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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 266, Number 1, July 1981 

SOME PROPERTIES OF MEASURE AND CATEGORY 
BY 

ARNOLD W. MILLER1 

AiBsTRAcT. Several elementary cardinal properties of measure and category on the 
real line are studied. For example, one property is that every set of real numbers of 
cardinality less than the continuum has measure zero. All of the properties are true 
if the continuum hypothesis is assumed. Several of the properties are shown to be 
connected with the properties of the set of functions from integers to integers 
partially ordered by eventual dominance. Several, but not all, combinations of 
these properties are shown to be consistent with the usual axioms of set theory. The 
main technique used is iterated forcing. 

Six properties of measure and category on the real line are studied. A(c) is the 
proposition that the union of fewer than continuum many meager sets is meager. 
B(c) says that the real line is not the union of fewer than continuum many meager 
sets. U(c) is the proposition that every subset of the real line of cardinality less than 
continuum is meager. A(m), B(m), and U(m) are defined analogously by replacing 
meager by measure zero. In the first section some equivalent forms of these 
properties are given, for example, it is shown that A(c) iff B(c) and every family of 
elements of w" of cardinality less than the continuum is eventually dominated by 
an element of w".' Characterizations of U(c) and B(c) are also given. In the second 
section we prove some theorems about unions of closed sets of measure zero, small 
dominating families, and strong measure zero sets. In the remaining sections 
several combinations of these properties are shown to be consistent with ZFC. 
These consistency results are summarized in the third section. The last section 
contains some open problems. I would like to thank K. Kunen for several helpful 
discussions. 

1. The properties and some of their equivalent forms. All the properties we 
consider are equivalent whether stated for 2w, w', or the real line. For definiteness 
they will be stated for the Cantor space 2w, so we will begin by reviewing the usual 
product topology and measure on 2' and also establish some standard terminology. 
For sets X and Y let yX denote the set of functions from X into Y and IXI denote 
cardinality of X. Let 2Kw = U (2n: n < w} and similarly w<O. Note that for 
s E 2<w, Sl is the length of s when thought of as a sequence of zeros and ones. For 
s E 2<" let [s] = {x E 2W: s C x (x extends s)}, then the usual product topology 
on 2W is given by taking {[s]: s E 2<w) as a basis for the open sets and the usual 
product measure ,u is given by letting ,u([s]) = 2-1sl. For s and t finite sequences let 
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s^'t denote the concatenation of s and t. Let [X]<W and [X]W denote the set of 
finite subsets of X and the set of countably infinite subsets of X respectively. Let 
2 - = U {2 :m < n} and for n, m E w let [n, m) = {i E w: n ? i <im). The 
symbols "3X" and "V"" abbreviate "there exist infinitely many" and "for all but 
finitely many" respectively. Recall that a set is nowhere dense iff its closure has no 
interior; and a set is meager (equivalently first category) iff it is the countable 
union of nowhere dense sets. 

We consider the following three properties each applied to category and mea- 
sure. The strongest property, Additivity (A(c)), says that the union of less than 12 I 
meager sets is meager. The next property, Baire (B(c)), says that the union of less 
than 12WI meager sets is not 2W. Finally the last property, Uniformity (U(c)), says 
that every X c 2W of cardinality less than 12W is meager. A(m), B(m), and U(m) are 
defined analogously by replacing meager by measure zero. These properties are 
considered (but not named) in [MS] where the basic facts about the Cohen real 
extension and the Solovay real (random real) extension are noted (but not proved, 
these proofs will appear in the survey paper [K1]). Note that trivially A(c) implies 
B(c) and U(c); and A(m) implies B(m) and U(m). The only other implications 
known are Theorem 1.1(a) and (b) which are due to Rothberger [R1]. This leaves 
fourteen possible combinations (see the chart in ?3 which is taken from [K1]). 

THEOREM 1.1. (a) B(m) implies U(c). 

(b) B(c) implies U(m). 

PROOF. For x, y E 2w let x + y be the pointwise sum modulo 2 of x and y. Let G 
be a comeager measure zero subset of 2W (see [0]). If X C 2' is not meager, then 
2W = U {x + G: x E X}. This is because ifz c 2W - U {x + G: x E X}, then 

(z + G) n X = 0 but z + G is comeager, contradicting the fact that X is not 
meager. This proves the contrapositive of (a); and (b) is proved similarly. El 

For f, g E wW define f < g iff V'm f(m) < g(m) (that is g eventually dominates 
f. Let D stand for the property that VF c ww if IFI < IWWI then 3f E w' Vg E F 
f < g. D says that every family of small cardinality is dominated. Rothberger [R2] 
noted that D implies U(c). This is because for any f E w, {g c wW: g <f} is 
meager. Truss (see [T]) showed that B(c) + D implies A(c). We prove the converse. 

THEOREM 1.2. A(c) iff B(c) + D. 

PROOF. Suppose F c w', IFl < IWW1, and no f E ww eventually dominates every 
g E F. We assume every g in F is strictly increasing and define nk for k < w by 
letting nk +I = g(nk), and define C( g) = {h E 2" Vk h(nk) = 1). Note that each 

C(g) is closed nowhere dense in 2W. 

CLAIM. U {C(g) g E F) is not meager. 
PROOF. Let { C, n < w} be a countable family of closed nowhere dense sets. 

Define mk < w for k < w as follows. Let mk+I > mk be such that Vi < k, Vs E 

2mk, 3t E 2mk+1, t D s and [t] n Ci = 0. Let Z = (mk: k <X}. Then there is a 

g E F with the property that for its associated sequence <nk: k < w> there are 
infinitely many k such that 

IlI[nk, nk+l) n ZI > 2 where [nk, nk+1) = {m < w: nk < m < nk+l } 
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This is true because if not, then define f(k) = mk for all k and let f eventually 
dominate the tails of f, i.e. Vk < w if h is defined by h(n) = f(n + k) for all n then 
h <f. For any g E F and its associated nk's 31 Vk > 1, /[nk, nk+1) n Z/ < 1. Let 
mk be the least element of [nl, oo) n Z and then Vk > 1, g(k) < nk < mk+k = 

f(k + k) and thus g <f. This contradicts the fact that nothing dominates F. 
Letting g E F be such that there are infinitely many k such that I[nk, nk+ ,) n Zl > 
2, it follows easily from the definition of Z that each Cn is nowhere dense in C(g) 
(the relative topology), and thus U { C(g): g E F) is not included in U { Cn: n < 
w}. Since the Cn's were arbitrary to start with the claim is proved and so is the 
theorem. LI 

Note that B(c) is necessary in Theorem 1.2 since D + -iA(c) is true in the 
Mathias real model (see ?6). The following theorem characterizes U(c) (every 
X C 2w with IXI < 12w1 is meager). 

THEOREM 1.3. U(c) iff VF C w' if IFI < Iw"I then 3X C w infinite, 3f E W', 

Vg E F, V1'n E X, f(n) = g(n) (that is f is eventually different on X from every 
element of F). 

PROOF. (<=) This is easy since for any f and X { g: Vtn E X, f(n) 7# g(n)) is 
meager. 

(=X) Suppose not and let K = 12 1 + + and choose M an elementary substructure 
of (H(K), e) (H(K) is the set of hereditarily of cardinality less than K sets) with the 
properties IMI < 12W1 and Vf E wX VX C w infinite 3g E M n w', 3??n E X, 
f(n) = g(n). We show M n 2" is not meager in 2W. 

CLAIM. Vg E ww, 3<nk: k < w> E M strictly increasing and 3 "k, g(nk) < nk+l. 

PROOF. We may as well assume g is strictly increasing. Choosef E w" n M such 
that 3?k,f(k) = g(k). Build in M, <mk: k < w> so that Vk Vi < mk,f(i) < mk+l. 

Let X = {i :ff(i) = g(i)). Assume U {[mk, mk+l) n X: k even) is infinite, then 
nk = m2k works since if i E [m2k, m2k+l) n X then g(nk) = 

g(m2U) < g(i) = f(i) 

< m2k+2 = nk+l. A similar argument works if U {[mk, mk+l) n X: k odd) is 
infinite. 

Now suppose C,, for n < w are closed nowhere dense in 2" and C, 5 C,+ ,1 for all 
n. Define f: w -*2<w so that Vn <w Vs E 2<n [s'f(n)] n C,, = 0. By the claim 
3<nkk k <w> E M such that nk+l > k- nk for all k and 3 k lf(fnk)l <fnk+1. Let 
X = {nk: k even and If(nk)l < nk +1}. By hypothesis on M 3g: w -2<" g E M 
and 3??k E X g(nk) = f(nk). We can assume Vk Ig(nk)j < nk+1. Let z = 

g(n0)\g(n2)\g(n4)Y * ; then z E M n 2W and z 4 U {C,,: n < w), since if 
g(n2k) = f(n2k) then I g(n0)^g(n2)^ **.*g(n2k -)A S (2k - 2) * n2k - < n2k and 
therefore z ( C,2k. L 

REMARK. The a-ideal I generated by sets of the form 

{g E ? : V?n E X,g(n) =/=f(n)) 

for X c w infinite and f E wW is a proper subset of the ideal of meager subsets. To 
see this let <s,,: n < w> enumerate w<W without repetitions and let C = {x E 
wW: - 3n < w s,,I'(n) C x). It is easily checked that C is closed nowhere dense in 
wW. To see that C a I let fn, X,, for n < w be given. Build a sequence tm C t1+I of 
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elements of w<w so that U {tm,: m < w} = z E C but Vn 3'm E Xn f(m)= 
z(m). This can be done since given t E w<@' such that [t] n C =# 0 and n < w we 
can choose I e X,, such that I > Itl + 1; then T = {r: r D t A Irl = I A [r] n C 
# 0) is infinite. So 3r E T such that [r''(fj(l))] n C # 0. 

Next we characterize B(c). 

THEOREM 1.4. B(c) iff [VF C wl' if |Fl < lkol then 3f e w" Vg E F 3?n 

(f(n) = g(n) A Vi < n f(i) < n)]. 

PROOF. (=X) It is easily checked that for any g E wW { f E w": 3??n (f(n) = g(n) 

A Vi < n f(i) < n)} is a comeager G8 subset of w". 
(=) Let M be any elementary substructure of (H(K), e) such that K > 12W I + + and 

IMI < 12 I. By hypothesis 3f C w" Vg C M n w" 3?n (f(n) = g(n) A Vi < n 
f(i) < n). Let <s,,: n < w> E M, list 2<w, and define z = 

sfo)-'sl)-sf2). 
CLAIM. VC C 2" closed nowhere dense, if C C M then z 4 C. 
PROOF. Define g E ww n M by g(n) is the least m < w such that Vio . . ., in1- 

<n [sisi /-",,si_SI"ms] n C # 0. If g(n) = f(n)AVi < n f(i) <n then 
z < C. This proves the claim and since M was arbitrary it proves the theorem. E 

2. Closed sets of measure zero, small dominating families, and strong measure zero 
sets. It is well known that B(c) does not imply B(m) (Cohen real model, see [K1]), 
however, 

THEOREM 2.1. B(c) implies the union of fewer than 12W 1 closed sets of measure zero 
has measure zero. 

PROOF. Let Cn = Dmn: m <w} = {D C 2W: D clopen A ,u(D) < 1/2n}. Let 
E C 2" for a < X be closed sets of measure zero. Then Ga =fE w": 3'n 
Ea CD;n} is a comeager G,; set. If f E n ( Ga: a < X} then 

n(OU D;m)) = O and Va < X EaCf n u D;lm) E 
n<w m>n n<w^ m>n 

SD says that 3F C w" IFI < lw'l and Vf E w" 3g E F f < g (i.e. there is a 
small dominating family). 

THEOREM 2.2. SD implies there is a union of fewer than 12' 1 closed sets of measure 
zero that does not have measure zero. 

PROOF. Let M -< (H(K),c) for some K > 12@wI and IMI < 12wI and F C M, 
where F witnesses SD. We show that X = U { C C 2W: C closed measure zero A 
C E M} does not have measure zero. Suppose it does and let H C 2" be an open 
set with 1(H) < and X C H. 

CLAIM. VX C w infinite 3<nk, k < w> E M so that 0 = no and Vk nk <fnk+I 
and IX n [nk, nk+1)I > 2. 

PROOF. Choose f(n) for all n so that I[n, f(n)) n XI > 2. Let g E WW n M be 
strictly increasing and Vn f(n) < g(n), and let nk+I = g(nk) for all k > 0 (no = 0). 
L 

Build a sequence nk < nk+ 1 for k < w with no = 0 and so that Vs E 2* 

i((H n[s])- U {[t] :tDs,tE2'2+',and[t] CH}) n+3' 
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Bythe claimwemayassume <nk:k<w> EM. Vk<wletDk={nl,...,nk} 

and let Sk D -> 2 be constantly 1. Define C = n {[sk]: k < w} and note that 
C E M is a closed set of measure zero. We will show C ! H by showing in effect 
that the "measure"9 of H with respect to C is less than 2. For any k < w let 

ek = 1/22nk +3 and let 

Uk= U {[t] : tD skA t Et 2nk-1 A[ t] 5 H). 

Then A(H n [Sk+l]) = ,((H - Uk) n [sk+ ]) + I(Uk n [sk+ ]). By our choice of 

nk+ 1 ,u(H - Uk n [sk]) S ek. Since Uk lives in 2nk+, 1, (U n [sk+ 1]) = 2 (U n [sk]) 

and since Uk C H n [sk], ,(H n [sk + ]) s ',j(H n [sk]) + ek. By induction on k it 
is easily shown that 

1 ~~~k 1 
,u(H n [sk+ I ]) < 2k+1 j(H) + E2I 

2 ~~1=0 

And thus 
k 

2k+ ,u(H n [sk+I]) < j-(H) + 2 2''e1. 
1=0 

Since n, > 1, 2+'1e = 2`+1/22ni+4 1 1/21+3 and thus for alll k 

2k,4(H n [sk]) < 2 

Define the canonmcal homeomorphism F from 2' onto C as follows: 

f 1, if 1 = nk for some k > 0, 

F(X)(l) =1 'IX(l - k), if k + 1 is the least integer such that 1< nk+1. 

Consider the Borel measure ,u* defined by ,*(X) = ,4(F-'(X)). Let 

Hk= U {[s] : s E 2nk+ A[s] C H). 

Note that Vt E 2nk+1 ,l*([t]) S 1/2nk+ 1-k = 2k,i([t]). And therefore 

, (Hk) = ,i*(Hk n [sk]) < 2kIA(Hk n [sk]) < 2kA(H n [sk]) < 2 

Therefore ,u*(H) = lim ,t*(Hk) S 2 and thus C - H # 0. E 

For X c 2' we say that X has strong measure zero iff Vf E w' 3sn E 2f(n) for 
n < w such that X C U {[sn] : n < w}. Let SMZ stand for the proposition VX C 

2W if IXI < 12w1 then X has strong measure zero. For B C w", B is bounded iff 
3f E w" Vg E B Vn < w g(n) < f(n). The following theorem is essentially proven 
in [R2] and [R6]. 

THEOREM 2.3. SMZ iff VE C wW if |El < lw1I and E is bounded then 3f E w' 

Vh E E 3??n f(n) = h(n). 

PROOF. (4=) Suppose X c 2w, IXI < 12w I, and f E w'. For every x E X let 

gx : w >2<W be defined by gx(n) = x r f(n). Let E = { gx : x E X} and note that 
E corresponds to a bounded set in w' since Vn Vx gx(n) lies in a fixed set of size 
2f(n). Thus 3h : w -> 2<c Vn < w h(n) E 2f(P) and Vg E E 3?n h(n) = g(n) and 

this implies X C U {[h(n)] : n < w}. 
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(=X) Assume without loss of generality that E C {f: X 2 V: Vn f(n) E 2g(n)} 

= Y for some g E wW and Vf, f' E Y if Vn f(n) =f'(n) then f E E iff f' E E. 
Define c: E ->2 by c(f) = f(O)'f(l)^f(2)^ I .. (the infinite concatenation of 
f). For every n < w let f(n) = E{g(m): m < n}. Since c(E) has strong measure 
zero 3sn E 2f(n) such that c(E) C U {[sn] n < w}. For each n < W let h(n) E 2g( 
be defined by h(n)(i) = sn(f(n) - g(n) + i) (i.e. h(n) is the last g(n) digits of sn). 
For any f c E 3n Xf E [sn] which implies that f(n) = h(n), since E is closed under 
finite changes 3??n f(n) = h(n). 

REMARKS. (1) Let f: 2W -> [0, 1] be defined by f(x) = E {x(n)/2n+1: n < w}; 
then f is onto and at worst two to one. Furthermore it is easily checked that if 

f(X) = Y then X has strong measure zero iff Y has strong measure zero in the 

usual sense, i.e. given en > 0 for n < w, 31In intervals such that Y C U { In: n < 
w} and the length of In is less than en. 

(2) The assumption that E is bounded in Theorem 2.3 can be seen to be 

necessary because of the model constructed in ?7 (W2 infinitely often equal reals 

side by side). 

(3) The w2 Mathias reals model (?6) shows that SMZ is not equivalent to U(m) 

(since Laver [L] shows that SMZ fails there). 

(4) It is not hard to show that assuming D, B(c) iff VE C w' if IEI < lwwI then 

3f E w" Vg E E 3?n f(n) = g(n). Thus A(c) iff SMZ and D. 

3. Summary of consistency results. This chart (from [Kl]) summarizes the known 

consistency results for the six properties. The shaded boxes are eliminated by 

Rothberger's theorem. 

We review here some standard terminology and facts about iterated forcing to be 

used in the remaining sections. It will be assumed that the reader is familiar with 

the method of unramified forcing as presented in Shoenfield [Sh] or Kunen [K2]. 

By IF "0" is meant that Vp E P pIk "0". Frequent use is made of the maximum 

principal, so that IF "0" may be assumed instead of for some p E P, pIk "9". M 

and N will be used to stand for countable transitive models of ZFC + GCH. The 

assumption of GCH is of course not necessary in the case of c.c.c. extensions nor is 

it necessary that in the generic extension 12"1 = W2. For simplicity we assume GCH 

in our ground model and 12W1 = 12 11 = W2 holds in our extensions (except ?8). 

Two types of iteration will be employed-finite support and countable support. In 

general we will have a sequence of partial orders Pa for a < W2 with P_ C PO for 

a /8 and Pa = U {Pa: a < 8 } for limit S. For each a < W2 everyp E Pa will be 
a map from W2 into M such that supp(p) = {/,8: p( /3) # 1) } a (the support of p) 

and V,8 < ap r /813 "p(,8) E RP" where pP is some term for a partial order in the 

forcing language of PO. (p r /8 is the condition agreeing with p up to /8 and equal to 

1 from then on.) For G, P12-generic over M, and a < W2 let Ga = G n Pa. (For 
background see [K2, Chapter 8]). 

In ??4 and 5 supports will be finite and thus the partial orders iterated must have 

c.c.c. (if not w, is collapsed). It is assumed that the reader is familiar with the 

connection between Cohen reals and random (Solovay) reals, and measure and 
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category (see [Kl] and [So]). Thus the reason the category extension (forcing with 

C(W2) = {pIp: D -> 2 A D Q W2 finite)) satisfies B(c) + -,U(c) (and thus by 
Rothberger's theorem - B(m) + U(m)) is that the first w, Cohen reals ({xa a < 

w,) where xa(n) = G(a + n) for n < X when G is C(w2)-generic over M) are not 
meager (so - U(c)) and also the W2 Cohen reals cannot be covered by W2 meager 
sets (so B(c)). Showing this essentially boils down to the product lemma and the 
fact that x E 2' is Cohen over M iff it avoids meager sets coded in M. 

Add T F F F F 

category 

Baire T T F T F 

measure 

Add Baire Unif T T T F F 

T T T MA 
[MS] 

Iterated Infinitely 
See random equal and 

F T T Conj ecture ras random 
?9 (2) real reals 

? ?7 

Dominating Eventually Mathia s Cohen Infinitely 
F F T reals different reals reals equal reals 

?5 reals ?5 ?6 [Kl] ?7 

Random 
F T F reals 

[Kl] 

See ~~~~~Silver or 

F F F conJecture realks 

?9 (3) 
real 

In ? ?6 and 7 countable support will be used (also one side by side countable 
support). Here it will be assumed that the reader is familiar with [L] or [Ba]. See 
also [Ml] and [BL]. 

In ?8 some partial results are given concerning the associated cardinals. One 
well known (but unpublished) fact which we will use there and in ?5 is 

LEMMA. Suppose P C Q are partial orders in M. Then the following are equivalent. 
(A) VG, Q-generic over M, G n P is P-generic over M. 
(B) VD C P, D E M dense in P, E = {q C Q: 3p E D, q <p) is dense in Q. 

Two conditions in P are compatible in P iff they are compatible in Q. 
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PROOF. (A) =X (B) Suppose D c P is dense in P and 3q E Q such that -i 3p E 

D p and q are compatible in Q. Then for any G, Q-generic over M with q E G, 
G n P n D = 0. Ifp and q are incompatible in P but 3r e Q, r < p and r q, 
then any G, Q-generic with r E G, has the property that G n P is not a P filter. 

(B) =X (A) By the first clause P n G meets every dense subset of P in M and by 
the second clause it is a P filter. 

4. Iterated random reals. The main result of this section is the consistency of 
B(c) + B(m) + -i A(c) + -i A(m). Let B be the partial order for iteratively adding 

w2 random reals with finite support. That means that p E B iff p E M12 and 
Va < W2P r aI "p(a) is a nonzero element of the measure algebra of 2" in M[Ga]" 
and supp(p) is finite. By c.c.c. it is clear that M[G ,2] t'B(m)". For any a < w2 let 
Za E 2W be defined by za(n) = xa+n(O) where xa is the ath random real added by B. 
Since supports are finite it is easily checked that Za avoids every nowhere dense set 
coded in M[Ga] and therefore again by c.c.c. M[G.2] t"B(c)". 

Thus it remains to show that M[G,]IF "G] A(c) + -i A(m)". 

LEMMA 4.1. Vq E B 3n < w 3p < q such that 

Va < W2P r aFl "A(p(Aa)) > 1/ (n + 1)". 

PROOF. This is easily proved by induction on max(supp(q)) by adding to the 
induction hypothesis max(supp(q)) = max(supp(p)). E 

LEMMA 4.2. Suppose n <w, F E [W2]<w, and IF "'r E w"; then 3q E B 3N <w 
3m < w such that ql "'r < N", Va E F q r aIF- ",u(q(a)) > 1 - 1/(n + 1)" and 
Va < W2 q r aFl "JL(q(a)) > 1/(m + 1)". 

PROOF. The proof is by induction on (min(F), IFI) (where min(F) is the least 
element of F) over all possible ground models. 

Case 1. min(F) = a # 0. In M[Ga] the lemma is true (with M[Ga] the ground 
model), so we can find q r a, H E [W2 - a + 1]<, N < w, m < w, and a term q so 
that q r aIF- [41W "T < N", H = supp(4), VP a < A < W2, 4 r [a,alHf "A44(f)) > 
I/(m + 1)"' and VP Ee F 4 r [a,f3)IH "t&(4(f))) > 1 - 1/(n + 1)"]. Thus using H 
we can define q E B with the required properties. 

Case 2. min(F) = 0. In M[Go] the lemma is true for F = F - {O), so choose a 

sequence in M (qk, Hk, qk, Nk, mk) for k < w so that {qk: k < w} is a maximal 
family of incompatible elements of the measure algebra on 2" and for all k < , 
Hk E [12 - {0)I<w, Nk, mk < w, and 

qklF [SUPP(4k) = Hk, Va E F, qk r[1,a)IH "L(4k(a)) > 1-1/ (n + 1)", 

Va qk r [ 1,)a (4k(a)) > l/ (Mk + 1), and qklF "T < Nk"]. 

Choose I< w so that :i< L(q,) 1 - l/n. Let N = sup{Nk: k <1), q(O)= 

Uj<1 q*, m = sup{mk: k < 1), and for a > 0 let q(a) = q,(a) if q*. Note that 

supp(q) C U {Hi: i < 1) and therefore q E B and is as required. E 
REMARK. All that is used to prove Lemmas 4.1 and 4.2 is that the measure 

algebra is a Boolean algebra with a finitely additive strictly positive measure. For 

example, the Boolean algebra of clopen subsets of 2" would do as well. 
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We show first that no f E= w' n M[G W2] eventually dominates every element of 
M n wW (and thus M[G JIIF "-,A(c)" by Theorem 1.2). Let IF "f E w"". Using 
Lemma 4.2 construct a sequence Pn E B for n < w and g E wW so that Vn < w 

SUPP(Pn+l) 2 SUPP(Pn), Va E SUPP(Pn) Pn+1 r aIlF l(Pn+ 1(a)) > 1 - 1/(n + 1)", 
and pn+ I IF "f(n) < g(n)". 

CLAIM. IF "3 n f(n) < g(n)". 
PROOF. Given any q and m < w, by Lemma 4.1, 3p < q 3n > m Va < w2 

p r aIlF ",u(p(a)) > l/n", and supp(p) n U {supp(pk): k < w) C supp(pn). But 
then P+ is compatible with p. To see this let r(a) be a term for p +(a) n q(l); 
then show by induction on a that r r a E Ba. 

Case 1. If a 4 supp(p) U supp(pn + ) then r(a) = 2w. 
Case 2. If a E supp(p) -supp(p + 0) then r(a) = p(a). 
Case 3. If a E supp(pn) - supp(p) then r(a) =Pn+I(a) 
Case 4. If a E supp(p) n supp(pn + 1) then by choice of n, a E supp(pn) and thus 

Pn+1 r alF "(Pn+1(a)) > 1 - 1/(n + 1)" and therefore 

r r atlF "tt(pn +,(?) n p(Ol)) > 0*O 

To show -i A(m) we need the following lemma. 

LEMmA 4.3. If IF "f E w"' then 3g E w' 3pn E B for n < w such that pnIF "f(n) 
< g(n)" and 

Vq EB 3n Vk >n(q n fl{p1 n <I <k}) EB. 

PROOF. Construct pn E B with increasing supports, kn < w, and g(n) by induc- 
tion on n < w. LetpolF "f(O) < g(O)" and Va < W2Po r aIHF "(pO(a)) > 2/ko". Use 
Lemma 4.2 to findp + and k+ I > 2k- +1 so that 

Va?lPn +l r al lF I(4Pn + 1(a)) > 2/ kn + 1 

Va E SUPP(Pn) Pn+1 r aIlF "(Pn+1(a)) > 1- 1-kn+1" 

and p+IIlF "f(n + 1) <g(n + 1)". For any pair n <k and a <W2 let r(a) be a 
term for the intersection n { p1(a) n < 1 < k). If a E supp(pn) then 

r r aYIF "IL(2 - r(ca)) < 1, IL(2w -P 
I I 

n<l<k n<l<k I n 

and therefore JL(r(a)) > (1 k- 

If a E supp(pi+ 1) - supp(pi) for some i, n < i < k - 1, then 

r(a)= n f{p(a): i + i < j < k} 

and thus 

r r acIF "L,(2w - r(a)) < I(2 - pi+ (a)) + z u(2 - p1(a)) 
i+1<;j<k 

< (1- + = 1 and thus I(r(a)) > 0". 
i+ 1 ki+ I 
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Given any q choose p < q and n sufficiently large so that Va p r aIF "14(p(a)) > 

l/k"99 and supp(p) n U {supp(pi): i < w} C supp(pn), these exist by Lemma 4.1. 
By an argument similar to the proof of the claim, p and r are compatible and thus q 
and r are compatible. E 

This lemma implies, by a density argument, that for every real (element of w') in 
the extension there is a real in the ground model which dominates it on arbitrarily 
large blocks of consecutive integers. Suppose I F "G C 2" is an open set of 
measure <4". By Lemma 4.3 we may find nk < nk+ I < w with n0 = 0 and Pk for 
k < w such that 

PkIF "Vs E2<nkflk(G nf[s] - U {[t]: t E2'k+ and [t] C G}) <22+3 

and Vq E B 3n Vk > n, nf {p, n < 1 < k) and q are compatible. Choose disjoint 
Fk C {ni i < w} with IFkl = k, and consider H = {X C 2': 3Xn Vi C Fn, x(i) 
= 1). H is a measure zero set coded in M. For any G, B-generic over M, let 
Y = {ni pi E G) and let C = {x E 2w: Vn E Y x(n) = 1). A density argument 
shows that C c H. As in the proof of Theorem 1.6, C $ G and therefore H !t G. 
Since G was arbitrary -iA(m) holds in M[G W2I. E 

5. Eventually different reals. In this section we show that B(c) + U(c) + -i B(m) 
+ - A(c) is consistent. Let E be the following partial order. E = {(s, G): s E w<t< 
and G E [w']<(.} and (s, G) < (t, H) iff s 2 t, G 2 H, and Vi if isj < i < jtj then 
Vg E= H, t(i) # g(i). A density argument shows that if 

f = U {s : (s, H) E= G) 

for any G E-generic over M then Vg E w' n M, V/n g(n) =#f(n). Let Pa denote 
the a iteration of E with finite support (if p E Pa then V,8 < a p r ,8 
IF "p(,8) E EM[G#I"). As in ?4 finite support means that Cohen reals are added, and 
also eventually different reals are added. By Theorem 1.3 M[G W2]]F "B(c) + U(c)" 
for any G W2 PW2-generic over M. 

We claim that no real in M[G W2] eventually dominates the reals in M (so by 
Theorem 1.2 - A(c) holds in M[G W2]). For clarity we first show this for a single 
step, that is, VG E-generic over M, M[G]IF "Vf E we, 3g C @w n M, 3??n f(n) < 
g(n)". 

LEMMA 5.1. Suppose IF "T E M", s E w<W , and n < w then 3H E [M]<(' VG C 
w" if IGI < n then 3p < (s, G), pIF "r EC H". 

PROOF. VH E [M]<" let GH = {(go, * * gn-1) E (w : 3p < 
(s, {gO, ... , gn-1)) such that pIF "Tr E H"). Note {GH: H E [M]<") is a cover 
of (wW)n. Give ( the cofinite topology, i.e. U C ( is open iff U is cofinite, and give 
ww and (Wo)n the product topology. Then by Tychonoff's theorem (Wo)n is compact. 
For any (go,.. . ,gn1) E GH if p = (t, H) < (s, {go,.. . ,gn-)) and plIF "T E 
H", then let U = {(gj, . .. , gn) Vi if isj < i < jtj then Vk < n t(i) # gk(i)). Note 
that U is a basic open set and g E U C GH since p < (s, { go , gn_ 1)) for any 
(90 ** * gn -) C U. Since GH U GK 5 GHUK, 3H C [M]<" GH =( w)n. 
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Let (sn, k) for n < w list with infinitely many repetitions w<W >( w. Let IF "f E 
w'" and using Lemma 5.1 find g E w' so that Vn VG E [ww]k 3p < (s,, G) 
pHF "f(n) <g(n)". Now suppose 3n 3p pHF "Vm > n f(m) > g(m)"; then 3m > n 
such that (Sm, G) = p and IGI = km, but then 3q < p qlF "f(m) < g(m)", which is 
a contradiction. Thus by genericity, 3 n f(n) < g(n). 

Next we show that no random reals are added by one step. 

LEMMA 5.2. Suppose HF "T < N" where N < w and s E w<W; then 3n < N such 
that V H E [wX]<@ 3p < (s, H) pIF "T = n". 

PROOF. If not, then Vi < N 3HI (s, H)VF "T #= i". But (s, U {Hi: i < N))IF "Vi 
< N, T #E i", which is a contradiction. OI 

For any x E 2W n M[G], by employing an argument similar to the one follow- 
ing Lemma 5.1 but instead using Lemma 5.2, there exists g E M such that 
g: w - 2<" and 3??n x r n = g(n). Note that H = {y E 2": 3 n y r n = g(n)) 
has measure zero (assuming Vn g(n) E 2n) so x is not random over M. 

LEMMA 5.3. Vp E Po2 3q < p Va E supp(q) 3s5 E w<'o 3na <w IF "q(a) = 

(se, G) for some G E [wWI]n 

PROOF. The proof is by induction on max(supp(p)). E1 
Call such q as above canonical and from now on we assume all conditons in P., 

are canonical (since the canonical ones are dense). 

LEMMA 5.4. Suppose HF "T E M" and given F E [W2]<W and na < w and sa E w<W 

for every a E F, then 3H E [M]<" such that Vq E P.,2 if supp(q) = F and Va E 

F, nq = n, and sq = sa then 3p < qpIF "T E H". 

PROOF. The induction is on (min(F), IFj) as in Lemma 4.2 and the case 
0 =# min(F) is proved similarly. If 0 = min(F) then since the lemma is true with 
M[Go] as the ground model let H be a term in the forcing language of P such that 

IF "H E [ M] <' and Vq E P[l "2) if supp(q) = F - (0) 

and Va E F - O0), nq = na and saq = sa then 3p < q,pIF T E H". 
Now use Lemma 5.3 to find H and take care of so and no. OL 

LEMMA 5.5. Suppose F "T < N" where N < w and given F E [W21<w and n, < W 

and sa E w<W for every a E F, then 3n < N such that Vq E P,2 with supp(q) = F 
and V aE F, na = naq and sa = sgq 3p < q pIF XT= n . 

PROOF. The proof of this lemma is similar to Lemma 5.4 using Lemma 5.2 
instead of Lemma 5.1. E1 

It is now easy to see that Va < w, VG, Pa-generic over M Vf E wf n M[GJ], 
3g E w"' n M, 3?n f(n) < g(n) and 

2T n M[G,] = U {G: ,u(G) = O and G is coded in M}. 

The proofs are similar to before, just list in an w sequence all the sets 
(F, ((Sa n,): a E F)) for F E [a]<". The remaining lemmas will reduce us to this 
case. The technique is similar to that of the proof of Lemmas 28 through 30 of 
[M2]. 
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LEMMA 5.6. Suppose M C N are transitive models of ZFC. Then if G is E-generic 
over N then G n EM is EM-generic over M. 

PROOF. The proof is exactly the same as Lemma 5.2 of [T]. Namely if M k"A C 
E is a maximal antichain" then A is a maximal antichain in E by HI absoluteness. 
El 

Call a partial order P absolute just in case it is definable (possibly with 
parameters in M) and given any N D M, a transitive model of ZFC if G is 
PN-generic over N, then G n PM is PM-generic over M. Suppose Pa for a < y is a 
finite support iteration of absolute partial orders over M, i.e. Pa+ 1 = Pa * pa where 
Pa is some name for an absolute partial order in M[Ga]. Given X c y (X E M) 
define the iteration P* for a < y as follows: 

For a 4 X let P*+1 =P* * 1 (where 1 is the one element order). 
For a E X let P*1 - P* * (Pla)M[G:JI where G,* is P*-generic over M. 
For Ga Pa-generic over M define Ga* = Gal n P* 

LEMMA 5.7. Va < y if Ga is Pa-generic over M then Ga* is P*-generic over M. 

PROOF. The proof is by induction on a. For the successor case a + 1 if a 4 X 
then P*+1 is isomorphic to P*. Now suppose a E X then Ga+, = Ga X G' where 
G' is (Pa)M[Gl-Jgeneric over M[GJ]. By absoluteness G*a = Ga n (pa)M[G:J is 
(Pa)M[G:-geflerjc over M[G*]. So Ga*+l = Ga* X G* is Pa*+ -generic over M by the 
product lemma (see [So]). Now suppose a is a limit ordinal. We will use the lemma 
in ?3. Suppose D 5 P* is dense; then we need to show E = {q E Pa 3P E D 
q < p} is dense in Pa. Given q E Pa choose 13 such that supp(q) C /. Note that 
{p [ ( p E D ) is dense in P, so 3p E D p r /3 and q r /8 are compatible in P; 
therefore p and q are compatible in Pa. Note that the fact, that two conditions in 
Pa* are compatible in P* iff they are compatible in Pa is easy since a is a limit 
ordinal. EO 

LEMMA 5.8. If I- "T C w" then 3X C W2 countable, X E M and VG P.2-generic 
over M TG E M[G*I. 

PROOF. This is easy using c.c.c. O 
Thus we conclude that 

M[G,]2n w = U {M[Ha] n w: a < w, Ha E M[GJ ] 
and Ha is Pa-generic over M}. 

Therefore we have shown 

THEOREM 5.9. B(c) + U(c) + -,B(m) + -iA(c) is consistent with ZFC. 

Let D be the dominating partial order, D = {(n, f): n < , f E w') where 
(n, f) < (m g) iff n > m, f r m = g r m, and Vi f(i) > g(i) (see [H]). Note that 
Lemma 5.2 is also true for D. Hence by similar arguments no random reals are 
added by a finite support iteration of D. This shows 

THEOREM 5.10. A(c) + -,B(m) is consistent with ZFC. 
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REMARK. Kunen first proved Theorem 5.10 using the M, precalibre of D and the 
fact that the measure algebra on 2' (assuming CH) does not have M, precalibre. 

6. Mathias reals. Let P = {(s, A): s c [w]<w, A c [wIW, and sup(s) S inf(A)) 
where (s, A) < (t, B) iff s D t and (s - t) U A 5 B (see [Ma]). 

LEMMA 6.1. VG P-generic over M, M[G] k"M n 2' is meager and has measure 
zero". 

PROOF. Let Z = U {s: 3A (s, A) C G) and note that a density argument 
shows that VX E P(w) n M 3n < w Z - n C X or (Z - n) n X = 0. But for 
any infinite Q C w, U i= 0,1{X C 2' Vn C Q x(n) = i) is a closed set of measure 
zero (hence nowhere dense). OL 

The following statement is due to Mathias (see [Ma]). 

V(s, A) VO 3B C A (s, B)l "0" or (s, B)lH "-0". (*) 

LEMMA 6.2. Suppose I- "T E 2J"'; then 3B = {bn n < w) w so that Vm < w 
Vt C {b : n < m) 3r E 2b" so that 

(t, B - (bm + 1))IF "T r bm = r". 

PROOF. Construct Bn E [w]" and {bm m < n) by induction on n. Let Bo = c 
and choose bn E Bn - (bn-l + 1) arbitrarily. By repeated applications of * obtain 
Bn+l C Bn - (bn + 1) so that Vt C {bm :m < n) 3r E 2bn so that (t, Bn+1)IF "T 

bn= r". E 
For clarity we show first that no real in M[G], for G P-generic over M, is Cohen 

or random over M. So let I- "T E 2@". By refining B = {bn n < w) from Lemma 
6.2 we can assume that Vn < w, bn > 22 '. Define T = {t E 2<W: 3q < (0, B) 
3n < w qlk "T r n = t"). By Lemma 6.2, Vn < w IT n 2bnl < 2 n+ and thus IT n 
22n+ I < 2n +. Therefore C = {x e 2' : Vn x r n E T) is a closed set of measure 
zero (hence nowhere dense) and (0, B)lk "T E C". 

Now let P.,2 be the W2 iteration of P with countable support. Let X= {x E 

w(W: Vn x(n) < 2n ). We claim that Vy E M[G. 2I n x 3<Fn n < w> E M such 
that Vn (IFnI < 2n and y(n) E Fn). Define 0: X -- 2w by 0(x) = x(0)x(l) 
x(2)^ ' *-, where we identify 2n with sequences of 0's and l's of length n3. If 
C = {x E X: Vn x(n) E Fn) then 

o((c)) = lim -n = lim - = 0 
n---O 2n3 n--->o2 

Thus it remains only to prove this claim. Define (s, X) < n (t, Y) for n < w iff 
s = t, X C Y, and the first n elements of Y are still in X. Using * it is possible to 
show that if plk "T < N" where N < w then Vn < w 3q (n p 3H IHI < 2n 
qlW "T E H". For F E [W2]<W define forp, q E P",p 4q iff p < q, and Va E F 

p r alH "p(a) <n q(a)". Then it can be shown that Vp C P W2 Vn <w VF C [W2I 
3q <F p 3H H < 2n qlV "T E H". A fusion argument now finishes the proof of 
the claim. EO 

REMARK. In fact we have shown that 

M[G W2 ] n 2W = U { C: C closed measure zero and coded in M}. 
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Thus U(m) does not imply that the union of less than 12 1 closed sets of measure 
zero has measure zero. 

7. Infinitely often equal reals. In this section we show that U(m) + -U(c) + 
B(c), U(m) + B(m) + - A(m) + - B(c), and - U(m) + - U(c) are each con- 

sistent with ZFC. A Sacks real is obtained by forcing with perfect (every node has 
incompatible extensions) subtrees of 2<` (see [Sal). A Silver real is obtained by 
forcing with condition of the formp: D -*2 where D c o is coinfinite (see [G]). It 
is an unpublished result of Sacks (see also [Ji) that when one adds W2 (or more) 
Sacks reals side by side with countable support then - U(m) + - U(c) holds in the 
extension. The same is true when Silver reals are added. 

Consider the partial order 

P = { s: D 2` @: D C w is coinfinite and V n E D, s(n) E 2n } 
where s < t *-* s D t. For any G P-generic over M, define f = U G. An easy 
density argument shows that Vx e M n 2W 3Xn x r n = f(n). Note that {x E 

2W: 3 n x r n = f(n)) has measure zero for any f. It is also hard not to show that 
2W n M has strong measure zero (see Theorem 1.7). Next we show that Vh E 

M[G] n w" 3g E M n w" Vn h(n) < g(n). 

LEMMA 7.1. Suppose sIW "T < w" and E E [w-dom(s)]<W; then 3N < w 3t < s 
dom(t) n E = 0 and tlk "T < N". 

PROOF. Let {rl, . .. , rk) = {r: E-2< : Vn E E r(n) E 2n). Successively ex- 
tend s > s, > 52 > ... > Sk = t so that Vi E n dom(si) = 0 and si U ril "T= 

ni". Let t = sk and N = sup{ni: 1 < i < k) + I and then tl "T < N". O 
Now suppose slk "T E W"". Construct En ; En+1 finite, sn+I < sn < so = 5, 

and g E wW such that dom(sn) n En = 0 and snl "T(n) <g(n)". Then t = 

U {sn n <w) is in P since U {En n <o) n dom(t) = 0, and tli "Vn T(n) < 
g(n)". Next we show that M[G] k"M n 2W is not meager". 

LEMMA 7.2. Suppose slV "C is nowhere dense in 2"", E E [w-dom(s)I<`, and 
t e 2<W. Then 3r D t 3s < s E n dom(s) = 0 and sIb "[r] n C = 0". 

PROOF. As before let { ri : i <k} = {r E - 2<W : Vn E E r(n) c 2W). Now 
build si+ <s<s for iKk and ti+ DtiD t such that dom(si) nE=0 and 

si U rilf "[ti] n C = 0". This can be done since sib "C is nowhere dense". Then let 
s = Sk-l and r = tk-1. l 

Now suppose sl "C c 2w is nowhere dense". Let 2< {tn n < w) and 
construct sn+I < sn < s, En+I;D En finite, and tn : tn such that sn sI-"C n [tn]= 
0"andEn n dom(sn) = 0.Thens = U {sn,: n < w) isinPsince 

U {En n < w} n dom(s) = 0 
and if G = U {[tn] n < w) then G is open dense and sl "G n C = 0". This 
shows that every meager set coded in M[G] is covered by a meager set coded in M, 
so M n 2W is not meager in M [G]. 

Next we are going to force with the side by side W2 product of P with countable 
support to show that U(m) + -' U(c) + - B(c) is consistent. For any set X define 
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xp {p :X -> P: {x E X: p(x) =# 0) = supp(p) is countable) where p S q*- 
Vx E X, p(x) < q(x). Since [PI = wx a standard A-system argument implies 02p has 
the W2 chain condition. Hence VX C 2' if [XI < xw and X E M[G. 2] then 3a < 
W2 X E M[Gj]. Note that Vx E M[Ga] n2' Vn <w D = {p E Pm: 3m > n 
p(m) = x r m) is dense in P and it is an element of M[Ga]. It follows that 
M [Gal n 2W has measure zero in M[ G.2]. 

We claim Vf E M[G W2I n w, 3g E ww n M, Vn < w, f(n) < g(n). This prop- 

erty (SD of ? 1) implies B(c). 

LEMMA. 7.3. Given p EZP, r such that 
p2 

"T <w", F E [X2]<@ and Ex E [WI<" 
for all x E F such that Vx E F dom(p(x)) n Ex = 0, then 3N < w 3q < p 
Vx E F dom(q(x)) n Ex = 0 and ql "T < N". 

The proof is similar to Lemma 7.1 and is left to the reader. E] 
To prove the claim suppose thatpl "T EC wW" and using Lemma 7.3 construct a 

sequence pn+ I < Pp, E E [01<w for a < W2, and g E wW such that Va E`' 
D En and En n dom(pn(a)) = 0, pn II "ST(n) < g(n)", for all but finitely many a, 
En= 0, and Va EC U {supp(pn) :n < w) 3m Vn > m E,n+ I En. This can be 
done by diagonalizing over the supports of the pn's. Define p(a) = U {pn(a) : n < 
w) for each a; then we have thatp E 02p andplI- "Vn T(n) < g(n)". This proves the 
claim. To prove that M n 2W is not meager in M[GW 2I an argument analogous to 
Lemma 7.2 may be used. 

Let S be Silver forcing ( = {p : D ->2 : D C w is coinfinite)). V G, 5 -generic 
over M, M[G] t"M n 2W does not have measure zero". To see this note that 
Lemma 7.1 and the fusion argument following it can be improved in this case to 
show Vf E M[G] n w', 3g E M, Vn (f(n) E g(n) A I g(n)l < 2n). It is not hard 
(but it is messy) to show that VX C 2W if ,u(X) = 0 then Ve : -- R+ 3Cn C 2' 
clopen such that Vn < w 1L(Cn) < e(n) and X C U {Cn : n < w). Given <Cn : n 
< w> E M[G] such that Vn Cn is clopen and IL(Cn) < 1/22n+1. Since clopen sets 
can be coded by integers there exists <Cn : n < w> E M such that each En consists 
of < 2" clopen sets of measure S 1/22n+I such that Vn C,, E en. Note that 

IL( U { U En: n < w)) < and therefore it follows that every measure zero set 
coded in M[G] is contained in a measure zero set coded in M. 

A similar argument yields that for G,,2, '2' -generic over M, every measure zero 
set coded in M[ G.2] is contained in a measure zero set coded in M; thus we have 
the consistency of - U(m) + - U(c). A simpler method for producing this result is 
to start with M a model of --CH and then iteratively with finite support add WI 
random reals. The w, random reals X will not have measure zero and the w, Cohen 
reals Y will not be meager; in fact, X will be a Sierpinski set and Y will be a Luzin 
set. 

In [My] Mycielski proves that for any U C 2W x 2' of measure zero there exists 
a perfect P such that Vx, y E P x # y -* (x, y) a U. We can give a forcing proof 
of these facts as follows. Let M be a countable transitive model of ZFC (minus 
power set) containing a code for a Borel set of measure zero covering U. Let Q be a 
perfect set of reals such that Vx, y E Q x #y -3 (x, y) is S x S -generic over M, 
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and let r E 2' be random over M. Then by the prior remarks Vx, y E Q r is 
random over M[x, y]. Let f: 2<'@ *-> w be 1-1 in M and define for any x, r E 2W, 
s(x, r) E 2W by s(x, r)(n) = r(f(x r n)). Let P = {s(x, r): x E Q}. Then it is easily 
checked that P is perfect and Vx, y E Q x 3 y -> (s(x, r), s(y, r)) is m.a.(2W x 2')- 
generic over M (and thus not in U). 

The final goal of this section is to show the consistency of U(m) + B(m) + 
-' A(m) + -iB(c). In fact we find a partial order Q,, such that VG, Q.2-generic 
over M, M[G] k"U(m) + B(m)" and Vf E M[G] n o' 3g E M n o' Vn f(n) < 
g(n) (recalling Theorems 1.5 and 1.6 we have -,A(m) + -,B(c)). Let B be the 
measure algebra on 2W and P the infinitely often equal order. Let Q2 be the 
iteration of B and P with countable support. That is for any p E Q. 2and for every 
a < W2 if a is even or limit then p r alW "p(a) E BM[IG-l" and if a is odd then 
p r aH- "p(a) E PM[G],". Since Q.2 has the W2 chain condition it is clear that VG, 
Q.2-generic over M, M[G] k"B(m) + U(m)". Now we define p <,, q for n < w. If 
p, q E B then p An q iff p < q and ,u(p) > (1 - 1/2'+1)IL(q). If p, q E P then 
p < q -p < q and if E is the first n elements of w - dom(q) then E n dom(p) 
-0. Now note that if & p+ E B for n < w then (fn {Pn n < w}) > Js(p0) 
and thus n {P,: n < w} E B, and also if for eachp E P then U {p,: n < w} E 
P. Now define for FE [EW2<, n < w, and p, q E QW2 (p 

'2 
q iff p < q and 

Va E Fp r alH "p(a) <n q(a)"). 

LEMMA 7.4. Given Pn +1 <FPn for n < w such that the Fn are increasing and 
U {Fn, n < = U {supp(pn) n < w} there exists q E Q,W2 such that Vn q < 

Pn. 

PROOF. The proof is entirely similar to Lemma 5 of [L]. E[ 

LEMMA 7.5. Va < W2 VT VP E Qa Vn <w VF E [W2]<W, 

(A) ifplh "T E [M]<@" then 3q A4p 3H E [M]<@ qH- "' C H", 
(B) if plh "- E [M]@"9 then 3q <Fp 3H E [M]@ qlU "T C H". 

PROOF. Note that both of these are easily proved with P or B in place of Qa, The 
proof for Qa is similar to Lemma 6 of [L] (see also [Ba]). E1 

Using Lemmas 7.4 and 7.5 it is easy to show that if pl "T E w@" then 3q < p 
3g E w" ql "Vn T(n) < g(n)". 

8. The cardinals associated with some of our properties. In this section we 
investigate the four cardinals KA, KU KB, and 12WJ. Thus KA iS the least cardinal such 
that there are meager Xa 5 2" such that U {Xa: a < KA} is not meager, KU iS 

inf{IXI: X C 2W not meager), and KB is the cardinality of the smallest cover of 2W 
by meager sets. Also, for example, the property A(c) (additivity of category) 
corresponds to KA = I2r. Note that KA is an uncountable regular cardinal which is 
less than or equal to both KU and KB which are both less than or equal to 12wj. It is 
easy to see cof(Ku) > w, and in [M3] I also show that cof(KB) > w, (I do not know 
whether or not the corresponding cardinal for measure can have cofinality w). 

Considered individually this is all that can be said. Under MA, KA = 12W1 (and 
therefore KA can be any regular cardinal). If K is any cardinal with cof(K) > w, then 
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adding K many Cohen reals (random reals) to a model of GCH gives a model 
where KB = K (KU = K). The chart summarizes the known consistency results. 

KA KU KB 12 1 
1 w1 w1 w1 w1 CH. 
2 wl WI WI W2 WI iteration of random reals over model of 2" = w2. 
3 w1 W2 w2 w2 w2iteration of random reals over model of 2r = w1 (?4). 
4 w1 W2 W2 W3 W2iteration of random reals over model of (2w = w3 + Wl-scale). 
5 w1 W1 W2 W2 W2 Cohen reals over model of 2" = w1. 

6 W1 W2 W1 W2 W2random reals over model of 2" = W1. 

7 (A1 W1 W2 W3 (3 random then w2 Cohen. 
8 w1 W2 W1 W3 W3 Cohen then w2 random. 
9 W1 W2 W3 W3 W3iteration of measure algebras of size w1. 
10 W1 W2 W3 W4 like9. 
11 W1 W3 W2 W3 ? 
12 w1 W3 W2 W4 ? 

13 W2 W2 W2 W2 MA + 2w= W2. 
14 W2 W2 W2 W3 Bukovsky [Bu]. 
15 W2 W3 W3 W3 W3iteration of large measure algebras and dominating algebras 

of size w 
16 W2 W3 W3 W4 like 15. 
17 W2 W2 W3 W3 W3 iteration of dominating algebras of size w1. 
18 W2 W3 W2 W3 ? 

19 W2 W2 W3 W4 like 17. 
20 W2 W3 W2 W4 ? 

21 W2 W3 W4 W4 W4 iteration of w1 dominating algebras and W2 measure algebras. 
22 W2 W3 W4 W5 like21. 
23 W2 W4 W3 W4 ? 

24 W2 W4 W3 W5 ? 

REMARK. Always W2, W3, W4, and w5 can be replaced by any four regular cardinals 
greater than w1 in the corresponding order. In 5-8, W2 and w3 can be replaced by 
any cardinals K2 and K3 such that cof(K2), cof(K3) > w1 and W2 < K2 < K3. In 2, 4, 14, 
19, 20, and 22 12r1 can be any cardinal of cofinality > w1. Recall C = {pjp: D > 

2, D E [w]<@ } (which adds a Cohen real), B is the measure order-the Borel subsets 
of 2r with positive measure (which adds a random real), and D = {(n, f): n < W, 
f E 

- w"} the order for forcing an eventually dominant real (see ?5). All the results 
in this section will be obtained by iterating various combinations of these orders 
(except 6 and 7) and in almost all cases we could have used eventually different 
reals (?5) instead of random reals. 

The models. (4) Start with M k"2w = W3 A 3D C w" Dj = I 1 Vf E w" 3g E D 
Vn f(n) < g(n)". As in ?4 it is true that if N is an iterated random real extension of 
M then Vf E N n WW 3g E M n w" 3'n f(n) < g(n). It follows that D is not 
eventually dominated in N and so N k"KA = W1" by the results of ?1. It is easy to 
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see that KB > W2 and KU > W2 because the iteration has length W2. Also the set of W2 
Cohen reals added by the iteration is not meager and the set of W2 random reals 
does not have measure zero, so KU = W2 and KB = W2 by Rothberger's theorem. 

(7) (8) We first prove the following two lemmas. 

LEMMA 8.1. Suppose G is C-generic over M and H is Bm[GJ-generic over M[G]. 
Then M[G, H] k"M[H] n 2' is not meager". 

PROOF. For any sentence 9 let 10D = Z{b E B: bl 9). Suppose Hk "X e [w]W 

andf E w"' (in the partial order C * B). Note that Vp E C Vn < w 3q < p 3F E 
[w- n]<W 3<Ctm: i < Km> a finite sequence of disjoint clopen sets for each m E F 
such that 

qlU "IL(YF n X #, 01 II [f(m) < km] * i (I[f(m) = il VC, )) > 1 I 
m E=F i <km, 

where AVB = (A n B) U (-A n -B). So working in M we can build for k < W, 
qk E C, nk < nk+I < c, Fk E [nk, nk+ 1)<' and (C, : i < km) for m E Fk, so that 
Vp E C 3'k qk < p and Vk qklW "ILU(Bk) > 1 - 1/2k+ 1" where Bk is a name for 

IFk n X #! 0 * II [f(m) < km] f i (I[f(m) = il VCCm) 
mEFk i<km 

Let B be a name denoting n {Bk: qk E G}. ThenlFc"L(B) > 0". In M[H] define 
g(m) = i if H E Cim (O otherwise), then (1, B)lI "3Xn E Xf(n) = g(n)". It follows 
that VJf E M[G, H] n w VX E M[G, H] n [w]W 3g E M[H] nw 3n E X 
f(n) = g(n). By the arguments of ? 1 the result follows. E1 

REMARK. Is it true that if we replace C by D in Lemma 8.1 that M[G, H] k"no 
x E 2W is random over M[H]"? If yes this would answer problem (3) of ?9. 

LEMMA 8.2. Suppose H is B-generic over M and G is CM[HJ = C-generic over 
M[H]. Then 

Vf E M[ H, G] n w 3g E M[ G] n w VOn f(n) < g(n). 

PROOF. We may assume f is strictly increasing. By the product lemma, H is 
BM-generic over M[G]. By the proof of Lemma 8.1 (or even a simpler argument) 
Vh E M[G] n MW 3g E M 3Xn h(n) = g(n). Working in M[G] obtain Bn E Bm 
and g(n) < w such that AL(Bn) > 1 - 1/2n+' and Bn I "f(n) <g(n)". By above 
3<Cn n < w> E M such that 3?n Cn = Bn and we may assume Vn IL(Cn) > 1 - 
1/2 n+. Let C= n n<, Cn andX = {n: C C B}, then C E BMandX E M[G]. 
Define (in M[G]) h(n) = g(inf(X - n)). Since f is strictly increasing ClV "Vn 
f(n) < h(n)" El 

REMARK. I do not know whether or not M[G] n 2W has measure zero in 
M[H, G]. This is equivalent to problem (9) of ?9. Note that although it is true that 
VG, B-generic over M, M[G] k"M n 2W does not have measure zero", it is not in 
general true that if N D M and G is BM-generic over N then N[G] k"N n 2W does 
not have measure zero". In fact I can show that N = M[Go], where Go is 
BM-generic over M, is a counterexample. If C is replaced by D in Lemma 8.2 does 
M[G] n o" dominate M[H, G] n wW? 



PROPERTIES OF MEASURE AND CATEGORY 11 

Let B(K) be the measure algebra on 2K and C(K) = {pIp: D -*2 and D E 
[K]<@}. The model for (7) is M[G, H] where G is B(W3)-generic over M, H is 
C(W2)-generic over M[G], and M t GCH. It is easy to see that KB > W2 and KU =W 

because of H. To see that KB < W2 note that by Lemma 8.2 and c.c.c. no real is 
Cohen over M[H] n 2'. The model for (8) is M[H, G] where H is C(W3)-generic 
over M and G is BM[HJ(W2)-generic over M[H]. KU > W2 and KB = w, because of G. 
By Lemma 8.1 and c.c.c. M[G] n 2' is not meager so KU < W2* El 

The remaining models will all be obtained by c.c.c. finite support iterations (of 
length KB). Suppose M t ZFC and Pa for a < y is such an iteration. Recall 

Pa+1 = Pa * pa where pa is a term in the forcing language of Pa. Suppose I 5 y 
and I E M; then define P* = {p E Pa: supp(p) C- l}. 

LEMMA 8.3. Suppose Va < Ky P' is a term in the forcing language of P*. Then 
Va < y if Ga is Pa-generic over M then Ga n P* is P*-generic over M. 

PROOF. The proof is by induction on a. For a a limit ordinal this is proved 
exactly as Lemma 5.7. Also for the case a + 1 if a M l then P,*+ 1 is isomorphic to 
P*. If a E- then Pa E M[Ga n P] and Ga+il nP*+, = (Ga n P*) x Ga; so by 
the product lemma Ga,+, n P*+, is P*+,-generic over M. [D 

LEMMA 8.4. Suppose K is an uncountble cardinal and G x H is C(K) * P-generic 
over M where P E M[G r E] for some I C K, 2 E M, and III < K. Then M[G] n 
2W is not meager in M[G, H]. 

PROOF. This is immediate from the product lemma, since G r (K - E) iS 

C(K - )-generic over M[G r 2, H]. E1 

(9) Start with M t GCH and let _ C 5 a for w2 < a < W3. List all subsets of W3 of 
cardinality wl. Let Pa for a < W3 be the following iteration. 

Fora < w2 let Pa,l = Pa * C. 

For W2 < a < W3 let Pa+l = Pa * BM[G4f where Ga* = Ga n {P E 

Pa supp(p) C a }. Since the length of this iteration is W3 it is easy to see that 
KB = = 12"1. Since "partially" random reals are added, KU > W2. Also the 
arguments of ?4 easily show that M n w" is not eventually dominated so KA = wl. 

By Lemmas 8.3 and 8.4, M[G2,,] n 2" is not meager in M[G,,3]. This is because 
for any T a term such that I TC3"r C w" (or even H- "T C w1"), by using c.c.c. we can 
find 2: C W3, 121 = w & 2 E M, Va E 1, E. Cg and T is a term in the forcing 

language of := (p E 
p3 supp(p) 5 1}. Thus * E M[G LX n W2] so 

Lemma 8.4 applies. E] 
(10) Let M k"2W = w4" be such that M t"3D C w" IDJI = w1 Vf c w" 3g E D 

Vn f(n) < g(n) and 32. C a for a < w3 with 12a1 = w, and VA C W3 if JAI = w 
then 3a E. C A". 

For example this holds if M is a random real (B(w4)) extension of a model of 
GCH. Now do the same iteration as in (9). To see that KB < w3 note that 

2W = U {20 n M[G,*]: a < W3) 

and 2W n M[G.*] is meager for each a < w3. Also KA = W1 since D is not eventually 
dominated. E] 
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(14) This is due to Bukovsky [Bu] who does it by starting with a model of 
2W = W3 and then doing an w2 iteration. At each step of the iteration he does an W3 
iteration making MA true. Alternatively we could start with a model of 2" = W3 
and then do an W2 iteration with D. 

(15) Let M t"GCH and l_ C a for W2 S a < W3 and a even, list all subsets of W3 
of size w<". For a < W2 let Pa = C. For W2 < a < W3 and a even, let pa = DM[Ga1 
where Ga* = {p E Ga supp(p) C la}. For a odd, let P' = BM[GA1. It is easy to 
check that KU = KB = (3 = 12W1 and KA> (A22 We claim that M[G 2 ] n w' is not 
eventually dominated (and thus by ?1 KA = W02). 

LEMMA 8.5. Suppose G is C(w )-generic over M, 3y 3X C y X E M, and Pa for 

a < y a finite support iteration over M[G] such that Va E X P' is a (canonical) 

name for a partial order in M and V a E y - X P' is a name for a boolean algebra 

which has a finitely additive positive measure on it (for short call it a measure 

algebra). Then M[G] n w" is not dominated in M[G, H] when H is PY-generic over 

M[G]. 

PROOF. Note that Py - (E a,x Pa) * Pl where E: is the direct sum and Pl is a 
name for some iteration of measure algebras. Thus H = HI x H2 and by the 
product lemma G is C(w&)-generic over M[H1]. Note that C(wl) * Pl is also an 
iteration of measure algebras-i.e. regard C(w1) as the w, iteration of the two 
element boolean algebra {0, 1). Now supposef E w" n M[H1, G, H2]. Working in 
M[H1] and using the arguments of ?4 we can find p in C(w1) * Pl for n < w and 
h E w" n M[H1] so that pnIH "f(n) < h(n)" and for any p in C(w1) * Pl 3no 
Vn > nop andp are compatible and in fact 3q < Pn q 6 p, supp(q) 5 supp(p) U 
supp(p"). Choose a < w, so that Vn < w (a + n) a U {supp(pn) n < w} and 
define g E w" by g(n) = least m > n such that G(a + m) = 1. Then g E M[G] n 
WW and 3 n g(n) > f(n). To see this suppose not and pIW "Vn > nO g(n) < f(n)"; 

then 3n, > no such that Vn > n, a + n M supp(p) and 3q < p q < Pn and Vn > 

nI (a + n) 4 supp(q). Extend q to q' by letting q'(/3) = 0 for all /8 such that 
a + n1 < f8 < a + h(n,); then q'l "f(nl) < g(nl)". a 

The problem may be reduced to the lemma by an argument combining the ideas 
of Lemmas 8.3 and 5.7. First reduce to 3y < W3 3PY finite support iteration over 
M such that y - w21 < and Va <W2 Px = C and Va W2 < a <y and either PG 
isDM['] where G.* = {p E Ga supp(p) C- 5 a, j1.j <wl l E M orPa 
is BMIG-1. By swallowing up G r 1 n W2 for W2 < a < y we reduce to the lemma. 

(16) Let M k"2W = W4" in which there exists _ C5 a for a < W3 with I1.1 < w, 
and VA C W3 IAI = - 3a A C E_. Proceed as in (15). Note that because of 
forcing with BM[G-J for a odd 2' is the union of W3 meager sets so KB < W3. 

(17) Let M I"GCH" and let 1_ C a for W2 < a < (3; list all subsets of W3 of size 
w1. Let P.+I = Pa * C for a < W2 and let P,+I = P, * Dm[GI] where as before 

G= Ga n {p E Pa: supp(p) 5 1a).It is easily seen that KB = (3 = 12w1 and 
KA > W2. By Lemmas 8.3 and 8.4 it is not hard to see that M[G 2] n 2' is not 
meager, so KA = KU = (2 

(19) This is just like (17) only start with M k"2W = W4 and 31_ C- a for a < W3, 

11= oand VA C 3JAI < w1-3aA C a 
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(21), (22) Working in M let 1_ C a for a < W4 be a list such that for all a even, 

j. I < w1 and for all a odd, Ijaj < W2 such that for every A c W4, ([A I < I- 3a 
even A 5 1.) and (IA I < -2 3a odd A C 1_). Let P,4 be the W4 iteration defined 
by letting 

pa = DM[G*] for a even 
and 

P= BM[G] for a odd 
where 

G*= {p E Ga supp(p) 5 7a} 

Easily we have in M[G W4] that KA > (2 KU > W3 and KB > w4. In case M GCH 
we have immediately that KB = w4; in any case 

M[G ] n 2w= U {M[ G*] n 2w : a < W4} 

and each M[G.*] n 2" is meager. To see that KU < W3 use Lemma 8.3 and to see 
that KA < W2 use an argument similar to the one used in (15). 

9. Problems.2 
(1) Show that A(m) does not imply A(c). 
(2) Show that - A(m) + B(m) + A(c) is consistent. The natural model for this 

might be obtained by iteratively adding (with finite support) W2 dominating reals 
and random reals. 

(3) Show that U(c) + - U(m) + - B(m) is consistent. I conjecture that this 
holds if one adds W2 eventually dominating reals and then w1 random reals. 

(4) (Fremlin) Show that the least K (Km) such that 2W can be covered by K-many 
measure zero sets cannot have countable cofinality (see [MD] for the ideal of 
meager sets). 

(5) (Baumgartner) Show that if one adds a Laver real (see [L]) the ground reals 
have measure zero. 

(6) Show that X is necessary in Theorem 1.3. 
(7) Show that Vi < n f(i) < n is necessary in Theorem 1.4. 
(8) Find characterizations of U(m), B(m), and A(m). 
(9) Suppose B C 2W x 2W x 2W is a Borel set such that 

Vx Vy I({z : (x, y, z) E B)) = 0. 

Then does there exist a Borel function F: 2 , 2W such that 3A C 2W ,u(A) > 0 
Vx E A {y: (x,y, F(y)) M B) is not meager? 
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