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The axiom of choice and two-point sets in the plane

Arnold W. Miller 1

Abstract

In this paper we prove that it consistent to have a two-point set in
a model of ZF in which the real line cannot be well-ordered. We
prove two results related to a construction of Chad of a two-point
set inside the countable union of concentric circles. We show that
if the reals are the countable union of countable sets, then every
well-orderable set of reals is countable. However, it is consistent
to have a model of ZF in which the reals are the ω1 increasing
union of sets of size ω1 and ω2 can be embedded into the reals.

A two-point set is a subset of the plane which meets every line in exactly
two points. It is an open question whether a two-point set can be Borel.
In work on the two-point problem Chad [1] came up with the question of
whether it might be possible to have a model of ZF in which the reals are the
countable union of countable sets and there is an uncountable well-orderable
set of reals.2 If this were possible, then Chad’s method of construction of
two-point sets inside concentric circles could be used to construct a Borel
example of a two-point set.

However, it is impossible:

Theorem 1 Suppose the reals are the countable union of countable sets.
Then every well-orderable set of reals is countable.

Proof
Let p : ω × ω → ω be a fixed bijection. For each n ∈ ω define the map

πn : 2ω → 2ω by:

πn(x) = y iff ∀m ∈ ω y(m) = x(p(n, m)).

1
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2In the first draft of [1] it was stated that we had shown that in the Feferman-Levy

model there is no uncountable well-orderable set of reals. But this is already known, see
Cohen [2] page 146.
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Suppose there exists (Fn : n ∈ ω) such that 2ω =
⋃

n∈ω Fn and each Fn is
countable. Define (Hn : n ∈ ω) by

Hn = πn(Fn) = {πn(x) : x ∈ Fn}.

Since the image of a countable set is countable each Hn is countable.
Suppose for contradiction that there exists (uα : α ∈ ω1) distinct

elements of 2ω. Then for all n there exists α ∈ ω1 such that uα /∈ Hn.
Define (αn : n ∈ ω) by

αn = the least α such that uα /∈ Hn.

Let x ∈ 2ω be the unique real such that

∀n πn(x) = uαn .

But this is a contradiction since then x /∈
⋃

n∈ω Fn.
QED

The following answers a question raised by Chad.

Theorem 2 It is consistent to have a model of ZF in which ω2 embeds into
the real line and the real line is the ω1 increasing union of sets of size ω1.

Proof
Before doing this we prove the following lemma. Our model is analogous

to the Feferman-Levy model (see Cohen [2] p.143, Jech [3] p.142) but one
cardinal higher.

Lemma 3 There is a countable transitive model N of:

1. ZF + DC + CH (i.e, |2ω| = ω1, there is bijection between 2ω and ω1),

2. the power set of ω1 is the ω1-union of sets of size ω1,

3. cof(ω2) = ω1, and

4. |[ω2]
ω| = ω2.
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Proof
Let be M be a countable transitive model of ZFC+GCH. Working in M
let κ = (ℵω2)

M . Define P to be the standard Levy collapse of κ to ω1

using countable partial functions. This means p ∈ P iff there is a countable
F ⊆ ω1 × ω1, such that p : F → κ and p(α, β) < ℵα for every (α, β) ∈ F .
For G which is P-generic over M define (gα : α < ω1) by gα(β) = γ iff there
exists p ∈ G such that p(α, β) = γ. Standard density arguments show that
each gα : ω1 → ℵα is onto.

Consider any permutation π̂ : ω1 × ω1 → ω1 × ω1 which fixes the first co-
ordinate, i.e., π̂(α, β) = (α′, β′) implies α = α′. Such a permutation induces
an automorphism π of P by defining:

1. dom(π(p)) = π̂(dom(p)) and

2. π(p)(π̂(α, β)) = p(α, β)

Working in M , the group G of permutations are those π such that π̂ has
countable support, i.e.,

supp(π̂) = {(α, β) : π̂(α, β) 6= (α, β)}

is countable. Let {Hα : α < ω1} generate the filter F of subgroups of G
where

Hα = {π ∈ G : π̂ � α× α is the identity }.

It is easily checked that F is normal. Let N be the symmetric model de-
termined by G,F . The forcing is countably closed and the filter of subgroups
is closed under countable intersections. It follows that [ω2]

ω is the same in all
the models M ⊆ N ⊆ M [G]. The rest of the arguments to prove the lemma
are analogous to Feferman-Levy and left to the reader.
QED

Working in the model N of the lemma consider the usual Cohen forcing
order for adding ω2 subsets of ω:

Fn(ω2, 2) = {p : dom(p) ∈ [ω2]
<ω and range(p) = {0, 1}

Since Fn(ω2, 2) just consists of finite sequences of ordinals, it is clear that it
can be well-ordered in type ω2 in any model of ZF (without using the axiom
of choice).
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The set of canonical names, CN(Fn(ω2, 2)), for subsets of ω is defined to
be the set of all countable τ such that τ is a subset of

τ ⊆ Fn(ω2, 2)× { ◦n : n ∈ ω}

This set need not be well-orderable in a model of ZF. However, it is easy to
see that it always has the same cardinality as the set [ω2]

ω.
If we now take N [G] for G which is (Fn(ω2, 2))N -generic over N , then N

is the model we want and Theorem 2 is proved.
QED

Remark 4 Note that in the model for Theorem 2 DC (Dependent Choice)
holds and there is a bijection between ω2 and the real line. So in fact, the
usual inductive construction of a two-point set could be done.

In response to a question of Chad we show:

Theorem 5 It is consistent to have a model of ZF in which there is a two-
point set but the real line cannot be well-ordered.

Proof
Here is a sketch of the proof. Start with M a countable transitive model

of ZF such that there exists an infinite Dedekind-finite set of reals and ω1

is regular. For example, the standard Cohen model see Jech [3] page 61.
Working in M let Fn(ω1, 2) be the usual poset for adding ω1 Cohen reals, i.e.
p in Fn(ω1, 2) is a finite partial function from ω1 to 2. The model we want is
M [G] for any G which is Fn(ω1, 2)-generic over M .

Since Fn(ω1, 2) can be well-ordered in M it is not hard to see that forcing
with Fn(ω1, 2) will preserve Dedekind finite sets (Lemma 7). Hence the reals
of M [G] cannot be well-ordered. Also since ω1 is regular in M for x a real in
M [G] there exists an α < ω1 such that x is in M [Gα] (Lemma 8).

Then using the αth Cohen real to determine the radius of a circle centered
at the origin we can inductively construct a 2-point set in M [G].

We give this last argument in more detail:
Suppose N is a countable transitive model of ZF. Suppose that X ∈ N is

a partial two-point set, i.e., X is a subset of the plane which does not contain
three collinear points.
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Fix n ∈ ω.
Working in N define Ln to be the set of all lines which meet the circle of

radius n + 1 centered at the origin.
Suppose that x ∈ 2ω is 2<ω-generic over N and define

r(n, x) = (n + 1) +
∑
k<ω

x(k)2−k−1.

Let C be the circle of radius r(n, x) centered at the origin. For each line
L in Ln since the radius of C is greater than n + 1, the line L will meet it in
two distinct points. Let L ∩ C = {pL, qL} where pL is lexicographically less
than qL. Define F (L) as follows:

F (L) =


∅ if |L ∩X| = 2
{pL} if |L ∩X| = 1
{pL, qL} if |L ∩X| = 0

Define
Y = X ∪

⋃
{F (L) : L ∈ Ln}.

It is easy to see by the genericity of its radius that the circle C cannot contain
any point of N . It follows that for any L ∈ Ln that |L ∩ Y | = 2.

Now we verify that Y does not contain three distinct collinear points.
Suppose a, b, c ∈ Y are collinear. It cannot be that all three are from X since
the set X is a partial two-point set. It cannot be that all three are new, i.e.,
from Y \X since all of these points are on the same circle, C. It cannot be
that two are old and one is new, say a, b ∈ X and c ∈ Y \ X. This means
that c ∈ F (L) for some L ∈ Ln. But by the definition of F (L) it cannot be
that L is the line L′ containing a and b. But then L′ and L are distinct lines
in N meeting at the point c, which contradicts the fact that the radius C is
not in N .

So finally we are left with the case of one old and two new points, i.e.,
a ∈ X and b, c ∈ Y \ X. Say b ∈ F (L) and c ∈ F (L′). It is impossible
that L = L′ by the way we defined F . According to Lemma 4.1 of [1] for
distinct lines L, L′ and point a there are at most 22 radii r > 0 such that if
Cr is the circle of radius r centered at the origin, then there exists b ∈ Cr∩L
and c ∈ Cr ∩ L′ such that a, b, c are collinear. These radii are the solutions
of polynomial equations and hence would lie in N . Again by genericity this
cannot happen.

This is the construction at each step. We now describe the transfinite
construction.
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Definition 6 For any ordinal α define

Fn(α, 2) = {p : D → 2 : D ∈ [α]<ω}

ordered in the usual way by inclusion, p ≤ q iff p ⊇ q. For any Gα which is
a Fn(α, 2)-filter and β < α define

Gβ = Gα ∩ Fn(β, 2)

and define xβ ∈ 2ω by

xβ(n) = i iff ∃q ∈ Gα q(β + n) = i.

Standard iteration arguments show that for limit ordinals β < α in a
countable transitive model M of ZF if Gα is Pα generic over M , then Gβ is
Pβ-generic over M and xβ is 2<ω generic over M [Gβ].

For each β < ωM
1 if β = λ + n where λ is a limit ordinal, let Cβ be

the circle of radius r(n, xβ) centered at the origin. Note that the sequence
(xβ : β < ωM

1 ) is in the model M [GωM
1

]. Hence working in this model we may
construct inductively without using choice an increasing sequence of partial
two-point sets (Xβ : β < ωM

1 ) using the argument we described above at
each successor step. Since every line will appear at some countable stage (by
Lemma 8) the set X =

⋃
α<ωM

1
Xα will be a two-point set in M [GωM

1
]. Since

our forcing can be well-ordered the Dedekind finite set in the ground model
M is preserved (by Lemma 7) and hence Theorem 5 is proved.
QED

Lemma 7 Suppose that M is a countable transitive model of ZF. Suppose
that P is a partially ordered set in M such that

M |= P can be well-ordered.

Suppose that D ∈ M satisfies

M |= D ⊆ 2ω is an infinite Dedekind finite set.

Then for any G which P-generic over M :

M [G] |= D is a Dedekind finite set.
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Proof

Suppose not. Working in M take p ∈ G and
◦
f a P-name such that

p 

◦
f : ω → D is one-one.

For each n < ω let

En = {q ∈ P : q ≤ p and ∃d ∈ D q 

◦
f (n) = ď}.

Define gn : En → D by gn(q) = d iff q 

◦
f (n) = ď. Since En can be well-

ordered and D is Dedekind finite, the range Rn of the map gn is finite. But
since 2ω is a linearly ordered set, it follows that

⋃
n<ω Rn is a finite set.

But this is contradiction since in M [G] the range of f is a subset of⋃
n<ω Rn.

QED

Lemma 8 Suppose that M is a countable transitive model of ZF such that

M |= ω1 is regular.

Then for any G which is Fn(ωM
1 , 2)-generic over M

M [G] ∩ 2ω =
⋃

α<ωM
1

(M [Gα] ∩ 2ω).

Proof
Suppose x ∈ M [G] ∩ 2ω.

Working in M let
◦
x be a name for x and take p ∈ G so that

p 

◦
x∈ 2ω.

For each n < ω let

En = {q ∈ PωM
1

: q ≤ p and ∃i ∈ {0, 1} q 

◦
x (n) = i}.

Since PωM
1

can be well-ordered and the sequence (En : n < ω) is in M we
can (without using choice) find (An ⊆ En : n < ω) in M so that each An is
a maximal antichain beneath p. One needs to check that

M |= antichains in Fn(ω1, 2) are countable.
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This is true because in M there is bijection between ωM
1 and Fn(ωM

1 , 2)
and since ωM

1 is regular in M the countable union of countable subsets of
Fn(ωM

1 , 2) is countable.
Hence there exists α < ωM

1 such that
⋃

n<ω An ⊆ Pα. It follows by
standard canonical name arguments that x ∈ M [Gα].
QED

Remark 9 The method of proof of Theorem 5 also yields models of ZFC in
which the continuum is arbitrarily large and there is a two-point set which is
included in the union of ω1 circles.
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