A which does not contain three collinear points.

2

One of our original interests in this problem was the following corollary:

Corollary 7 Suppose that A is an analytic subset of the plane and L is a

family of fewer than continuum many lines such that L covers A. Then A is

covered by a countable subfamily of lines from L.

proof

If A contains a perfect set with no three points collinear then A could not

be covered by L, since perfect sets have the cardinality of the continuum.

Hence we may assume that A is covered by countably many lines. Suppose:

A �

[

fl

n

j n 2 !g

If l is any line such that l \ A is uncountable, then l is in L. This is

because l \ A is an analytic set, hence has cardinality the continuum, but

every line in L meets l in at most one point, so l \ A could not be covered

by L.

So A is covered by the l

n

which are in L plus at most countably many

more lines in L which cover the points in A such that l

n

\ A is countable.

2

Note that if V=L then there exists an uncountable coanalytic subset of the

line which contains no perfect subsets. If this set is arranged around a circle

then we see that the theorem cannot be generalized to include coanalytic

sets.

However Dougherty, Jackson, and Kechris have proved the following re-

sult:
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Theorem 8 Suppose the axiom of determinacy and V=L[R] is true. Then

every subset of the plane either can be covered by countably many lines or

contains a perfect subset P with no three points collinear.

Their proof uses a technique of Harrington (see Kechris and Martin [1])

to prove Silver's theorem that every coanalytic equivalence relation with

uncountably many equivalence classes contains a perfect set of inequivalent

points. They generalize this result and our result.

Is it true in Solovay's model [3] that every subset of the plane either can

be covered by countably many lines or contains a perfect subset P with no

three points collinear?
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