Two remarks about analytic sets ¹

Fons van Engelen² Vrÿe Universiteit Subfaculteit Wiskunde De Boeleaan 1081 1081 HV Amsterdam The Netherlands

Kenneth Kunen Department of Mathematics University of Wisconsin Madison, Wisconsin 53706

Arnold W. Miller³ Department of Mathematics University of Wisconsin Madison, Wisconsin 53706

Abstract

In this paper we give two results about analytic sets. The first is a counterexample to a problem of Fremlin. We show that there exists ω_1 compact subsets of a Borel set with the property that no σ -compact subset of the Borel set covers them. In the second section we prove that for any analytic subset A of the plane either A can be covered by countably many lines or A contains a perfect subset P which does not have three collinear points.

In his book about Martin's Axiom [2] p. 61 D. H. Fremlin shows that, assuming MA, for any analytic set X and set $A \subset X$ of cardinality less than the continuum there exists a σ -compact set L such that $A \subset L \subset X$. (σ compact means countable union of compact sets.) Here we show that the

¹ in Lecture Notes in Mathematics, Springer-Verlag, 1401(1989), 68-72.

 $^{^2\}mathrm{Research}$ partially supported by the Netherlands organization for the advancement of pure research

³Research partially supported by NSF grant MCS-8401711

set A cannot be replaced by a family of compact sets of cardinality ω_1 . This answers a question of Fremlin [2] p.67.

Let \mathbb{Q} be the rationals and let $E = \mathbb{Q}^{\omega}$. E is a Π_3^0 set, or equivalently an $F_{\sigma\delta}$ set. For each $\alpha < \omega_1$ let C_{α} be a compact subset of \mathbb{Q} which is homeomorphic to $\alpha + 1$ and let $H_{\alpha} = C_{\alpha}^{\omega}$.

Theorem 1 There does not exists a σ -compact set L such that for every $\alpha < \omega_1, H_{\alpha} \subset L \subset E$.

Lemma 2 For every compact set $K \subset \mathbb{Q}$ there exists $\alpha < \omega_1$ such that for all $\beta > \alpha$, $C_\beta \setminus K$ is nonempty.

proof

This follows easily from a well-known theorem of Sierpiński that every countable scattered space is isomorphic to an ordinal. For simplicity we sketch a proof here.

Let D(X) be the derivative operator, i.e. D(X) is the set of nonisolated points of X. Then let $D^{\alpha}(X)$ be the usual α^{th} iterate of D, defined by induction as follows.

$$D^{\alpha+1}(X) = D(D^{\alpha}(X))$$
$$D^{\lambda}(X) = \bigcap_{\alpha < \lambda} D^{\alpha}(X) \text{ if } \lambda \text{ a limit ordinal}$$

Define the rank of any X (rank(X)) as the least α such that $D^{\alpha}(X)$ is empty.

Then the lemma follows easily from the following facts:

1. Every compact subset of \mathbb{Q} has a countable rank.

- 2. If $X \subset Y$ then $D(X) \subset D(Y)$.
- 3. If $X \subset Y$ then rank(X) \leq rank(Y).
- 4. rank $(C_{\omega^{\alpha}+1}) = \alpha + 1$.

To prove the Theorem let $L = \bigcup_{n \in \omega} L_n$ where each L_n is compact. Let $K_n \subset \mathbb{Q}$ be the projection of L_n onto the n^{th} coordinate. By the lemma there

exists C_{β} which is not covered by any K_n . It follows that H_{β} is not covered by L.

We don't know whether the theorem is true for Σ_3^0 sets $(G_{\delta\sigma})$ or even for a set which is the union of a countable set and a Π_2^0 (G_{δ}) .

Next we prove the following theorem:

Theorem 3 Suppose that A is an analytic subset of the plane, \mathbb{R}^2 , which cannot be covered by countably many lines. Then there exists a perfect subset P of A such that no three points of P are collinear.

proof

A set is perfect iff it is homeomorphic to the Cantor space 2^{ω} . The proof we give is similar to the classical proof that uncountable analytic sets must contain a perfect subset. A subset A of a complete separable space X is analytic iff there exists a closed set $C \subset \omega^{\omega} \times X$ such that A is the projection of C, i.e.

$$A = p(C) = \{ y \in X \mid \exists x \in \omega^{\omega} (x, y) \in C \}$$

Every Borel subset of X is analytic.

Let A be analytic subset of the plane \mathbb{R}^2 which cannot be covered by countably many lines. Let S be the unit square $([0,1] \times [0,1])$ minus all lines of the form x = r or y = r for r a rational number. Without loss of generality we may assume that A is a subset of S. Since S is a complete separable space there exists $C \subset \omega^{\omega} \times S$ a closed set such that A = p(C).

Give S the basis B_s for $s \in 4^{<\omega}$ described in figure 1. ($4^{<\omega}$ is the set of finite sequences of elements from $4 = \{0, 1, 2, 3\}$)

For $y \in S$ define $y \upharpoonright n = s$ iff $y \in B_s$ for s of length n and for $x \in \omega^{\omega}$ let $x \upharpoonright n$ be the restriction of x to the set $n = \{0, 1, 2, \ldots, n-1\}$. Let

$$T = \{ (x \upharpoonright n, y \upharpoonright n) \mid (x, y) \in C \}$$

Then

$$C = [T] = \{(x, y) \mid \forall n \ (x \upharpoonright n, y \upharpoonright n) \in T\}$$

and

$$A = p[T]$$

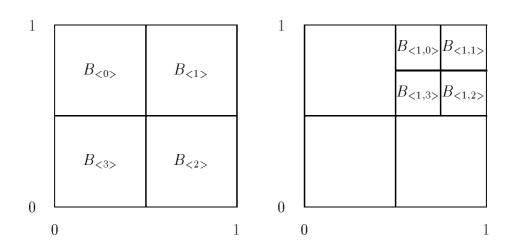


Figure 1: B_s for $s \in 4^{<\omega}$

For any $(s, t) \in T$ define

 $T_{(s,t)} = \{ (\hat{s}, \hat{t}) \in T \mid (\hat{s} \subset s \land \hat{t} \subset t) \text{ or } (s \subset \hat{s} \land t \subset \hat{t}) \}$

Let

 $T' = \{(s,t) \in T \mid p[T_{(s,t)}] \text{ cannot be covered by countably many lines } \}$

Lemma 4 For any $(s,t) \in T'$ $p[T'_{(s,t)}]$ cannot be covered by countably many lines, where $T'_{(s,t)} = T_{(s,t)} \cap T'$.

proof

By definition $p[T_{(s,t)}]$ cannot be covered by countably many lines. For any x in $p[T_{(s,t)}]$ but not in $p[T'_{(s,t)}]$ there must be some (\hat{s}, \hat{t}) in $T_{(s,t)}$ but not in $T'_{(s,t)}$ such that x is in $p[T_{(\hat{s},\hat{t})}]$. Since each such $p[T_{(\hat{s},\hat{t})}]$ can be covered by countably many lines, $p[T'_{(s,t)}]$ cannot be covered by countably many lines. \Box

Lemma 5 (Split and shrink) Suppose $(s_i, t_i) \in T'$ for i = 0, 1, 2, ..., n are given with the properties that for $i \neq j$ B_{t_i} is disjoint from B_{t_j} and no line meets three or more of the B_{t_j} 's. Then there exists $(\hat{s}_i, \hat{t}_i) \in T'$ for

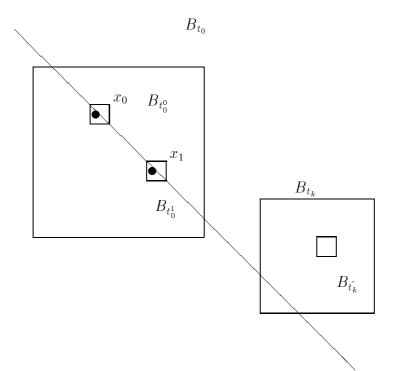


Figure 2: Split and shrink lemma

 $i = 1, 2, \ldots, n$ with $(\hat{s}_i, \hat{t}_i) \supset (s_i, t_i)$ and $(s_0^j, t_0^j) \in T'$ for j = 0, 1 with $(s_0^j, t_0^j) \supset (s_0, t_0)$ and $B_{t_0^0}$ disjoint from $B_{t_0^1}$ and no line meets three or more of the

$$B_{t_0^0}, B_{t_0^1}, B_{\hat{t_1}}, B_{\hat{t_2}}, B_{\hat{t_3}}, \dots, B_{\hat{t_n}},$$

proof

Since $p[T'_{(s_0,t_0)}]$ cannot be covered by countably many lines we can find distinct elements of it x_0, x_1 . Let l be the line containing x_0 and x_1 . Since this line cannot cover $p[T'_{(s_i,t_i)}]$ for i = 1, 2, ..., n we can find $(\hat{s_i}, \hat{t_i}) \supset (s_i, t_i)$ with each B_{t_i} a positive distance from the line l. Now choose $(s_0^j, t_0^j) \supset (s_0, t_0)$ in T' with $B_{t_0^j}$ a small enough neighborhood of x_j so as ensure that no line meets three or more of these squares. See figure 2.

Lemma 6 Suppose $(s_i, t_i) \in T'$ for i = 0, 1, 2, ..., n are given with the properties that for $i \neq j$ B_{t_i} is disjoint from B_{t_j} and no line meets three or more

of the B_{t_j} 's. Then there exists $(s_i^j, t_i^j) \in T'$ for i = 0, 1, 2, ..., n and j = 0, 1with $(s_i^j, t_i^j) \supset (s_i, t_i)$ and $B_{t_i^0}$ disjoint from $B_{t_i^1}$ and no line meets three or more of the $B_{t_i^j}$ for i = 0, 1, 2, ..., n and j = 0, 1.

proof

Apply the split and shrink lemma iteratively n + 1 times. \Box

To prove the theorem construct a subtree $T^* \subset T'$ with the property that $p[T^*] = P$ is perfect and for every $n \in \omega$ no line meets three or more of the B_t with $(s,t) \in T^*$ for some s and t of length n. Then P is a perfect subset of A which does not contain three collinear points. \Box

One of our original interests in this problem was the following corollary:

Corollary 7 Suppose that A is an analytic subset of the plane and \mathcal{L} is a family of fewer than continuum many lines such that \mathcal{L} covers A. Then A is covered by a countable subfamily of lines from \mathcal{L} .

proof

If A contains a perfect set with no three points collinear then A could not be covered by \mathcal{L} , since perfect sets have the cardinality of the continuum. Hence we may assume that A is covered by countably many lines. Suppose:

$$A \subset \bigcup \{ l_n \mid n \in \omega \}$$

If l is any line such that $l \cap A$ is uncountable, then l is in \mathcal{L} . This is because $l \cap A$ is an analytic set, hence has cardinality the continuum, but every line in \mathcal{L} meets l in at most one point, so $l \cap A$ could not be covered by \mathcal{L} .

So A is covered by the l_n which are in \mathcal{L} plus at most countably many more lines in \mathcal{L} which cover the points in A such that $l_n \cap A$ is countable. \Box

Note that if V=L then there exists an uncountable coanalytic subset of the line which contains no perfect subsets. If this set is arranged around a circle then we see that the theorem cannot be generalized to include coanalytic sets.

However Dougherty, Jackson, and Kechris have proved the following result: **Theorem 8** Suppose the axiom of determinacy and V=L[R] is true. Then every subset of the plane either can be covered by countably many lines or contains a perfect subset P with no three points collinear.

Their proof uses a technique of Harrington (see Kechris and Martin [1]) to prove Silver's theorem that every coanalytic equivalence relation with uncountably many equivalence classes contains a perfect set of inequivalent points. They generalize this result and our result.

Is it true in Solovay's model [3] that every subset of the plane either can be covered by countably many lines or contains a perfect subset P with no three points collinear?

References

- A. S. Kechris and D. A. Martin, Infinite games and effective descriptive set theory, in Analytic Sets, ed. by C. A. Rogers et al, Academic Press, (1980), 404-470.
- [2] D. H. Fremlin, Consequences of Martin's Axiom, Cambridge University Press, (1984).
- [3] R.Solovay, A model of set-theory in which every set of reals is Lebesgue measurable, Annals of Mathematics, 92(1970), 1-56.