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Define
(*) There exists (φn : ω1 → ω1 : n < ω) such that for every I ∈ [ω1]

ω1

there exists n such that φn(I) = ω1.

This is roughly what Sierpinski [10] refers to as P3 but I think he brings
R into it. I don’t know French so I cannot say for sure what he says but
I think he proves that (*) follows from the continuum hypothesis. Here we
show that the existence of a Luzin set implies (*) and (*) implies that there
exists a nonmeager set of reals of size ω1. We also show that it is relatively
consistent that (*) holds but there is no Luzin set. All the other properties
in this paper, (**), (S*), (S**), (B*) are shown to be equivalent to (*).

Proposition 1 (Sierpinski [10]) CH implies (*).

proof:
Let ωω1 =

⋃
α<ω1

Fα where the Fα are countable and increasing. For each
α construct (φn(α) : n < ω) so that for every g ∈ Fα there is a some n such
that φn(α) = g(n).

Now suppose I ⊆ ω1. If no φn maps I onto ω1, then there exists g ∈ ωω1
such that g(n) /∈ φn(I) for every n. If g ∈ Fα0 , then α /∈ I for every
α ≥ α0. This is because g ∈ Fα and so for some n g(n) = φn(α) and since
g(n) /∈ φn(I) we have α /∈ I.
�

Define
(**) There exists (gα : ω → ω1 : α < ω1) such that for every g : ω → ω1

for all but countably many α there are infinitely many n with g(n) = gα(n).

Proposition 2 (**) iff (*).
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proof:
To see (**) implies (*) let φn(α) = gα(n). Then the proof of the first

proposition goes thru.
On the other hand suppose (φn : ω1 → ω1 : n < ω) witnesses (*). First

note that for any I ∈ [ω1]
ω1 there are infinitely many n such that φn(I) = ω1.

This is because if there are only finitely many n we could cut down I in
finitely many steps so that there were no n with φn(I) = ω1.

Now define gα ∈ ωω1 by gα(n) = φn(α). These witness (**). Given any
g : ω → ω1 if there is an uncountable I ⊆ ω1 and N < ω such that for every
α ∈ I we have g(n) 6= gα(n) for all n > N then this means that g(n) /∈ φn(I)
and for all n > N and so (*) fails.
�

Obviously (**) is false if b > ω1 so (*) is not provable just from ZFC.

Proposition 3 It is relatively consistent with any cardinal arithmetic that
(*) is true and b = d = ω1.

proof:
Start with any M a countable transitive model of ZFC. Our final model

is M [gα, fα : α < ω1] where each gα : ω → α is generic with respect to the
poset of finite partial functions from ω to α and fβ ∈ ωω is Hechler real
over M [gα, fα : α < β]. The ω1-sequence is obtained by finite support ccc
forcing. By ccc for any g ∈ ωω1 ∩M [gα, fα : α < ω1] there will be α0 < ω1

such that α0 bounds the range of g and g ∈ M [gα, fα : α < α0]. It follows
by product genericity that for every α ≥ α0 there are infinitely many n such
that g(n) = gα(n). The Hechler sequence fα for α < ω1 shows that d = ω1.
�

With a little more work we will prove that (*) follows from the existence of
a Luzin set (Prop 6). We will also show that (*) implies there is a nonmeager
set of reals of size ω1 (Prop 7) and so in the random real model (*) fails and
b = d = ω1.

Actually I think Sierpinski considers what appears to be a stronger version:

Define
(S*) There exists (φn : ω1 → ω1 : n < ω) such that for every I ∈ [ω1]

ω1

for all but finitely many n φn(I) = ω1.

Surprisingly (S*) is equivalent to (*).
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Proposition 4 (S*) iff (*).

proof:
We show (**) implies (S*).
Let a0 = 1 and an+1 = 1 +

∑
i≤n ai. Let

An = {u | ∃D ∈ [ω1]
an u : D → ω1} and

∏
n<ω

An = {g | ∀n g(n) ∈ An}

Since each An has cardinality ω1 from (**) we get (gα ∈
∏

n<ωAn : α < ω1)
such that for every g ∈

∏
n<ωAn for all but countably many α there are

infinitely many n such that g(n) = gα(n). For each α < ω1 define hα : ω → ω1

so that if gα(n) = un : An → ω1 for every n then

hα�(An \ ∪i<nAi) = un�(An \ ∪i<nAi)

Since |Ak| = ak the sets An \ ∪i<nAi are nonempty. We claim that the hα
have the following property:

Define
(S**) For any X ∈ [ω]ω and h : X → ω1 for all but countably many α

there are infinitely many n ∈ X with h(n) = hα(n).

It is enough to see there is at least one n ∈ X with h(n) = hα(n).
Otherwise if there were only finitely many n for uncountably many α we
could throw out from X a fixed finite set for uncountably many α and get a
contradiction.

Let X = {xn : n < ω} listing X in increasing order. Define g ∈
∏

n<ωAn
by g(n) = h�{xi : i < an}. Now suppose gα(n) = g(n). This means that if
gα(n) = un : An → ω1, then An = {xi : i < an} and un = h�An. But since
An \ ∪i<nAi is nonempty we get that hα(x) = h(x) for some x ∈ X.

Now define φn(α) = hα(n). This has the required property (S*). Given
I uncountable let X be the n ∈ ω with φn(I) 6= ω1. If X is infinite we would
get h : X → ω1 such that h(n) /∈ φn(I) for all n ∈ X. But this means that
for all α ∈ I and n ∈ X that h(n) 6= hα(n) which contradicts (S**).
�

This is related to results in Bartoszynski [2].

Bagemihl-Sprinkle [1] say that Sierpinski states CH implies (S*) but only
proves (*). They give a proof from CH of a seemingly stronger version:
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Define
(B*) There exists (φn : ω1 → ω1 : n < ω) such that for every I ∈ [ω1]

ω1

for all but finitely many n for all β < ω1 there are uncountably many α ∈ I
with φn(α) = β, i.e., not only is φn(I) = ω1 but it is uncountable-to-one.

Proposition 5 (S*) iff (B*)

proof:
Let π : ω1 → ω1 be uncountable to one, i.e., for all β < ω1 there are

uncountably many α < ω1 with π(α) = β. If (φn : ω1 → ω1 : n < ω) witness
(S*) then (π ◦ φn : ω1 → ω1 : n < ω) satisfies (B*).
�

Proposition 6 If there is a Luzin set, then (*) is true.

proof:
We prove (**). Suppose {gα : ω → ω : α < ω1} is a Luzin set, then it

satisfies that for every k : ω → ω for all but countably many α < ω1 there
are infinitely many n such that k(n) = gα(n).

There is a sequence (fα : α → ω : ω ≤ α < ω1) of one-to-one functions
which is coherent: for α < β fβ�α =∗ fα, i.e., fβ(γ) = fα(γ) for all but
finitely many γ < α. This is the construction of an Aronszajn tree which
appears in the first edition of Kunen’s set theory book [6].

Let ĝα : ω → α be any map which extends f−1
α ◦ gα. We claim that for

any k : ω → ω1 which is one-to-one that for all but countably many α there
are infinitely many n with ĝα(n) = k(n). To see this suppose k : ω → β is
one-to-one and let k̂ = fβ◦k which maps ω to ω. Then for some α0 > β for all

α ≥ α0 there will be infinitely many n with gα(n) = k̂(n). This means that
gα(n) = fβ(k(n)). Since k is one-to-one, there will be infinitely many such n
where fβ(k(n)) = fα(k(n)). But gα(n) = fα(k(n)) implies ĝα(n) = k(n).

To get rid of the requirement that k be one-to-one, let j : ω1 × ω → ω1

be a bijection and π : ω1 → ω1 be projection onto first coordinate, i.e.,
π(j(α, n)) = α. Define hα(n) = π(ĝα(n)). Given any k : ω → ω1 define
k̂(n) = j(k(n), n). Then since k̂ is one-to-one for all but countably many α
there will be infinitely many n with ĝα(n) = k̂(n). But this implies

hα(n) = π(ĝα(n)) = π(k̂(n)) = k(n)

Hence (hα : α < ω1) satisfies (**).
�
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Proposition 7 Suppose (*), then there exists (xα,β ∈ 2ω : α, β < ω1) such
that for every dense open D ⊆ 2ω there exists α0 < ω1 such that for every
α ≥ α0 there is a βα < ω1 such that xα,β ∈ D for every β ≥ βα.

proof:
We use that there are {hα : ω → ω : α < ω1} with the property that

for every X ∈ [ω]ω and h : ω → ω for all but countably many α there are
infinitely many n ∈ X with h(n) = hα(n) (see (S**) in the proof of Prop
4). This implies that there exists (Xα ∈ [ω]ω : α < ω1) such that for every
Y ∈ [ω]ω for all but countably many α there are infinitely many x ∈ Xα such
that |Y ∩ [x, x+)| ≥ 2 where x+ is the least element of Xα greater than x.
Fix α and enumerate Xα = {kn : n < ω} in strict increasing order. Define

Pα = {g : ω → FIN(ω, 2) : ∀n g(n) ∈ 2[kn,kn+1)}

By (S**) there exists gα,β ∈ Pα for β < ω1 with the property that for any h in
Pα and infinite Y ⊆ ω for all but countably many β there are infinitely many
n ∈ Y with h(n) = gα,β(n). Define xα,β ∈ 2ω by xα,β(m) = gα,β(n)(m) where
n is the unique integer with kn ≤ m < kn+1. Equivalently xα,β =

⋃
n gα,β(n).

(Without loss we may assume k0 = 0 ∈ Xα.)
Given D ⊆ 2ω dense open let D̂ ⊆ 2<ω be the set of all s with [s] ⊆ D.

Construct an infinite Z ⊆ ω so that for every z ∈ Z there exists t ∈ 2<ω with
|t| ≤ z+ − z such that for every s ∈ 2<ω with |s| ≤ z we have s t ∈ D̂ where
s t is the concatenation of s with t. By construction there exists α0 so that
for every α ≥ α0 the there are infinitely many x ∈ Xα with |[x, x+)∩Z| ≥ 2.

Fix α ≥ α0 and as above Xα = {kn : n < ω}. Let

Y = {n : |[kn, kn+1) ∩ Z| ≥ 2.

Note that by the definition of Y there is a h ∈ Pα with the property that for
every n ∈ Y for every s ∈ 2kn we have s ∪ h(n) ∈ D̂. For some βα for every
β ≥ βα there are infinitely many n ∈ Y with h(n) = gα,β(n) and so xα,β ∈ D.

�
This is similar to the argument of Miller [9]. Obviously the set of xα,β in

Prop 7 is nonmeager. Although it seems a little bit like a Luzin set, it isn’t.
In the first version of this paper I asked:

Does the existence of a nonmeager set of reals of size ω1 imply (*)?
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To my surprise O. G. González [4] proved that in fact, the existence of
a nonmeager set of reals of size ω1, i.e., non(meager)=ω1 implies (*), so
they are equivalent. It also follows from his result that the Luzin like set
of Proposition 7 is equivalent to (*). Judah and Shelah [5] have shown that
it is consistent that non(meager)=ω1 and there are no Luzin sets. This
holds in the model obtained by countable support iteration of length ω2 of
superperfect tree forcing1 over a ground model of CH. González [4] also gives
a model in which (*) holds and there are no Luzin sets, in fact, in his model
it is true that for any nonmeager subset X ⊆ ωω there is an f ∈ ωω such
that for uncountably many g ∈ X ∀n f(n) 6= g(n).

This paper was motivated by a result in an earlier version of A.Medini [7]
which showed that (*) implies that there is an uncountable X ⊆ 2ω with the
Grinzing property: for every uncountable Y ⊆ X there is an uncountable
family of uncountable subsets of Y with pairwise disjoint closures in 2ω. To
do this Medini used a result from Miller [8]. This has been superceded by a
proof in ZFC of an uncountable X ⊆ 2ω with the Grinzing property.
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[4] González, Osvaldo Guzmán; The onto mapping of Sierpinski and non-
meager sets, eprint Jan 2016.

[5] Judah, H.; Shelah, S.; Killing Luzin and Sierpinski sets. Proc. Amer.
Math. Soc. 120 (1994), no. 3, 917-920.

1So called Miller forcing. I also called it rational perfect set forcing.

6



[6] Kunen, Kenneth; Set theory. An introduction to independence
proofs. Studies in Logic and the Foundations of Mathematics, 102.
North-Holland Publishing Co., Amsterdam-New York, 1980. xvi+313
pp. ISBN: 0-444-85401-0

[7] Medini, Andrea; Distinguishing perfect set properties in separable
metrizable spaces, eprint May 2014.

[8] Miller, Arnold W.; Mapping a Set of Reals Onto the Reals, Journal of
Symbolic Logic, 48(1983), 575-584.

[9] Miller, Arnold W.; A Characterization of the Least Cardinal for which
the Baire Category Theorem Fails. Proceedings of the American Math-
ematical Society, 86(1982), 498-502.

[10] Sierpinski, Waclaw; Hypothese du continu. New York, Chelsea Pub.
Co., 1956.

Arnold W. Miller
miller@math.wisc.edu
http://www.math.wisc.edu/∼miller
University of Wisconsin-Madison
Department of Mathematics, Van Vleck Hall
480 Lincoln Drive
Madison, Wisconsin 53706-1388

7


