
To appear in

Topology Proceedings

ON SQUARES OF SPACES AND Fσ-SETS

ARNOLD W. MILLER

Abstract. We show that the continuum hypothesis implies
there exists a Lindelöf space X such that X2 is the union of
two metrizable subspaces but X is not metrizable. This gives
a consistent solution to a problem of Balogh, Gruenhage, and
Tkachuk. The main lemma is that assuming the continuum
hypothesis there exist disjoint sets of reals X and Y such
that X is Borel concentrated on Y , i.e., for any Borel set B
if Y ⊆ B then X \B is countable, but X2 \∆ is relatively Fσ

in X2 ∪ Y 2.

In Balogh, Gruenhage, and Tkachuk [1] the following question is
asked:

Question 4.1. Let X be a regular paracompact space X such
that X × X is the union of two metrizable subspaces. Must X be
metrizable? What if X is Lindelöf?

Theorem 1. Assume the continuum hypothesis. Then there exists
a nonmetrizable regular Lindelöf space X such that X2 is the union
of two metrizable subspaces.

We first prove the following Lemma.

Lemma 2. (CH) There are uncountable disjoint sets X, Y ⊆ 2ω

such that
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(1) X is Borel concentrated on Y , i.e. every Borel set in 2ω

containing Y contains all but countably many elements of
X,

(2) Y 2 \∆ is Fσ in X2 ∪ Y 2, and
(3) X2 \∆ is Fσ in X2 ∪ Y 2.

Here ∆ = {(x, x) : x ∈ 2ω}.

Proof.
We identify the Cantor space 2ω with the power set P (ω) of ω. We
use [ω]ω to stand for the infinite subsets of ω. Define for y ∈ [ω]ω

[y]∗ω = {x ∈ [ω]ω : x ⊆∗ y}
where ⊆∗ stands for inclusion mod finite. Let 〈Bα : α < ω1〉 be all
Borel subsets of [ω]ω. We construct yα for α < ω1 so that

(1) α < β implies yβ ⊆∗ yα and yβ 6=∗ yα and
(2) either yα /∈ Bα or [yα]∗ω ⊆ Bα.

These conditions are easy to get. Given yβ for β < α and Bα let
y ∈ [ω]ω be arbitrary with y ⊆∗ yβ but yβ 6=∗ y for each β < α.
If [y]∗ω is not a subset of Bα, then simply take yα ∈ [y]∗ω \ Bα,
otherwise take yα = y.

Let

X = {yα \ yα+1 : α < ω1} and Y = {yα : α < ω1}
Iff B is any Borel set containing Y , then choose α so that B = Bα.

At stage α of the construction it must have been that [yα]∗ω ⊆
Bα. But this means that xβ ∈ Bα for all β ≥ α. So X is Borel
concentrated on Y .

If we define

F = {(u, v) ∈ P (ω)× P (ω) : (u ⊆∗ v or v ⊆∗ u) and u 6= v}
then F is an Fσ set and

F ∩ (X2 ∪ Y 2) = (Y 2 \∆)

Also if we define

H = {(u, v) ∈ P (ω)× P (ω) : u ∩ v =∗ ∅}
then H is an Fσ set and

H ∩ (X2 ∪ Y 2) = (X2 \∆)

This finishes the proof of the Lemma.
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QED
Now define the following Michael-line like topology. Suppose

that M is a topological space and X ⊆ M . Then M(X) is the
topological space on the same set but with the following topology.
For x ∈ X we make x an isolated point, i.e., add {x} to the topology
of M(X). For any point y ∈ M \ X neighborhoods in M form a
neighborhood basis for y in M(X). It is easy to see that M(X) is
regular for any regular space M and subset X ⊆ M .

The following is Exercise 5.5.2 from Engelking [2]:

Proposition 3. Suppose M is a metric space and X ⊆ M . Then
M(X) is metrizable iff X is an Fσ set in M .

Our example is M(X) where X and Y are from the Lemma and
M = X ∪Y has its usual (separable metric) topology as a subspace
of 2ω. It follows from the Proposition that M(X) is not metrizable.

Claim 1. M(X) is a Lindelöf space.
Take any open cover U of M(X). Open sets in M(X) have the

form U ∪ Z where U is open in M and Z ⊆ X is arbitrary. Then
since Y has its standard topology, countably many elements of U
will cover Y , say

{(Un ∪Xn : n < ω} ⊆ U

where each Un open in M and Xn ⊆ X. But since X is Borel
concentrated on Y we have that X \ ∪{Un : n < ω} is countable,
so we need only add countably many more elements of U to cover
all of M(X).

Claim 2. M(X)2 is the union of two metrizable subspaces.
Let
M1 = (X2 \∆) ∪ Y 2 and
M2 = (X × Y ) ∪ (Y ×X) ∪ (X2 ∩∆).

Note that M1 is N(X2\∆) where N = (X2\∆)∪Y 2 in its separable
metric topology as a subspace of 2ω × 2ω. By the Lemma we have
that X2 \ ∆ is relatively Fσ in N and so by Proposition 3 M1 is
metrizable.

To see that M2 is metrizable use the Bing Metrization Theorem:
A topological space is metrizable iff it is regular and
has a σ-discrete basis.
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A family B of subsets of X is discrete iff every point of X has a
neighborhood meeting at most one element of B. σ-discrete means
the countable union of discrete families.

Note that for each x ∈ X the sets {x}×Y and Y ×{x} are open
in M2. Let B be a countable open basis for Y . Then

C = {U × {x}, {x} × U, {(x, x)} : x ∈ X, U ∈ B}
is an open basis for M2. It is σ-discrete. The family {{(x, x)} :
x ∈ X} is discrete in M2 since X2 ∩ ∆ is closed in M2. And for
each fixed U ∈ B the family {U × {x} : x ∈ X} is discrete in M2.
(For (x, x) ∈ X use the neighborhood {x} × {x}. For (y, x) with
y ∈ Y and x ∈ X use the neighborhood Y × {x} and for (x, y) use
the neighborhood {x} × Y .) Similarly, for each U ∈ B the family
{{x} × U : x ∈ X} is discrete in M2. Since B is countable, M2

has a σ-discrete basis and is therefor metrizable.
This proves Theorem 1.

QED
The next Theorem is an easy generalization of Theorem 1 using

the tower cardinal t which is defined as follows. t is the minimum
cardinality of a set T ⊆ [ω]ω which is linearly ordered by ⊆∗ but
there does not exist z ∈ [ω]ω with z ⊆∗ y for every y ∈ T . Martin’s
axiom implies that t = c.

Theorem 4. Suppose t = c. Then there exists a nonmetrizable reg-
ular paracompact space X such that X2 is the union of two metriz-
able subspaces.

Proof.
The main Lemma changes to:

Lemma 5. (t = c) There are disjoint sets X, Y ⊆ 2ω of cardinality
c such that

(1) X is Borel c-concentrated on Y , i.e., for every Borel set B
in 2ω, if Y ⊆ B then |X \B| < c,

(2) Y 2 \∆ is Fσ in X2 ∪ Y 2, and
(3) X2 \∆ is Fσ in X2 ∪ Y 2.

The proof is similar. The space M = X∪Y is the same. Since X
is not relatively Borel in M we have by Proposition 3 that M(X)
is not metrizable. But M(X) is regular and paracompact for any
X ⊆ M and metric M , see example 5.1.22 Engelking [2].
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QED

Remark. The Michael line is the topological space M(X) where
M is the unit interval, [0, 1], and X the irrationals in [0, 1]. Michael
Granado in unpublished work has shown that the square of the
Michael line is not the union of two metrizable subspaces.

Question 6. (Using just ZFC) Do there exist disjoint sets of reals
X and Y such that X is not Fσ in X ∪ Y but X2 \ ∆ is Fσ in
X2 ∪ Y 2?
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The appendix is not intended for final publication but for the
electronic version only.

Appendix
Suppose M is a metric space and X ⊆ M . Then
M(X) is metrizable iff X is an Fσ in M . (Engelking
5.5.2)

Proof.
Suppose X is not Fσ in M , then Y = M \ X is closed in M(X) (
since the points of X are isolated, X is open ). But Y is not Gδ

in M(X). To see, this suppose that Y = ∩n∈ωUn were each Un is
open in M(X). Then there would exists Vn open in M and Xn ⊆ X
with Un = Vn ∪Xn. But then Y = ∩n∈ωVn which contradicts Y is
not Gδ in M .

For the converse, suppose X is Fσ in M and write it as the union
of closed sets X = ∪n<ωCn. M(X) is regular so it is enough by the
Bing Metrization Theorem to check that it has a σ-discrete base.
Let B be a σ-discrete base for M . We claim that

B ∪ {{x} : x ∈ X}

which is a basis for M(X) is σ-discrete in M(X). B is σ-discrete
in M so it is also σ-discrete in M(X).

{{x} : x ∈ X} = ∪n<ωCn where Cn = {{x} : x ∈ Cn}

shows that it is σ-discrete, since for any n if x /∈ Cn then M \ Cn

is a neighborhood of x missing all elements of Cn.

M(X) is regular paracompact, whenever M is met-
ric. (Engelking 5.1.22)

Proof.
Regular: Given p ∈ M if p ∈ X then it is has the clopen neighbor-
hood {p}, if p /∈ X, then the neighborhoods of p in M are also a
neighborhood basis in M(X).

Paracompact: Let U be an open cover of basic open sets in
M(X). We may assume it has the form:

U = V ∪ {{x} : x ∈ Z}

where V is a family of basic open sets in M and Z = X \∪V. Since
metric spaces are hereditarily paracompact, there exists a locally
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finite refinement W of V with ∪V = ∪W. But then W ∪{{x} : x ∈
Z} is a locally finite refinement of U .
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