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1. Introduction

The purpose of this chapter is to discuss some peculiar sets of real numbers and
some of the methods for obtaining them. The first such set was constructed by
Bernstein in 1908. He constructed a set of reals of cardinality the continuum
which is neither disjoint from pnor contains an uncountable closed set. His
construction used transfinite induction and the fact that every uncountable closed
set has cardinality the continuum. The kinds of singular sets which we will discuss
can almost all be found in KuraTtowskr (1966, §40) “Totally imperfect spaces and
other singular spaces”.

We are going to be concerned with the topological notion of first category set or
meager set and the fundamental properties of Lebesgue measure. Recall that a set
is nowhere dense iff its closure has no interior. A set of reals is meager iff it is the
countable union of nowhere dense sets. A set of reals is comeager iff it 1s the
complement of a meager set. The Baire category theorem says that no complete
metric space is meager in itself.

Let us establish some of the terminology to be used. R denotes the real line, Q9
the set of rationals, and [0, 1] the closed unit interval. The symbol @ stands for the
set {0, 1, 2,...} and 2 for the set {0, 1}. We will use w, to denote the first
uncountable cardinal and ¢ to denote the cardinality of the continuum. The space
w* (Baire space) consists of the set of all functions from w to w. It is given the
product topology where w is given the discrete topology. This topology is most
conveniently described as follows. Let w=“ be the set of finite sequences of
elements of w. For any s € 0™ let

[s]=f€w”:sCf},

and for any n < w let s"n be the finite sequence which begins like s and ends in n.
The topology on w* is given by letting {[s]: s € @} be the basic open sets.
Similarly 2¢ (Cantor space) is the space of all functions from » to 2 given the
product topology. The space 2* also has on it the product measure which is
determined by declaring that for each s € 27, [s] has measure (3)". Of course the
space 2” is homeomorphic to Cantor’s “‘middle thirds” set which is the set of all
x € [0, 1] whose ternary expansion

o i,,
X = ngl ?
has only i, = 0 or i, = 2. There is a useful continuous map p: 2 = [0, 1] defined by

b= 3 E(TI)

n=0

This map is onto, one-to-one except on a countable set (the set of x €2 which
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are eventually one or eventually zero), and takes each [s] onto an interval of the
same measure. Furthermore if we identify (via characteristic functions) 2¢ with
P(w) (the set of all subsets of w), then X C Y implies p(X)=p(Y). Let [w]* be
the subspace of P(w) =2 of infinite subsets of w. Then w* is homeomorphic to
[w]® via the natural embedding o: w* —»[w]” where o(g) is the set contained in w
whose characteristic function is given by the sequence of zeros and ones:

08®1 81 Q8@1 - - .

(g(0) zeros, then a one, then g(1) zeros, then a one, etc.).

The space w* is also homeomorphic to the set of irrationals. Let Z be the set of
integers. Then clearly Z“ is homeomorphic to w®. Construct a family of open
intervals I, for s € Z < as follows. For each n €7 let I,y = (n, n + 1). Suppose we
have already found I, for some s €27 <. Let {Is,: n €Z} be a family of disjoint
open subintervals of I ordered like Z and lying next to each other (i.e. the right
hand end point of I, is the left hand end point of I, with union dense in I,
and each having diameter less than 5 the diameter of I. If we define 7: Z“ - R by

{r(@h = Mg n <o},

then it is not hard to check that 7 is a homeomorphism of Z“ and R — H where
H is the countable dense set of end points of the L’s. If we give Z“ the
lexicographical order, then 7 is order preserving. Since H is order isomorphic to
Q there is an order isomorphism

fR->R

taking H to ©@. I think this argument is roughly equivalent to the classical one
using continued fractions (see ALEXANDROFF and Urysoun (1927)).

2. Luzin and Sierpinski sets

Arguments using transfinite induction to construct singular sets of reals are
certainly the most plentiful. Until Cohen’s method of forcing arrived on the scene
this was practically the only method used. Most of the time such a construction
requires the continuum hypothesis (CH) or at least Martin’s Axiom (MA). Most of
the time 1 have refrained from pointing out the obvious generalization of an
argument or definition under CH to one that works under MA.

In 1914 Luzin constructed, using the continuum hypothesis, an uncountable set
of reals having countable intersection with every meager set. The same con-
struction had been published in 1913 by Mahlo. But (as is not unusual in
mathematics) such a set has become universally known as a Luzin set.
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2.1. THeorem (ManLo (1913), LuziNn (1914)). Assuming the continuum hypothesis
there is a set of reals of cardinality the continuum which has countable intersection
with every meager set.

Proor. Let {C,: @ < w{} be the set of all closed nowhere dense sets. Inductively
choose x, a real not in:

{xg: B<alUU{Gs: B <a}.

We can always make such a choice by the Baire category theorem. Then
X ={x.: a <w

is the required set. [J

A similar construction using Borel sets of measure zero results in a set called a
Sierpiaski set. For some applications of Luzin and Sierpinski sets to topology see
vaN Douwen, TaLr, and WEeiss (1977), Tarr (1976), and TaLL (1978).

2.2. THEOREM (SIERPINSKI (1924)). Assuming the continuum hypothesis there is a
set of reals of cardinality the continuum which has countable intersection with every
measure zero sel.

Hurewicz (1932) also used this argument to construct (assuming the continuum
hypothesis) an uncountable set X CR* with the property that every uncountable
subset of X has infinite dimension. See also Watsu (1979).

A modern day construction of a Luzin set is to note that the generic set of reals
in a Cohen extension is a Luzin set. Similarly the generic set of reals in Solovay’s
random real extension is a Sierpifski set. See Kunen’s chapter for the details on
this.

Assuming MA + —CH (Martin’s axiom plus the failure of the continuum
hypothesis) neither Luzin nor Sierpiniski sets exist. This is because under MA any
set of reals of cardinality less than the continuum is both meager and has measure
zero (MARTIN-SoLovay (1970) see also SHoenFIELD (1975) and Rupin (1977)).

Kunen (1976) generalized this to show that assuming MA+ —CH, if Y is a
Hausdorff space without isolated points, then there are no Luzin sets in Y. It is
easy to show that it is consistent with — CH that there exists a Luzin set and a
Sierpinski set. One way to do this is to start with a model of — CH and iteratively
with finite support forcing, add a Cohen real and a random real. In the resulting
model the Cohen reals will be a Luzin set and the random reals will be a
Sierpifiski set. Another way is to note that a Luzin or Sierpinski set remains such
when Sacks reals (perfect set forcing) are added. Already in 1938, ROTHBERGER
knew that w, was the best one could do.
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2.3. TueorREM (ROTHBERGER (1938)). Suppose X is a Luzin set and Y'is a Sierpiriski set.
Then

IX]={Y]|=w:.
ProoFr. The following lemma is necessary to prove Theorem 2.3.

LemMa. If X is not meager (not measure zero) and X has cardinality k, then the
real line is the union of k many measure zero sets (meager sers).

Proor. Let G be a comeager set of measure zero (see OxroBy (1971), Corollary
1.7). Then the real line is covered by the family:

x+G:xe X}.

Because if z is not in x+ G for any x € X, then z — G is disjoint from X. But
z — G is comeager. A similar argument works for the dual statement. O

Since every uncountable subset of a Luzin set is a Luzin set, and Luzin sets are
not meager, it follows that the existence of a Luzin set implies that the real line is
the union of @, many measure zero sets. Thus any Sierpiiski set must have
cardinality w,. Dually the existence of a Sierpinski set implies any Luzin set must
have cardinality w,. [J

It is possible to generalize the construction of Luzin sets as follows. Suppose 1
1s a countably additive proper ideal of subsets of the real line containing all
singletons. We call a set of reals I-Luzin iff it is uncountable and it has countable
intersection with every element of I. A family JC I generates I iff for all
X €1 thereisa Y &J with X C Y. Assuming the continuum hypothesis and that
the ideal I is generated by a family J of cardinality =w,. it is easy to inductively
construct an I-Luzin set. For example, if [ is the ideal of meager sets (which is
generated by the meager F, sets), then an I-Luzin set is just what Luzin
constructed. Similarly if I is the ideal of measure zero sets (which is generated by
the Gs sets of measure zero), then an [-Luzin set is a Sierpinski set. An
interesting extension of Luzin’s construction is given by TALL (19 - -). He shows that
assuming Baumgartner’s axiom and the continuum hypothesis an I-Luzin set can
be constructed for any ideal I generated by fewer than 2¢' sets.

In MiLLer (1976b) I give a result of Kunen and myself that for each «,
2 <« < w,, there is an ideal I, (generated by its Borel members) such that any
I.-L.uzin set has Baire order a.

If we assume Martin’s axiom and the failure of the continuum hypothesis it is
often the case that in order to generalize results proved under the continuum
hypothesis you must replace ‘countable’ by ‘less than continuum’ (see KUNEN
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(1968)). Thus we might define a ¢-1-Luzin set as a set of reals X of cardinality the
continuum meeting each member of [ in a set of cardinality less than the
continuum. In MiLLer (1979a) 1 show that assuming Martin’s axiom a ¢-1,-Luzin
set has Borel order between « and « + 2.

Clearly under Martin’s axiom c¢-Luzin sets and c-Sierpinski sets exist. In
MaRrRTIN-SoLovAY (1970) it is shown that Martin’s axiom is equivalent to saying
that for any o-ideal I generated by its Borel members and satisfying the
countable chain condition, the real line cannot be covered by fewer than con-
tinuum many elements of I. Thus Martin’s axiom is equivalent to saying for any
ideal I as above there is a c-I-Luzin set (assuming ¢ is regular).

What should be the complete negation of Martin’s axiom? More specifically
consider the following question.

Question. Is the failure of the continuum hypothesis consistent with either of the
following?

(1) For any partial order PP with the countable chain condition and cardinality
=¢ there exists (G,: o < w,) a sequence of P-filters such that for any dense D CP
all but countably many G, meet D.

(2) For any non-trivial ideal I in the Borel sets with the countable chain
condition there is an I-Luzin set of cardinality w,.

This question was motivated by the definable forcing axiom (DFA) of van
Douwen-FLEissNer (19--). The models of Beii-Kunen (1981) and STEPRANS
(1982) in which the continuum is X,, may be relevant. Recently BAUMGARTNER
(19--) has shown that the following sentence is true in the side-by-side Sacks
model. For every partial order P with the countable chain condition there are w,
dense sets in P such that no filter in P meets them all.

3. Concentrated sets and sets of strong measure zero

A set of reals X has strong measure zero iff given any sequence &, >0 for
n < w, X can be covered by a sequence of sets X, each having diameter less than
e, (Borer (1919)). A set of reals X is concentrated on a set D iff for any open set
G if D CG, then X — G is countable (BesicovitcH (1934)). Borer (1919) con-
jectured that every strong measure zero set is countable. This conjecture is now
known to be independent.

3.1. Tueorem. (1) (SzriLramN (Marczewskr) (1938b)). A set of reals X is a Luzin
set iff X is uncountable and concentrated on every countable dense set of reals.

(i1) (SierPiNsk1 (1928)). A set of reals X concentrated on a countable set has
strong measure zero.
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Proor. Part (1) is easy to prove since X is a Luzin set iff for every dense open G,
X — G is countable.

Part (i) is proved as follows. Suppose X is concentrated on the set D=
{dn: n < w}. Given any sequence g, >0 for n < w let I, be an open interval about
d, of diameter less than &,,. Let:

G=U{l,:n<w}.

We have that X — G is countable. Use the €,,,, for n <w to cover X - G. O

3.2. THeorREM (Laver (1976)). It is consistent that every strong measure zero set is
countable.

Thus special set theoretic axioms or models of set theory must be used to
construct uncountable strong measure zero sets, concentrated sets, etc. Assuming
Martin’s axiom c¢-Luzin sets exist and it is not hard to see that ¢-Luzin implies
c-concentrated implies strong measure zero. The axiom V = L implies the con-
tinuum hypothesis, thus Luzin and Sierpinski sets exist. In fact, since there is a
Al-well-ordering of the reals in L it is easy to show that there are A} Luzin sets
and A4} Sierpiiski sets. See MoscHovakis (1980) Chapter 5 for descriptive set
theory in L. Since a Sierpinski set is not measurable and a Luzin set does not have
the property of Baire, neither of these sets can be 31 or I}. An uncountable
concentrated set cannot be 3} since it cannot contain a perfect subset. However
the following is true.

3.3. TueoreMm (Erp6s, Kunen, Maurpiv (1981)). If V =L, then there is an un-
countable IT} set which is concentrated on the rationals.

Sierpinski asked whether every strong measure zero set is concentrated on
some countable set. This was answered by BesicovircH (1942).

3.4. Tueorem (BesicoviTcH (1942)). Assuming the continuum hypothesis there is a
set of reals which has strong measure zero but is not concentrated on any countable
set.

Proor. Construct (as in the construction of a Luzin set) a sequence P, for o < w,
of disjoint nowhere dense perfect sets (perfect= closed, nonempty, and no
isolated points) with the property that for any meager set M, M meets at most
countably many of the P,. For each o <w, let E, C P, be a (relativized to P,)
Luzin set. Then:

E=U{E,;:a <w}

has strong measure zero, but is not concentrated on any countable set. For any



CH. 5, §3] CONCENTRATED SETS 209

sequence ¢, >0 for n <w let G be an open dense set which is the union of
intervals I, each of diameter less than &,,. Then there i1s an a < w; such that:

U{Eg:a<B<o}CU{Pra<B<w}CG.

But U{Ejs: 8 < a} being the countable union of strong measure zero sets can be
covered by a union of intervals J, each of diameter less than £,,+1. E is not
concentrated anywhere since for any countable D there is an « such that
P, N D =0, and so the complement of P, is an open set containing D but disjoint
from the uncountable set E,. [

GARDNER (1979) generalized Besicovitch’s argument and studies a hierarchy of
sets which are not concentrated on any countable set, yet which do have strong
measure zero.

An interesting characterization of strong measure zero sets was found by
GALVIN, MycieLsky, and SoLovay (1979).

3.5. TueoreM (GarviN, Mycieiskl, and Sorovay (1979)). A set X has strong
measure zero iff for any meager set G there exists a real x such that (x + X)Ng=0.

The implication from right to left is trivial. Given any sequence of £, >0 let Q
be an open dense set which is a union of intervals I, of length ¢,. By assumption
there exists x such that x + X C Q and therefore X CU, ., (I, — x). The implication
from left to right is harder. For simplicity let’s assume that X C [0, 1]. We need
the following lemma.

3.5.1. Lemma. For any closed nowhere dense C and closed interval J there exists an
e >0 and a finite family F of closed subintervals of J such that for any interval
1 C0, 1] of length e there exists J' € F such that (J'+ )N C=0.

Proor. Since C is nowhere dense, for any x € [0, 1] there exists I, with x € I, and
J. C J such that

J+I)NC=¢.

By compactness finitely many I, cover [0, 1]. Thus for some sufficiently small
£ >0 every interval I of length & i1s contained in some I, (i.e. ¢ smaller than the
length of overlap of any two I, in the finite cover will do). [

Now we prove Theorem 3.5.

Suppose G = U ,.,C, where each C, is closed nowhere dense and C, C C,.1.
Using the Lemma construct a finitely branching tree T C w<“ (ordered by
inclusion) along with J; and ¢, for each s € T satisfying:
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(1) J¢, 15 a closed subinterval of J;;
(2) & >0, and
(3) for any s€w"NT if 1C[0,1] has length less than g, then for some
ssmeT
(-].s“m + I)m C1 = 0

For n < w define 8, = min{e,: s € w" N T}. Since T is finitely branching §, > 0.
Since X has strong measure zero there exists I, of length less than 8, such that

Xc N Ui,

m<w n>m

By the construction of T there exists f € w® such that for all n
(Jﬂ(n+l)+ In) N C1 = 0 .

Letting x €1, J p, we get that

x+ N UL)N UG =0. O

m<w n>m n<w

This result suggests we define X to have strong first category or to be strongly
meager iff for every set H of measure zero there exists a real x such that

x+X)NH=9.
The consistency of the dual Borel conjecture has been shown by Carlson

3.6. THEOREM (CARLSON (19--a)). It is consistent that every strong first category set
is countable.

In fact, he shows this holds in the Cohen real model. Although it is not difficult
to show that some uncountable Sierpinski sets have strong first category, I don’t
know if all do.

Question (Galvin). Does every Sierpinski set have strong first category?

4. o-sets and Q-sets

A set of reals X is a o-set iff every subset of X which is a relative G; is also a
relative F,.

7 TAA NV AW & _ar
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4.1. THEOREM (SzPILRAIN (Marczewskr) (1930)). If X is a Sierpinski set, then X is
a o-set.

Proor. Suppose A is any Borel (indeed measurable) set. Then there is an F, set
F C A such that A — F has measure zero (see Roypen (1971), Chapter 3. Section
3, Proposition 15). Since X is a Sierpinski set: (A— F)N X is countable, and
therefore an F, set F,. Thus we have:

ANX=(FUF)NX

and so A is a relative F,. []

A natural generalization of a o-set is the notion of Q-set. A set of reals X is a
Q-set iff every subset of X is a relative F,. Q-sets are also studied because of
their connection with the normal Moore space problem (see Fleissner’s chapter and
also FLEISSNER (1978) and Przymusmskl (1977)).

4.2. THEOREM (SILVER, see MarTIN-SoLovay (1970) or Rupin (1977)). Assuming
Martin’s axiom every set of reals of cardinality less than the continuum is a Q-set.

4.3. THEOREM (MiLLER (1979b), Theorem 22). It is consistent that there are no
uncountable o-sets, in fact, it is consistent that every uncountable set of reals has
Baire order w,.

Under MA+ —CH + w! = wt there are I} sets of cardinality w,, therefore it is
consistent to have uncountable [1] sets which are Q-sets. Also, it is easy to show
that it is consistent with the continuum hypothesis that there are uncountable IT;
sets which are o-sets.

While a o-set need not have measure zero (e.g. a Sierpinski set is not
measurable), Q-sets must have measure zero.

4.4. TueoreMm (LuziN, see FLEIssNER (1978)). Every Q-set has universal measure
zero.

However o-sets are meager (see the next section).
Question (FLEISSNER (1978)). Do all Q-sets have strong measure zero?

For any countable ordinals «, we say that a set of reals X has Baire order =«
iff for every Borel set C there is a Borel set B of rank =« such that
X NC=XNB. If there is no such countable «, then X has Baire order w,.
PorroUGENKO (1930) showed that the Baire order of a Luzin set is 3. A Q-set is a
Q»-set. A Q,-set is an uncountable set of reals of Baire order a with the property
that every subset is a relative Borel set.
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4.5. TueoreMm (MiLLER (1979a)). (i) It is consistent that for every a, 2< a < w,
there is an uncountable Q,-set.

(i) If X is a set of reals such that every subset of X is relatively Borel, then X is
a Q,-set for some a < w,.

In HanseLL (1980) a Q. set is defined to be any set of reals such that every
subset Is (relatively) analytic. He, in fact, is concerned there with arbitrary
topological spaces. For further work in this direction see Barocu-JunniLa (19--)
and FrREMLIN-HANSELL-JunNiLA (19 +).

In MiLLER (1981a) I show that it is consistent to have a Q4 set which has Baire
order w;. Theorem 4.3 of MiLLER (1979b) shows that it is consistent to have a set
of reals X of Baire order w; such that every relatively analytic set 1s relatively
Borel. One natural question here is:

Question (Mauldin). Is it consistent to have a set of reals X of bounded Baire
order, but not every relatively analytic set is relatively Borel?

In Brown (1977) it is shown that the continuum hypothesis implies that there is
a set of reals concentreated on the rationals with Baire order =4. In FLEISSNER—
MiLLER (1980) we show that it is consistent to have an uncountable Q-set which is
concentrated on the rationals. Using a similar argument we can show for any
@ = wq, that it is consistent with the continuum hypothesis to have a set of reals of
Baire order o which is concentrated on the rationals. In fact, the continuum
hypothesis implies there is an uncountable o-set concentrated on a countable set.
(See Theorem 5.7.)

5. Universal measure zero sets, perfectly meager sets, A, A’ and sg-sets, and Hausdorff
gaps

In this section we consider the weakest properties of Luzin and Sierpinski sets. A
set of reals X has universal measure zero iff for all measures i on the Borel sets there
isa Borel set of u-measure zero covering X. By measure we always mean a countably
additive, atomless (i.e. points have measure zero), finite measure. Alternatively let 2
be the g-algebra of (relative) Borel subsets of a set X. Then X has universal measure
zero iff for any measure u on &, u(X)=0. The following result is classical.

5.1. THEOREM (SzPILRAIN (MARCZEWSKI) (1934)). Every strong measure zero set has
universal measure zero.

Proor. Let u be any measure on the Borel sets. For any ¢ >0 there isa 6 >0
such that if I is any closed subinterval of [0, 1] of diameter less than 8, then
w(I)<e. To prove this note that every point has neighborhoods of arbitrarily
small u-measure, since the point has measure zero. So for each x €[0,1] let
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x €I, u(l,)<e and let I} be the middle one third of I,. By compactness there is
a finite FCJ[0,1] such that {I%: x € F} covers [0,1]. Let & be the minimum
diameter of I for x € F. If J is any interval of diameter less than & there is an I,
for some x € F with J C I, andso p(J)<e.

From this it is easy to see that any strong measure zero set has p-measure
zero. [

Somewhat analogously (to the notion of universal measure zero set) we say that
a set of reals X is perfectly meager iff for all perfect sets P the set X NP is
meager relative to the topology of P. This is also sometimes called ‘always of first
category’ (Luzin (1933)). A slight weakening of the notion of o-set is that of a
A-set (or rarefied set, introduced by KuraTowskr (1933)). A set X is a A-set iff
every countable subset of X is a relative Gs in X, A-sets were used by F.B. Jongs
{1937) to construct a pseudonormal Moore space. This served as the inspiration
for nonmetrizable normal Moore spaces based on Q-sets (see also McAULEY
{1956)).

5.2. TueEOREM. If X is a A-set, then X is perfectly meager.

Proor. Suppose P is any perfect set and let F C PN X be a countable set dense
in P X Since X is a A-set it is easy to get a G; set G comeager in P with
G N X =F. And hence Y is meager in P. [

The existence of uncountable sets of universal measure zero and uncountable
perfectly meager sets does not require any axioms beyond the usual Zermelo-
Fraenkel with the axiom of choice.

5.3. THEOREM. There exists a set of reals X of cardinality wy which has universal
measure zero and is perfectly meager.

Proor. Select one element from each of the constituents of a nontrivial coanalytic
set, then this set will have universal measure zero and will be perfectly meager.
More explicitly, let WO be the set of elements of 2¢*“ which are the characteristic
functions of well-orderings of w. Then WO is coanalytic (IT}) (see Moscdovaxkis
(1980), p. 192) and hence universally measurable and has the property of Baire
everywhere. For each countable ordinal « choose x, € WO of order type «. Then
X = {x,: @« < w\} is perfectly meager and has universal measure zero. To see this
suppose u i1s any Borel measure. Since WO is p-measurable there exists a Borel
set B and a pw-measure zero set M such that WO = B N M. But by the bounded-
ness theorem (see MoscHovakis (1980) p. 196) there is an a < w, such that:

B C{x € WO: order type of x is less than «} .

Thus X has w-measure zero.
A simijlar argument shows X is perfectly meager. [J
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Luzin (1921) was the first to construct an uncountable perfectly meager set. The
idea of using analytic sets seems to be a joint result of Sierpinski and Luzin (see
SierpiNsk1 (1934)). Hausporrr (1934) also gave a proof of this theorem using his
famous (w, w%)-gap (see Theorem 5.5). An interesting proof due to Todoréevié
uses an Aronszajn tree of perfect sets (see Todorcevi¢’s Chapter).

One cannot in general do better than w, since it is a theorem of Baumgartner
and Laver that in the random real model every universal measure zero set has
cardinality less than or equal to w; (see MiLLer (19--a) for a proof). The
continuum can be made as large as desired in this model. Similarly in the iterated
perfect set model (see BAUMGARTNER and Laver (1979)), every perfectly meager
set has cardinality less than or equal to w,. In this model ¢ = 2“ so there are only
continuum many universal measure zero sets and continuum many perfectly
meager sets.

Question (Mauldin). Are there always more than ¢ absolutely measurable sets
and more than ¢ sets with the restricted Baire property?

See GrzeGorek and RyrLi-Narpzewskr (19--) and Fenstap and NORMANN
[1974] for some related resulits.

The following theorem of Grzegorek was known assuming the continuum hypo-
thesis or Martin’s axiom. The point here is that he uses nothing beyond the usual
axioms of set theory (ZFC).

5.4. Tucorem (Grzecorek 1980) (1981) (19--). (1) If « is the cardinality of the
smallest nonmeasurable set of reals, then there is a universal measure zero set of
cardinality .

(it) If k is the cardinality of the smallest nonmeager set, then there is a perfectly
meager set of cardinality k.

(iii) There is a set of reals X which has universal measure zero but does not have
strong measure zero.

We say that X is a A’-set iff for every countable set of reals F, contained in X
or not, F is a relative G; in X U F. 1t is easy to show that X is a A’-set iff for every
countable set F, X U F is a A-set (i.e. if H C X U F is countable and G is a G; set
such that

GN(XUH)=H,
then
G-(F-H)N(XUF)=H)

Hausdorfi actually proved that there is a set of reals of cardinality w, which has
universal measure zero and is a A'-set (hence perfectly meager). The argument for
A'-set was pointed out by SierpiNski (1945). Define for X and Y sets of natural
numbers, X C*Y iff Y — X is finite.
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5.5. TueoreM (Hausporrr (1934)). There exist (X,: a <w;) and (Y,: a < wy)
Such that:

G) fora <B<wi, Xe T Xs C*Yp C* Y

(i) there does not exist Z with X, C*Z C*Y, for all &« < w,.

The proof is also given in Laver (1976). Laver also gives the proof that the
Hausdorff gap has universal measure zero. Let us now see that the gap is a
A'-set. Recall that we identify subsets of w with their characteristic functions. Let:

X={Xia<w}U{Y,: o <w]}

be the Hausdorft gap from Theorem 5.5. Since the Cantor set is a closed subset
of the real line we only have to worry about countable F contained in 2. Define
for each a < wy:

Fo={ACw: X, C*AC*Y,}.

Note that for any BCw, {ACw: AC B} and {A C w: BC A} are closed sets.
Hence each F, is an F,-set.

Let G, be the complement in 2* of F,. The G, are strictly increasing Gs sets
whose union is all of 2¢ and for any a <w,;, XN G, is countable. For any
countable F C2“ there 1s an o < w; with F C G,. Now:

K=XUF)NG,
1s countable and hence K — F is F, and
F=(XUF)N(G,— (K- F)).

Since F was arbitrary we see that X is a A'-set. For some other uses of
Hausdorft gaps see van Douwen (1976) and Nyikos and VauGHan (19 ).

Rothberger showed that not every A-set is a A’-set. The following is a key
observation: From the introduction we know that every closed subset of the unit
interval disjoint from the rationals corresponds to a compact subset of w®. It is
easy to show that for every compact subset C of w® there is an f& w® such
that:

CC{g € w”|forall n <w, g(n)<f(n)}.
Define for f, g € w*, f<*g iff for all but finitely many n <, f(n) < g(n). Note

that for any countable set F C w* there exists fE w® such that for all g€ F|
g <*f. For any f € 0w let

G={g€w[g<*f}.
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Then C; is an F, (in fact the countable union of compact sets). And for any F, set
F disjoint from the rationals we have that for some f € w®, F C C,

5.6. (ToEOREM) (ROTHBERGER (1939)). (i) Not every A-set is a A'-set.
(i1) Assuming the continuum hypothesis there is an uncountable A-set concen-
trated on the rationals.

Proor. Assuming the continuum hypothesis we can find a set:
X={f,ra<o}Cw”

such that

(a) a <B implies f, <*f3;

(b) for all f € w® there exists a < w; with f<*f,.

To see that X is a A-set consider the G; sets, G, = {f € w*: for infinitely many n,
f(n) < f,(n)} (ust use (a)). However by (b) and earlier remarks we see that for any
G;s set G containing the rationals, X — G is countable. So X is concentrated on
the rationals and thus not a A’-set. This proves (ii).

Part (i) is proved using similar ideas, but no hypothesis beyond ZFC is used.
Rothberger shows that the least cardinality of an unbounded subset of w* is also
the cardinality of a A-set which is not a A’-set. See van Douwen's Chapter (10.2)
for some similar arguments. [J

It is worth noting that the set X we have constructed while being concentrated
on the rationals is a A’-set with respect to the irrationals. The construction of an
order type w, subset of (w®, <*) is in fact Luzins (1921) original construction of
an uncountable perfectly meager set.

By a slight modification of Rothberger’s argument we can show:

5.7. THEOREM. Assuming the continuum hypothesis, there exists an uncountable
o-set which is concentrated on a countable set.

Proor. Construct X, C w infinite for a« < w; such that « < 8 implies X, D *Xj. By
an argument similar to the one used in Theorem 5.6 if the X, grow fast enough,
then

X={X,:a<w]}
will be concentrated on the set

[w]*® ={A: A Cw is finite} .

By fast enough we mean, look at the natural map showing »“ and [w]® are
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homeomorphic (see introduction), then the image of X should satisfy (a) and (b)
in the proof of Theorem 5.6. For any set A, [A]” is the set of (countably} infinite
subsets of A. The GarLvin-Prikry Theorem (1973) says that for every Borel set
B Clwl]® and X € [w]“ there exists Y € [X]” such that

[YI*CB or [YI*NB=¢.

(This result has been extended from BoreL sets to X! (analytic) sets by SiLvER
(1970) see also Errentuck (1974)). The following lemma easily gives us Theorem
5.7.

5.7.1. Lemma. For any Borel set BClw]* and X € [w]” there exists Y € [X]”
such that B is a relative F, set in {Z € [w]*: ZC*Y}.

Proor. Construct a sequence Y, € [Y,]* with Y, = X as follows. Let a, be the
least element of Y,. Repeatedly apply the Galvin-Prikry Theorem to obtain
H, C{A: A Ca,} and X, such that for all Z € [w]“ if Z— a, C X+, then ZE B
iff ZNa, <€ H, Now let Y ={a,: n <w}. Then for any ZC*Y, Z € B iff there
exists n such that ZNa, €H, and Z—a,CY. O

Since we are assuming the continuum hypothesis the theorem follows easily
from the lemma. [J

Next we consider the Baire order of A-sets.

5.8. THEOREM (MAaULDIN (1977)). Assuming the continuum hypothesis there is a
A-set of Baire order w,.

The proof uses the o-algebra of abstract rectangles in the plane and also a key
lemma on universal sets proved in BinGg, BLEDSOE, and MAuULDIN (1974).

Note that if X is a A-set in a model M of set theory and N is a countable chain
condition forcing extension of M, then X remains a A-set in N. Thus as a corollary
to Theorem 3.5 (Mw.LER [1979a]) we see that it is consistent to have A-sets of all
possible Baire orders.

I conclude this section with a notion which is weaker than both universal
measure zero and perfectly meager. We say that X is an s¢-set iff for every perfect
set P there is a perfect set Q C P such that Q is disjoint from X.

5.9. THEOREM. (SzPILRAIN (MARCZEWSKI)(19352)). If X has universal measure zero or
X is perfectly meager, then X is an sy-sel.

Proor. Suppose x has universal measure zero. If P is any perfect set, then
transfer the product measure on 2¢ via any homeomorphism with P to P and call
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it . Then there is a Borel set BC P of w measure zero such that X NP CB.
But since P— B is an uncountable Borel set it contains a perfect subset. A
similarly argument works if X is perfectly meager since any comeager set contains
an uncountable Borel set. [J

In contrast to the case of perfectly meager and universal measure zero there are
always large sg-sets.

5.10. Tueorem. There exists a so-set of cardinality the continuum.

Proor. Let P, for o < ¢ be all perfect subsets of the plane. For any set P in the
plane and real x let:

*={y:{x, y)E P}.

We construct an (sp)-set x as follows. Let {x,: « <c} be the set of all real
numbers. For each « choose y, not an element of:

U{Pj: B <a and P} is countable} .

Now let X = {(x., ¥o): @ < c}. Suppose P is any perfect subset of the plane. If for
SOme X4, P* is uncountable, then since {x,} X P* N X C{(x,, y.)} it is easy to get a
perfect Q C{x,} x P* disjoint from X. On the other hand if P* is countable for
all @ < ¢, then by our construction P N X has cardinality less than c¢. Partition P
into continuum many disjoint perfect sets; then one of them misses X. [

For more on (s)-sets see Morgan (1978) Example 3B.

6. Order type of the real line

Baumgartner generalized Cantor’s theorem that any two countable dense
linear orders are isomorphic. A set of reals X is w,-dense iff between any two
reals there are w, elements of X.

6.1. THEOREM (BAUMGARTNER (1973)). It is consistent with Martin’s axiom that any
two w, dense sets of reals are order isomorphic.

His forcing argument was rather unusual in that it requires that the continuum
hypothesis be true in intermediate models but in the final model it must fail. A
similar argument occurs in BAUMGARTNER (1980).

Abraham and Shelah showed that Martin’s axiom is not sufficient for this
result.
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6.2. THEOREM (ABRaHAM—SHELAH (1981)). It is consistent with Martin’s Axiom
and the failure of the continuum hypothesis that not every two w)-dense sets are
order isomorphic.

Most of the classical work on order types contained in the real line is in
SIERPINSKI {1950).

7. Unions

It is easy to show that the families of universal measure zero sets, perfectly
meager sets, strong measure zero sets, Luzin sets, Sierpiriski sets, and sets
concentrated on the rationals are closed under countable union. Assuming
Martin’s Axiom in the case of universal measure zero and perfectly meager,
countable can be replaced by less than continuum. This is also true for strong
measure zero, but is not so obvious.

7.1. TueoreM (Carison 19--a)). Assuming Martin’s Axiom the union of less
than continuum many strong measure zero sets has strong measure zero.

We saw in Section 5 that there is a A-set whose union with the rationals is not a

A-set. However, it is true that the family of A’ sets is closed under countable
union.

7.2. TueoRrEM (SIERPINSKI (1937a)). The countable union of X' sets is a A’ set.

Proor. Suppose X, for n < w are A'-sets and F is a countable set. Since X, isa A'-set
there is a G; set G, such that:

F=G,N(X,UF).
But then

F= NG, N(UX,UF). O

n<o n<w

7.3. THEOREM (FLEISSNER-MILLER (1980)). It is consistent that there is an un-
countable Q-set which is concentrated on the rationals. So neither the family of
Q-sets nor the family of o-sets need be closed under finite union.

To prove this theorem instead of constructing the set of reals we construct the
model of set theory over the top of a set of Cohen reals.
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8. Products

8.1. TueoremM (SzriLraIN (Marczewskr) (1937)). The product of two universal
measure zero sets has universal measure zero.

Proor. Suppose X and Y have universal measure zero and let u be any measure
on X X Y. Define a measure v on Y by:
v(B)= (X X B).

Since X has universal measure zero so does X X{y} for any yE€ Y and so v is
atomless. Since Y has universal measure zero

n(XxY)=v(Y)=0. O
8.2. TueoreM. If X and Y are A-sets (A'-sets), then X X Y is a A-set (A’-set).
Proor. Suppose F is a countable subset of X X Y. Then let F,C X and F,C Y
be countable with FCF,xF, Since F,XF, is a relative G; so is F =

F, X F, — (F, X F,— F). A similar argument works for A’-sets. [J
This contrasts sharply with the following theorem.

8.3. TueoreM (FLEISSNER (19 °)). It is consistent that there is a Q-set whose square
is not a Q-set.

However, the following result is true.

8.4, TueoreMm (PrzymusiNski (19 -)). If there is an uncountable Q-set, then there is
one whose square is also a Q-set.

Proor. Let R={AX B: A, BC w}. The next two lemmas are needed to prove
Theorem 8.4.

8.4.1. LemMma. The graph of any function from w, to w, is a countable intersection
of finite unions of elements of R.

Proor. Let f: w,— w, be an arbitrary function. Let {x.: « <w,} be any set of

distinct real numbers. Let g be the set of rational numbers. Then f(a)= g iff
VrieQ (r<xpm<r<xg).

Hence the graph of f is

,g)([{a: r<xpap X{B: r <xg}] U [{a: xpmy < 1} x{B: x5 =r}]). O

8.4.2. Lemma. There exists a Q-set of cardinality w, iff there exists a countable
family sf of subsets of w, such that every subset of w, is a countable union of
countable intersections of elements of .
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Prook. Let Y ={x,: a <w} be a O-set and {C,: n <w} a clopen basis for Y
closed under finite union and complementation. Then {C%: n < w} defined by

Ct=l{a:x, € G}
has the required property. [J

Now we prove Theorem 8.4.
Choose f,: w € w,; so that for each o < w,

ful@):n<wl={B:B<a}.
For each n < w let
D, ={(a, ful@)): a <w} and E,={(fi(a), o) a <w]}.

From the lemmas we can find {A,: n <w} a family of subsets of w, such that for
each n <w, D, and E, are the countable intersections of finite unions of {4, x
A, n m<w} and every subset of w, is the countable union of countable
intersections of elements of {A,: n <w}. Now let us see that every subset of
w1 X w, 1s the countable union of countable intersections of finite unions of
{A, X A, n, m<w}(ie. F,). Suppose A C w;X w,. For any n let

X, ={a:3B (e, B)E D, N A}
“Then since
D,NA=(X,Xw)ND,
we see that D, N A is the countable union of countable intersections of finite

unions of elements of {A, X A,,: n, n < w}. Similarly for E, N A. But by the choice
of the f,,

w1Xw1: UD,,U UEn

n<w n<w

and so
A= UMD, NAU UENA).
The mapping o: w,— 2* defined by
ox)(n)=0 iff x€ A,

takes w, onto a Q-set whose square is also a Q-set. [
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8.5. TueoreM (SIERPINSKI (1935)). Assuming the continuum hypothesis there exists
a Luzin set whose square does not have strong measure zero.

Proor. We need the following lemma.

8.5.1. LEmmMma. For any real z and comeager set G there are points x and y in G
with z = x + y.

Proor. Since G is comeager so is z — G ={z—~g: g € G}, let Y be an element of
their intersection. Then y = z — x for some x€ G. [

Using this lemma (and the continuum hypothesis) it is now easy to construct a
Luzin set X such that for any real z there is an x and y in X such that z = x + y. |
claim that X is not of strong measure zero. To see this define 7 from the plane
onto the reals by 7(x, y) = x + y. Geometrically this is just a 45° projection onto
the real axis. Thus a disk of diameter ¢ is taken to an interval of diameter V2 - .
Hence the image under 7 of any strong measure zero set must have strong
measure zero. But 7 takes X? onto the real line. O

Clearly the product of two uncountable sets of reals cannot be a Luzin set, a
Sierpinski set, or a concentrated set, since horizontal lines are closed measure
Z€ro sets.

Question (SzPILRAIN (MarRczEwskI) (1935b)). Is the product of two perfectly
meager sets perfectly meager?

9. Continuous and homeomorphic images and C” and (’-sets

It is not hard to see that every set homeomorphic to a perfectly meager set is
perfectly meager. This is also true for universal measure sets and in fact it
characterizes them.

9.1. THEOREM (SzPILRAIN-MARCZEWSKI (1937)). A set of reals X has universal
measure zero iff every set homeomorphic to X has Lebesgue measure zero.

Proor. Suppose X has universal measure zero and ¢: X — Y is a homeomor-
phism. For any p a measure on Y define » a measure on X by letting v(B) =
u{(B)). If v vanishes so does wu. It follows that Y has Lebesgue measure zero.
Now to prove the converse suppose X is any set of reals (which for simplicity we
will assume is in the unit interval) and suppose every homeomorphic image of X
has Lebesgue measure zero. Suppose u is any measure on the reals such that X
does not have u-measure zero. We may assume that u does not vanish on any
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interval since we could replace w by 3(u + A) where A is Lebesgue measure. Now
define f by

f(x)= u(0, x]).

Since p vanishes on no intervals and is atomless we see that f is strictly increasing
and continuous and thus a homeomorphism. Define

v(B)= u(f(B)

for any Borel set B. We are done if we show that v is Lebesgue measure.
Suppose I = [a, b] is any interval. Then

D) =1y w0, yDE I} = [c, d}

where ([0, c]) = a and n ({0, d]) = b. But then

v(D)=p(f'U)=p(lc.dh)=b-a.

Since v agrees with Lebesgue measure on the intervals and the intervals generate
the Borel sets we have that v is Lebesgue measure. [

This characterization is not true for perfectly meager sets.

9.2. TueorREM (MorGaN (1979)). There is a set of reals which is not perfectly
meager but every set homeomorphic to it is meager.

Proor. Let K be the Cantor set and Q the rationals. Let A C K be a set such that
A and K — A meet every perfect subset of K. Let S=Q U A. S is not perfectly
meager since it cannot be meager relative to K. On the other hand S has the
property that every nonempty open set U contains a nonempty open set V' such
that V is countable. But this is true of any homeomorphic image of S and is easily
seen to imply first categoricity. [

Clearly any property which is purely topological is preserved by homeomor-
phisms. The homeomorphic image of a Luzin set is a v-set—i.e. a set in which
every (relatively) meager set is countable. The homeomorphic image of a Sierpiriski
set is still a Sierpiniski set with respect to a different Borel measure. Since
A-sets, o-sets, and Q-sets are all defined topologically these properties are all
preserved by homeomorphisms (but not necessarily one-to-one continuous map-
pings). Before taking up the homeomorphism problem for A’-sets, concentrated
sets, and strong measure zero sets, we consider one-to-one continuous images.
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9.3. THeorEM (KuraTOwskl (1933), SzpiLraiN (Marczewskl) (1937)). Every set of
reals of cardinality w, is the one-to-one continuous image of a set which is both
perfectly meager (in fact, a A'-set) and of universal measure zero. Thus assuming
the continuum hypothesis the real line is the continuous image of a set which is both
perfectly meager and of universal measure zero.

Proor. Let X = {x,: @ <w,} be an arbitrary set of reals, Y = {y,: @« <w,} be any
X'-set, and let Z ={z,: o < w} be any set of universal measure zero. Define

Q= {Xe, Var Za): @ < 01} .

X is the projection of Q onto the first coordinate. We need the following lemma
to prove Theorem 9.3.

9.3.1. LemMa. Suppose P and T are sets of reals, f: P— T is a one-to-one con-
tinuous map, and T is a (a) set of universal measure zero; (b) A-set; (c) A'-set; or
(d) Q-set. Then P is also.

Proor. For universal measure zero note that if u is any measure on P, then

v(B)=n(f{(B))

defines a measure on T. For a A-set suppose D C P is countable. Then f(D) is a
countable subset of R and so there is a G; set G with G N R = f(D). Since f is
one-to-one f7(G)N P = D. This same argument works for Q-sets. For A'-sets, the
following is what we mean. Suppose f: X =Y is continuous, with P C X and
T C Y, and f takes P one-to-one onto T. If T is a A'-set with respect to Y, then P
is a A'-set with respect to X. To show that P is a A'-set with respect to X we must
show that for every countable D C X there is a G; set G such that

GNPUD)=D.
Suppose D C X is countable and let G be a G set in Y such that
GN(TUfD)=f(D).

But then f(D)C G implies D C f(G) and f/{(G)NP =@ (since f/I(G)NPC
UGN FH(T)= (G N T)=0. Thus

FUG)N(PUD)=D.

This proves the lemma and the theorem immediately follows. [
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This same quasi-diagonal type argument as in 9.3 shows that if we have a Q set
of cardinality «, then every set of reals of cardinality « is the continuous image of
a Q-set. Thus by FLEISSNER-MILLER (1980) it is consistent to have a Q-set whose
continuous image 1s not a Q-set.

Lemma 9.3.1 is not true for perfectly meager sets since we will see (Theorem
9.7) a Luzin set can be mapped one-to-one to a perfectly meager set.

This lemma is also false for o-sets, i.e. assuming X is any o-set of cardinality
the continuum there exists Y a non o-set which can be continuously mapped
one-to-one onto X. Suppose X ={x,:a <c}. To construct Y, let H be any
countable dense subset of 2 (i.e. any F, which is not G;) and let {G,: a <c} be
all G; subsets of X X 2¢ For each « choose y, such that

Y« €E(GE — HYU(H - G¥) where G& ={y: (x,, y)E G.} .

This is always possible since H cannot be Gs in 2°. Now let Y = {(x,, v.): « <c}.
The projection map takes Y onto X. The set Y is not a o-set since (X X H)N
Y isnot Gsin Y.

Question. 1s it consistent to have a ¢-set X which can be mapped continuously
onto the reals?

94. THEOorREM (ROTHBERGER (1941)). Assuming the continuum hypothesis there
exists a set concentrated on the rationals which can be mapped continuously onto 2°.

Proor. Let X ={f,: @ <w;} Cw*® be a set of order type w, under <* and for
every g € w* there exists @ < w; with g <* f,. We saw in Theorem 5.6(ii) that any
such set is concentrated on the rationals. Let {x,: o < w,} = 2°. Define f% € w® by

fa(n) =2 fu(n)+ xa(n)

for all n <w. Let X* = {f%. @« <w,} and define 7: w*—~2° by 7 (f)= x iff for all
n <o m(x)(n)= f(n) (mod 2). Then 7 maps X* onto 2*. [

Since a concentrated set has strong measure zero it follows that the continuous
image of a strong measure zero set need not have strong measure zero.

9.5. THEOREM (SIERPINSKI (1945)). Assuming the continuum hypothesis there is a
concentrated set X which is homeomorphic to a set Y which is a A'-set without strong
measure zero.

Proor. Using Theorem 9.4 find X C2“ a concentrated set and a continuous
f: X =S which is one-to-one and onto an uncountable Sierpinski set S C2¢. Let
G ={(x, f(x)): x€X}C2x2° G is homeomorphic to X via the map x+>
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(x, f(x)). Let 77:2° x 2* -2 be projection onto the 2" coordinate. Since 7 s
continuous and one-to-one on G it follows from Lemma 9.3.1 that G is a A’-set
(since S is). On the other hand since = is uniformly continuous if G had strong
measure zero, then so would (G) = S. But S does not even have measure zero.
Since the map which shows 2¢ X2“ is homeomorphic to 2* is uniformly con-
tinuous we get a subset Y of 2 which is homeomorphic to G, is a A’-set and does
not have strong measure zero. [

This shows that the property of being strong measure zero is not topological but
depends on the metric. In light of this it is perhaps surprising that the following is
true.

9.6. Tueorem (CarLsON (19-:D)). If every strong measure zero set of reals is
countable, then for every metric space X if X has strong measure zero, then X is
countable.

Sierpinski’s question of whether or not the family of strong measure zero sets
was closed under continuous image lead ROTHBERGER (1938) to consider two other
classes of sets. Strong measure zero sets were also called C-sets or sets with property
C. A set of reals has property C' iff for every family %, of finite open covers there is a
diagonal sequence U, € %, such that

Rothberger showed that a set X is a C'-set iff every continuous image of X has
strong measure zero. If we drop the condition that the covers ¥, be finite we get
the notion of a C"-set. It isn’t hard to show that the continuous image of any
C"-set 1s a C"-set. Also, any set concentrated on a countable subset of itself is a
C"-set.

Question (Rothberger). Is every C" set a C” set?

Recently there has been some work on very singular sets of cardinality the
continuum. These sets can be looked at as generalizations of C" sets. For
reference see GaLviN-MILLER (19 ).

Now let us consider the continuous image of a Luzin or Sierpinski set.

9.7. TueorReEM (LuziN (1933)). There exists a one-to-one continuous function from
w® 1o w®” which takes every Luzin set to a perfectly meager set.

Proor. Let w=“ be the set of finite sequences of w. Let {P,: s € w=*} be a family
of perfect subsets of w* constructed as follows. Suppose we have P, Let
{Poiy: n <w} be a family of disjoint perfect subsets of P, each of which is
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nowhere dense relative to P, and for any clopen set C if PN C# @, then there

exists n such that
PyyCTCNP.

Define f by
N =THPu n<w}.

Now suppose Q is any perfect subset of v and let
R = U{P,: P, is nowhere dense in Q} .

For any s € w=* if P, is not contained in Q, then for secme n, Py, is disjoint
from Q. Otherwise, if P is contained in Q, then any P, 1s nowhere dense in Q.
Hence {x € w“: f(x) € R} contains an open dense set. The result follows. []

The next theorem is proved in MitLER (19 -a).

9.8. THEOREM. (a) It is consistent that every set of reals of cardinality the con-
tinuum contains the one-1o-one contintous image of a Luzin set of cardinality the
COniNUUm.

(b) It is consistent that every set of reals of cardinality the continuum contains the
one-to-one continuous image of a Sierpiniski set of cardinality the continuum.

The model for (a) is the Cohen real model and the model for (b) is the random
real model. Since the one-to-one preimage of a universal measure zero set has
universal measure zero, (b) implies there are no universal measure zero sets of
cardinality the continuum. Also, since the one-to-one preimage of a A-set is a
A-set, (a) implies there are no A-sets of cardinality the continuum.

10. Implications and definitions

10.1. IMPLICATIONS.
Luzin set = concentrated set = ¢"-set = ¢'-set =
= strong measure zero set = universal measure zero set = (S)y-set.

Q-set
o-set

Sierpinski set A-set (rarefied) = Perfectly meager set = (Sk-set.

A-set
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10.2. Dernimions. In the following definitions X is a set of reals.
Luzin set (property L). For every meager set M, X N M is countable.

Concentrated set. There exist a countable set of reals D such that for every open
G D D, X — G is countable.

C"-set (ROTHBERGER property). For every family {¥4,: n < w} of open covers of X
there exists U, € 4, for n <w such that X C U U,.

n<w
C'-set. (Same as C” but each ¢, a finite open cove or X))

Strong measure zero set (property C). For a sequence of reals ¢,>0 for n <w
there exists a set I, of diameter less than g, such that X C U, ...

Universal measure zero set. For any atomless countably additive measure u,
p(X)=0.

(S)e-set. For any perfect set P there exists a perfect set Q C P disjoint from X.
Sierpiniski set (Property S). For every measure zero set M, X N M is countable.
Q-set. for every A C X there exists a Gs-set G such that A= X N G.

o-set. For every F,-set F there is a Gs-set G such that FN X =GNX

A-set (rarefied). For every countable set F C X there is a Gj-set G such that
F=GnNX

A'-set. For every countable set F, X U F is a A-set.

Perfectly meager (always of first category). For any perfect set P, X N P is meager
in P.

References

ABRAHAM, U. and S. SHELAH

{19-] Martin’s Axiom does not imply that every two Ri-dense sets of reals are isomorphic, Israel
J. Math., 38, 161-176.

ALEXANDROFF, P.S. and P.S. URYSOHN
[1927] Uber nulldimensionale Punktmengen, Mathematische Annalen, 98, 89-106.

BALOGH, Z. and H. JUNNILA
[19--] Totally analytic spaces under V = L.

BAUMGARTNER, J.
[1973]  All R;-dense sets of reals can be isomorphic, Fund. Math. 79, 101-106.
[1980] Chains and antichains in P(w), J. Symbolic Logic, 45, 85-92.
[19--] Sacks forcing and the total failure of Martin’s Axiom.

BAUMGARTNER, J. and R. LAVER
[1979] Tterated perfect set forcing, Annals Math. Logic, 17, 271-288.



CH. 5] REFERENCES 229

BELL, M. and K. KUNEN
[1981] On the pi-character of ultrafilters, C.R. Math. Rep. Acad. Sci. Canada, III, 351-356.

BESICOVITCH, A.S.
[1934] Concentrated and rarified sets of points, Acta. Math., 62, 289-300.
[1942] Relations between concentrated sets and sets possessing property C, Proc. Cambridge
Philos, Soc., 38, 20-23.

BING, R.H., W.W. BLEDSOE and R.D. MAULDIN
[1974] Sets generated by rectangles, Pacific J. Math., 51, 27-36.

BOREL, E.
[1919] Sur la classification des ensembles de mesure nulle, Bull. Soc. Math. France, 47, 97~125.

BROWN, J.B.
[1977] On the Baire order of concentrated spaces and L, spaces, Fund. Math., 94, 165-172.

CARLSON, T.
[19--a] Strongly meager and strong measure zero sets of reals.
[19--b] Hilbert space and Bore!’s conjecture.

DarsT, R.B.

[1968a] A universal null set which is not concentrated, Fund. Math., 62, 47-48.

[1968b] Properties of Luzin sets with applications to probability. Proc. Amer. Math. Soc. 20,
348-350.

[1969] Some remarks on Hausdorff measure, Fund. Math., 64, 325-328.

[1970a] A CBV image of a universal null set need not be a universal null set, Fund. Math., 62,
219-220.

[1970b] On bimeasurable images of universally measurable sets, Fund. Math., 67, 381-382.

[1971a] C*-function need not be bimeasurable, Proc. Amer. Math. Soc., 27, 128-132.

[1971b] A characterization of bimeasurable functions in terms of universally measurable sets, Proc.
Amer. Math. Soc., 27, 566-571.

{1973] On the connection between Hausdorff measures and generalized capacity, Fund. Math., 80,
1-3.

vAN DoUwEN, E.
[1976] Hausdorfi gaps and a nice countably paracompact nonnormal space, Topological Proc. 1,
239-242.

vAN DOUWEN, E. and FLEISSNER, W.
[19--] Definable forcing axiom.

van DOUWEN, E., TALL, F. and W. WEIss
[1977] Nonmetrizable hereditarily Lindelof spaces with point-countable bases from CH. Proc. Amer.
Math. Soc., 64, 139-145.

ELLENTRUCK, E.
[1974] A new proof that analytic sets are Ramsey, J. Symbolic Logic, 39, 163-165.

ERrDOS, P., K. KUNEN and D. MAULDIN
[1981] Some additive properties of sets of real numbers, Fund. Math., 93, 187-199.

FENSTAD, J.F. and D. NORMANN
[1974] On absolutely measurable sets, Fund. Math., 81, 91-98.

FLEISSNER, W.G.

[1978] Current research on Q-sets, Collog. Math. Soc. Jarios Bolyai 23, Topology, Budapest
(Hungary), 413-431.

[19-+] Squares of Q-sets.

FLEISSNER, W.G. and AW, MILLER
[1980] On Q-sets, Proc. Amer. Math. Soc., 78, 280-284.




230 A.W. MILLER/SPECIAL SUBSETS [cH. 5

FREMLIN, D.H., HaNnsSELL, R W. and H.J.K. JUNNILA
[19--] Borel functions of bounded class.

FrReEMLIN, D.H.
[19-+] Consequences of Martin’s axiom.

GaLvin, F.and AW, MILLER
[19-] y-sets and other singular sets of real numbers, Topology Appl.

GaLVIN, F., MYCIELSK, J. and R.M. SoLovay
[1979] Strong measure zero sets, AMS Notices, 26, A-280.

GaLvin, F. and K. PRIKRY
[1973] Borel sets and Ramsey’s theorem, J. Symbolic Logic, 38, 193-198.

GARDNER, R.J.
[1979] On concentrated sets, Fund. Math., 102, 45-53.

GRZEGOREK, E.
[1978] Remarks on o-fields without continuous measure, Coll. Math., 39, 73-75.

[1980] Solution of a problem of Banach on o-fields without continuous measures, Bull. L’ Acad.
Polon. Sciences, 28, 7-10.

[1981] On some results of Darst and Sierpiﬁski concerning universal null and universally measure-
able sets, Bull. I’ Acad. Polon. Sciences, 29, 1-5.

[19--] On sets always of the first category.

GRZEGOREK, E. and C. RYLL-NARDZEWSKI
[1981] On universal null sets, Proc. Amer. Math. Soc., 81, 613-617.
[19--] A remark on absolutely measurable sets.

HaNSELL, R.'W.
[1980] Some consequences of (V = L) in the theory of analytic sets, Proc. Amer. Math. Soc., 80,
311-319.

HAUSDORFF, F.
[1934] Summen von X, Mengen, Fund. Math., 26, 241-255.

Hurewicz, W.
[1932] Une remarque sur I'hypothese du continu, Fund. Math., 19, 89.

JecH, T.J.
[1971] Lectures in set theory, Lecture Notes in Math., 217 (Springer-Verlag, Berlin).
[1978] Set Theory (Academic Press, New York).

JoNES, F.B.
{1937] Concerning normal and completely normal spaces, Bull. Amer. Math. Soc., 43, 671-676.

KUNEN, K.
[1968] Inaccessibility properties of cardinals, Doctoral Dissertation, Stanford University.
[1976] Luzin spaces, Topological Proc., 1, 191~199.
[1980] Setr Theory, An Introduction to Independence Proofs (North-Holland, Amsterdam).

KuraTtowskr, C.
[1933] Sur une famille d'ensembles singuliers, Fund. Math., 21, 127-128.
[1966] Topology, Vol. 1 (Academic Press, New York).

LAVER, R.
[1976] On the consistency of Borel’s conjecture, Acta. Math., 137, 151-169.

LuziN, N.
[1914] Sur un probléme de M. Baire, C. R. Hebdomadaires Seances Acad. Sci. Paris, 158,
1258-1261.



CH. 5] REFERENCES 231

[1921] Sur lexistence d’'un ensemble nondénombrable qui est de premiére catégorie sur tout
ensemble parfait, Fund. Math., 2, 155-157.
[1933] Sur les ensembles toujours de premiere categorie, Fund. Math. 21, 114-126.

MaHLO, P.
[1913] Uber Teilmengen des Kontinuums von dessen Machtigkeit, Sitzungsberichte der Sachsischen
Akademie der Wissenschaften zu Leipzig, Mathematisch-Naturwissenschaftliche Klasse 65,
283-315.

MARTIN, D.A. and R.M. SoLovay
[1970] Internal Cohen extensions, Ann. Math. Logic, (2) 2, 143-178.

MAULDIN, R.D.
[1970] On the Baire system generated by a linear lattice of functions, Fund. Math., 68, 51-59.
[1974] Baire function, Borel sets and ordinary function systems, Advances in Math., April.
[1976] Countably generated tamilies, Proc. A.M.S., 54, 291-297.
[1977] On rectangles and countably generated families, Fund. Math., 95, 129-139.

MCAULEY, L.F.
[1956] Paracompactness and an example due to F.B. Jones, Proc. Amer. Math. Soc. 7, 1155-1156.

MIOLLER, A W.

[1979a] On the Iéngth of Borel hierarchies, Ann. Math. Logic, 16, 233-267.

[1979b] On generating the category algebra and the Baire order problem, Bull. Acad. Polon., 27,
751-755.

[1980] Covering 2 with w, disjoint closed sets, The Kleene Symposium, (North-Holland, Am-

sterdam) 415-421.

[1981a] Generic Souslin sets, Pacific J. Math., 97, 171-181.

[1981b] Some properties of measure and category, Trans. Amer. Math. Soc., 266, 93-114, Cor-
rections Trans. Amer. Math. Soc.

[1982a] Mapping a set of reals onto the reals, J. Symbolic Logic.

[1982b] The Baire category theorem and cardinal of countable cofinality, J. Symbolic Logic, 47,
275-288.

[1982¢c] A characterization of the least cardinal for which the Baire category theorem fails, Proc.
Amer. Math. Soc., 86, 498-502.

MAZURKIEWICZ, S. and E. SZPILRAIN (MARCZEWSK!)
[1937] Sur la dimension de certains ensembles singuliers, Fund. Mazth., 28, 305-308.

Moraan 11, J.C.
[1974] Infinite games and singular sets, Collog. Math., 29, 7-17.
[1975} On translation invariant families of sets, Collog. Math., 34, 63-68.
[1976] The absolute Baire property, Pacific J. Math., 65, 421-436.
[1977) Baire category from an abstract viewpoint, Fund. Math. 94, 13-23.
[1978] On the absolute Baire property, Pacific J. Math., 78, 415-431.
[1979] On sets every homeomorphic image of which has the Baire property, Proc. Amer. Math.
Soc., 75, 351-354.

MOSCHOVAKIS, Y.N.
[1980] Descriptive Set Theory (North-Holtland, Amsterdam).

Nyikos, P.J. and J.E. VAUGHAN
[19--] On first countable, countably compact spaces, I: (w1, @1)-gaps.

OxTOoBY, J.C.
[1971} Measure and category (Springer-Verlag, Amsterdam).

POPROUGENKO, G.
[1930] Sur un probléme de M. Mazurkiewicz, Fund. Math., 15, 284-286.



232 A.W. MILLER/SPECIAL SUBSETS [cH. 5

PrzYMUSINSKI, T.C.
[1977] Normality and separability of Moore spaces, in: G.M. Reed, ed., Set Theoretic Topology,
(Academic Press, New York) 325-337.
[19--] On the equivalence of certain set-theoretic and topological conditions.

ROTHBERGER, F.

[1938a] Eine Aquivalenz zwischen der Kontinuumhypothese und der Existenz der Lusinschen und
Sierpinskischen Mengen, Fund. Math., 30, 215-217.

[1938b] Eine verscharfung der eigenschaft C, Fund. Math., 30, 50-55.

[1939] Sur un ensemble de preiére catégorie qui est dépourvu de la propriété A, Fund. Math., 32,
294-300.

[1941] Sur les families indenombrables des suites de nombres naturels et les problems concernant
la propriété C, Proc. Cambridge Philos. Soc., 37, 109-126.

[1944] On families of real functions with a denumerable base, Ann. of Math., 45, 397-407.

[1948] On some problems of Hausdorfl and Sierpiniski, Fund. Math., 35, 29-46.

[1952a] On the property C and a problem of Hausdorff, Canad. J. Math., 4, 111-116.

[1952b] A remark on the existence of a denumerable base for a family of functions, Canad. J.
Math., 4, 117-119.

ROYDEN, H.L.
[1971] Real Analysis (Macmillan, New York).

RuDIN, MLE.
[1977] Martin’s axiom, in: J. Barwise, ed., Handbook of Mathematical Logic (North-Holland,
Amsterdam) 491-501.

SHOENFIELD, J.R.
[1975] Martin’s axiom, Amer. Math. Monthly, 82, 610-617.

SIERPINSKI, W.

[1923] Sur linvariance topologique de la propriété de Baire, Fund. Math., 4, 319-323.

[1924] Sur ’hypothese du continu (2% = R,), Fund. Math., S, 177-187.

{1928] Sur un ensemble non denombrable, donc toute image continue est de mesure nulle, Fund.
Math., 11, 301-304.

[1934a) Hypothése du Continu, Monografje Matematyczme, Warszawa-Lwow.

[1934b] Sur les ensembles toujours de premiére catégorie, Mathematica, 8, 191-195.

[1935] Sur le produit combinatoire de deux ensembles jouissant de la propriété C, Fund. Math., 24,
48-50.

[1936] Sur un probléme concernant les fonctions de premiére classe, Fund. Math., 27, 191-200.

{1937a] Sur une propriété additive d’ensembles, Computes Rendus Soc. Sci. Varsovie, 30, 257-259.

{1937b] Sur le rapport de la propriété (C) a la théorie générale des ensembles, Fund. Math., 29,
91-96.

[1938] Remarque sur le probleme de I'invariance topologique de la propriété (C), Fund. Math., 30,
56-68.

[1939a] Sur les ensembles concentrés, Fund. Math., 32, 301-305.

[1939b] Sur un ensemble 4 propriété A, Fund. Math., 32, 306-310.

[1945a] Swur la non-invariance topologique de la propriété A‘, Fund. Math., 33, 264-268.

[1945b] Sur deux conséquences d'un théoréme de Hausdorff, Fund. Math., 33, 269-272.

[1950] Sur les d’ordre des ensembles linéaires, Fund. Math., 37, 253-264.

[1961] General Topology, Toronto.

SIERPINSKY, W. and E. SZPILRAIN
(1936] Remarque sur le probleme de la mesure, Fund. Math. 26, 256-261.

SILVER, J.
[1970] Every analytic set is Ramsey, J. Symbolic Logic, 35, 60-64.

STEPRANS, J.
[1982] Cardinal arithmetic and R;-Borel sets, Proc. Amer. Math. Soc.



CH. 5] REFERENCES 233

SZPILRAIN (MARCZEWSKI), E.

{1930] Sur un probiéme de M. Banach, Fund. Math., 15, 212-214.

[1933] Sur certains invariants de 'opération (A), Fund. Math., 21, 229-235.

[1934] Remarques sur les fonctions complétement additives d’ensemble et sur les ensembles
jouissant de la propriété de Baire, Fund. Math., 22, 303-311.

(1935a] Sur une classe de fonctions de W. Sierpifiski et la classe correspondante d’ensembles,
Fund. Math., 24, 17-34.

[1935b] Problem 68, Fund. Math., 24, 579.

[1937] O zbiorach i funkcjach bezezglednie mierzalnych (On absolutely measurable sets and
functions), Sprawozdania z posiedzen Towarzystwa Naukowego Warszawskiego, Wydzial
IIl, Comptes Rendus Soc. Sci. Varsovie, Classe 111, 30, 39-68. An English translation, by
John C. Morgan 11, is available in manuscript.

[1938a)] On the equivalence of some classes of sets, Fund. Math. 30, 235-241.

[1938b] The characteristic function of a sequence of sets and some of its applications, Fund. Math.,
31, 207-223.

[1947] Remarque sur la mesurabilité absolue, Collog. Math. 1, 42-43.

TaLi, F.
[1976] The density topology, Pacific J. Math., 62, 275-284.
{1978] Normal subspaces of the density topology, Pacific J. Math., 75, 579-588.
[19--] Some applications of a generalized Martin’s Axiom.

WALSH, J.J.
[1979] Infinite dimensional compacta containing no a-dimensional (n = 1) subsets, Topology, 18,
91-95.

ADDED IN PROOF. See the survey paper:

BrOwN, J.B. and C.V. Cox
[1982] Classical theory of totally imperfect sets, Real Anal. Exchange, 7(2).



