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Abstract

In this paper we give two results about analytic sets. The first is
a counterexample to a problem of Fremlin. We show that there
exists w; compact subsets of a Borel set with the property that
no o-compact subset of the Borel set covers them. In the second
section we prove that for any analytic subset A of the plane either
A can be covered by countably many lines or A contains a perfect
subset P which does not have three collinear points.

In his book about Martin’s Axiom [2] p. 61 D. H. Fremlin shows that,
assuming MA, for any analytic set X and set A C X of cardinality less than
the continuum there exists a o-compact set L such that A C L C X. (o-
compact means countable union of compact sets.) Here we show that the
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set A cannot be replaced by a family of compact sets of cardinality w;. This
answers a question of Fremlin [2] p.67.

Let @ be the rationals and let ' = Q“. E is a II3 set, or equivalently
an F,s set. For each o < wy let (', be a compact subset of Q which is
homeomorphic to o + 1 and let H, = C¥.

Theorem 1 There does not exists a o-compact set L such that for every
a < wi, HQCLCE

Lemma 2 For every compact set K C Q there exists o < wy such that for
all B> a, Cz\ K is nonempty.

proof

This follows easily from a well-known theorem of Sierpinski that every
countable scattered space is isomorphic to an ordinal. For simplicity we
sketch a proof here.

Let D(X) be the derivative operator, i.e. D(X) is the set of noniso-

lated points of X. Then let D*(X) be the usual ot iterate of D, defined by

induction as follows.
DY (X) = D(D(X))
DMX) = Nacny D (X) if X a limit ordinal

Define the rank of any X (rank(X)) as the least a such that D*(X) is empty.
Then the lemma follows easily from the following facts:

1. Every compact subset of Q has a countable rank.
2. If X CY then D(X) C D(Y).

3. If X C Y then rank(X)<rank(Y).

4. rank(Cpaqr) = a + 1.

O
To prove the Theorem let L = U, ¢, L, where each L, is compact. Let
K,, C Q be the projection of L, onto the n'" coordinate. By the lemma there



exists Cg which is not covered by any K. It follows that Hs is not covered
by L.
O

We don’t know whether the theorem is true for XY sets (G, ) or even for
a set which is the union of a countable set and a II§ (GYs).

Next we prove the following theorem:

Theorem 3 Suppose that A is an analylic subset of the plane, R?, which
cannot be covered by countably many lines. Then there exvists a perfect subset
P of A such that no three points of P are collinear.

proof

A set is perfect iff it is homeomorphic to the Cantor space 2¥. The proof
we give is similar to the classical proof that uncountable analytic sets must
contain a perfect subset. A subset A of a complete separable space X is

analytic iff there exists a closed set ' C w® x X such that A is the projection
of C, i.e.

A=pC)={y e X | Jz €w” (z,y) € C}

Every Borel subset of X is analytic.

Let A be analytic subset of the plane R? which cannot be covered by
countably many lines. Let S be the unit square ([0, 1] x [0, 1]) minus all lines
of the form = = r or y = r for r a rational number. Without loss of generality
we may assume that A is a subset of S. Since S is a complete separable space
there exists C' C w® x S a closed set such that A = p(C).

Give S the basis B, for s € 4<“ described in figure 1. ( 4<% is the set of
finite sequences of elements from 4 = {0, 1,2,3})

For y € S define y | n = s iff y € B, for s of length n and for € w* let
z | n be the restriction of x to the set n = {0,1,2,...,n —1}. Let

T'={(z1nyin) | (z,y)€C}

Then
C=[T={(z,y) | ¥n(xIn,yln)eT}

and

A =p[T]
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Figure 1: B, for s € 4<%

For any (s,t) € T define
Ton={31HeT | (3CsniCt)or (sCiAtCi)}
Let
T"={(s,1) € T | p[T(sy) cannot be covered by countably many lines }

Lemma 4 For any (s,t) € T’ p[T(’SJ)] cannot be covered by countably many
lines, where T(’SJ) =Ty N1

proof

By definition p[7(,)] cannot be covered by countably many lines. For
any x in p[1{s] but not in p[7{, ;)] there must be some (3, £) in T{,, but not
in 17, ,y such that x is in p[T{;3]. Since each such p[T;;] can be covered by

CountZably many lines, p[T(’SJ)] cannot be covered by countably many lines.

O
Lemma 5 (Split and shrink) Suppose (s;,t;) € T" for i =0,1,2,...,n are

given with the properties that for v # j By s disjoint from B;, and no
line meets three or more of the By ’s. Then there erists (SAZ,tAZ) e T for
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Figure 2: Split and shrink lemma

i = 1,2,...,n with (8,1 D (si,t;) and (Sé,té) e T for 5 = 0,1 with
(s0:15) D (S0, t0) and By disjoint from By and no line meels three or more

of the
Bt87Bt(1)7BA BA BA

11 129 3y

) Bt;lv
proof

Since p[T(’SO to)] cannot be covered by countably many lines we can find
distinct elements of it g, z;. Let [ be the line containing =y and zy. Since
this line cannot cover p[T(’Si ti)] fori=1,2,...,n we can find ($;,¢;) D (s, ;)
with each By, a positive distance from the line /. Now choose (Sé, té) D (S0, t0)
in 7" with B, a small enough neighborhood of z; so as ensure that no line

0

meets three or more of these squares. See figure 2.
O

Lemma 6 Suppose (s;,t;) € T" fori =0,1,2,...,n are given with the prop-
erties that for i # j By, is disjoint from By, and no line meets three or more
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of the By, ’s. Then there exists (Sj tj) el fori=0,1,2,...,n and 3 = 0,1

T 7

with (Sj tj) D (s:,t;) and By disjoint from Ba and no line meets three or

T 7

more of the B, fori=0,1,2,....n and 3 =0,1.

proof

Apply the split and shrink lemma iteratively n 4+ 1 times.
O

To prove the theorem construct a subtree T* C T’ with the property that
p[1™*] = P is perfect and for every n € w no line meets three or more of the
B with (s,t) € T for some s and t of length n. Then P is a perfect subset
of A which does not contain three collinear points.
O

One of our original interests in this problem was the following corollary:

Corollary 7 Suppose that A is an analytic subset of the plane and L is a
family of fewer than continuum many lines such that L covers A. Then A is
covered by a countable subfamily of lines from L.

proof

If A contains a perfect set with no three points collinear then A could not
be covered by L, since perfect sets have the cardinality of the continuum.
Hence we may assume that A is covered by countably many lines. Suppose:

Ac| L, | new}

If [ is any line such that { N A is uncountable, then [ is in £. This is
because [ N A is an analytic set, hence has cardinality the continuum, but
every line in £ meets [ in at most one point, so { N A could not be covered
by L.

So A is covered by the [,, which are in £ plus at most countably many
more lines in £ which cover the points in A such that [, N A is countable.
O

Note that if V=L then there exists an uncountable coanalytic subset of the
line which contains no perfect subsets. If this set is arranged around a circle
then we see that the theorem cannot be generalized to include coanalytic
sets.

However Dougherty, Jackson, and Kechris have proved the following re-
sult:



Theorem 8 Suppose the axiom of determinacy and V=L[R] is true. Then
every subset of the plane either can be covered by countably many lines or
contains a perfect subset P with no three points collinear.

Their proof uses a technique of Harrington (see Kechris and Martin [1])
to prove Silver’s theorem that every coanalytic equivalence relation with
uncountably many equivalence classes contains a perfect set of inequivalent
points. They generalize this result and our result.

[s it true in Solovay’s model [3] that every subset of the plane either can
be covered by countably many lines or contains a perfect subset P with no
three points collinear?
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