The onto mapping property of Sierpinski

A. Miller July 2014 revised May 2016

Define

(*) There exists $(\phi_n : \omega_1 \to \omega_1 : n < \omega)$ such that for every $I \in [\omega_1]^{\omega_1}$ there exists n such that $\phi_n(I) = \omega_1$.

This is roughly what Sierpinski [10] refers to as P_3 but I think he brings \mathbb{R} into it. I don't know French so I cannot say for sure what he says but I think he proves that (*) follows from the continuum hypothesis. Here we show that the existence of a Luzin set implies (*) and (*) implies that there exists a nonmeager set of reals of size ω_1 . We also show that it is relatively consistent that (*) holds but there is no Luzin set. All the other properties in this paper, (**), (S*), (S**), (B*) are shown to be equivalent to (*).

Proposition 1 (Sierpinski [10]) CH implies (*).

proof:

Let $\omega_1^{\omega} = \bigcup_{\alpha < \omega_1} \mathcal{F}_{\alpha}$ where the \mathcal{F}_{α} are countable and increasing. For each α construct $(\phi_n(\alpha) : n < \omega)$ so that for every $g \in \mathcal{F}_{\alpha}$ there is a some n such that $\phi_n(\alpha) = g(n)$.

Now suppose $I \subseteq \omega_1$. If no ϕ_n maps I onto ω_1 , then there exists $g \in \omega_1^{\omega}$ such that $g(n) \notin \phi_n(I)$ for every n. If $g \in \mathcal{F}_{\alpha_0}$, then $\alpha \notin I$ for every $\alpha \geq \alpha_0$. This is because $g \in \mathcal{F}_{\alpha}$ and so for some $n \ g(n) = \phi_n(\alpha)$ and since $g(n) \notin \phi_n(I)$ we have $\alpha \notin I$.

Define

(**) There exists $(g_{\alpha} : \omega \to \omega_1 : \alpha < \omega_1)$ such that for every $g : \omega \to \omega_1$ for all but countably many α there are infinitely many n with $g(n) = g_{\alpha}(n)$.

Proposition 2 $(^{**})$ iff $(^{*})$.

proof:

To see (**) implies (*) let $\phi_n(\alpha) = g_\alpha(n)$. Then the proof of the first proposition goes thru.

On the other hand suppose $(\phi_n : \omega_1 \to \omega_1 : n < \omega)$ witnesses (*). First note that for any $I \in [\omega_1]^{\omega_1}$ there are infinitely many n such that $\phi_n(I) = \omega_1$. This is because if there are only finitely many n we could cut down I in finitely many steps so that there were no n with $\phi_n(I) = \omega_1$.

Now define $g_{\alpha} \in \omega_1^{\omega}$ by $g_{\alpha}(n) = \phi_n(\alpha)$. These witness (**). Given any $g: \omega \to \omega_1$ if there is an uncountable $I \subseteq \omega_1$ and $N < \omega$ such that for every $\alpha \in I$ we have $g(n) \neq g_{\alpha}(n)$ for all n > N then this means that $g(n) \notin \phi_n(I)$ and for all n > N and so (*) fails. \Box

Obviously (**) is false if $\mathfrak{b} > \omega_1$ so (*) is not provable just from ZFC.

Proposition 3 It is relatively consistent with any cardinal arithmetic that (*) is true and $\mathfrak{b} = \mathfrak{d} = \omega_1$.

proof:

Start with any M a countable transitive model of ZFC. Our final model is $M[g_{\alpha}, f_{\alpha} : \alpha < \omega_1]$ where each $g_{\alpha} : \omega \to \alpha$ is generic with respect to the poset of finite partial functions from ω to α and $f_{\beta} \in \omega^{\omega}$ is Hechler real over $M[g_{\alpha}, f_{\alpha} : \alpha < \beta]$. The ω_1 -sequence is obtained by finite support ccc forcing. By ccc for any $g \in \omega_1^{\omega} \cap M[g_{\alpha}, f_{\alpha} : \alpha < \omega_1]$ there will be $\alpha_0 < \omega_1$ such that α_0 bounds the range of g and $g \in M[g_{\alpha}, f_{\alpha} : \alpha < \alpha_0]$. It follows by product genericity that for every $\alpha \ge \alpha_0$ there are infinitely many n such that $g(n) = g_{\alpha}(n)$. The Hechler sequence f_{α} for $\alpha < \omega_1$ shows that $\mathfrak{d} = \omega_1$.

With a little more work we will prove that (*) follows from the existence of a Luzin set (Prop 6). We will also show that (*) implies there is a nonmeager set of reals of size ω_1 (Prop 7) and so in the random real model (*) fails and $\mathfrak{b} = \mathfrak{d} = \omega_1$.

Actually I think Sierpinski considers what appears to be a stronger version:

Define

(S*) There exists $(\phi_n : \omega_1 \to \omega_1 : n < \omega)$ such that for every $I \in [\omega_1]^{\omega_1}$ for all but finitely many $n \quad \phi_n(I) = \omega_1$.

Surprisingly (S^*) is equivalent to (*).

Proposition 4 (S^*) iff (*).

proof:

We show (**) implies (S*). Let $a_0 = 1$ and $a_{n+1} = 1 + \sum_{i \le n} a_i$. Let

$$\mathcal{A}_n = \{ u \mid \exists D \in [\omega_1]^{a_n} \ u : D \to \omega_1 \} \text{ and } \prod_{n < \omega} \mathcal{A}_n = \{ g \mid \forall n \ g(n) \in \mathcal{A}_n \}$$

Since each \mathcal{A}_n has cardinality ω_1 from (**) we get $(g_\alpha \in \prod_{n < \omega} \mathcal{A}_n : \alpha < \omega_1)$ such that for every $g \in \prod_{n < \omega} \mathcal{A}_n$ for all but countably many α there are infinitely many n such that $g(n) = g_\alpha(n)$. For each $\alpha < \omega_1$ define $h_\alpha : \omega \to \omega_1$ so that if $g_\alpha(n) = u_n : \mathcal{A}_n \to \omega_1$ for every n then

$$h_{\alpha} \upharpoonright (A_n \setminus \bigcup_{i < n} A_i) = u_n \upharpoonright (A_n \setminus \bigcup_{i < n} A_i)$$

Since $|A_k| = a_k$ the sets $A_n \setminus \bigcup_{i < n} A_i$ are nonempty. We claim that the h_{α} have the following property:

Define

(S^{**}) For any $X \in [\omega]^{\omega}$ and $h: X \to \omega_1$ for all but countably many α there are infinitely many $n \in X$ with $h(n) = h_{\alpha}(n)$.

It is enough to see there is at least one $n \in X$ with $h(n) = h_{\alpha}(n)$. Otherwise if there were only finitely many n for uncountably many α we could throw out from X a fixed finite set for uncountably many α and get a contradiction.

Let $X = \{x_n : n < \omega\}$ listing X in increasing order. Define $g \in \prod_{n < \omega} \mathcal{A}_n$ by $g(n) = h \upharpoonright \{x_i : i < a_n\}$. Now suppose $g_\alpha(n) = g(n)$. This means that if $g_\alpha(n) = u_n : A_n \to \omega_1$, then $A_n = \{x_i : i < a_n\}$ and $u_n = h \upharpoonright A_n$. But since $A_n \setminus \bigcup_{i < n} A_i$ is nonempty we get that $h_\alpha(x) = h(x)$ for some $x \in X$.

Now define $\phi_n(\alpha) = h_\alpha(n)$. This has the required property (S*). Given I uncountable let X be the $n \in \omega$ with $\phi_n(I) \neq \omega_1$. If X is infinite we would get $h: X \to \omega_1$ such that $h(n) \notin \phi_n(I)$ for all $n \in X$. But this means that for all $\alpha \in I$ and $n \in X$ that $h(n) \neq h_\alpha(n)$ which contradicts (S**).

This is related to results in Bartoszynski [2].

Bagemihl-Sprinkle [1] say that Sierpinski states CH implies (S^*) but only proves (*). They give a proof from CH of a seemingly stronger version:

Define

(B*) There exists $(\phi_n : \omega_1 \to \omega_1 : n < \omega)$ such that for every $I \in [\omega_1]^{\omega_1}$ for all but finitely many n for all $\beta < \omega_1$ there are uncountably many $\alpha \in I$ with $\phi_n(\alpha) = \beta$, i.e., not only is $\phi_n(I) = \omega_1$ but it is uncountable-to-one.

Proposition 5 (S^*) iff (B^*)

proof:

Let $\pi : \omega_1 \to \omega_1$ be uncountable to one, i.e., for all $\beta < \omega_1$ there are uncountably many $\alpha < \omega_1$ with $\pi(\alpha) = \beta$. If $(\phi_n : \omega_1 \to \omega_1 : n < \omega)$ witness (S*) then $(\pi \circ \phi_n : \omega_1 \to \omega_1 : n < \omega)$ satisfies (B*).

Proposition 6 If there is a Luzin set, then (*) is true.

proof:

We prove (**). Suppose $\{g_{\alpha} : \omega \to \omega : \alpha < \omega_1\}$ is a Luzin set, then it satisfies that for every $k : \omega \to \omega$ for all but countably many $\alpha < \omega_1$ there are infinitely many n such that $k(n) = g_{\alpha}(n)$.

There is a sequence $(f_{\alpha} : \alpha \to \omega : \omega \leq \alpha < \omega_1)$ of one-to-one functions which is coherent: for $\alpha < \beta$ $f_{\beta} \upharpoonright \alpha =^* f_{\alpha}$, i.e., $f_{\beta}(\gamma) = f_{\alpha}(\gamma)$ for all but finitely many $\gamma < \alpha$. This is the construction of an Aronszajn tree which appears in the first edition of Kunen's set theory book [6].

Let $\hat{g}_{\alpha}: \omega \to \alpha$ be any map which extends $f_{\alpha}^{-1} \circ g_{\alpha}$. We claim that for any $k: \omega \to \omega_1$ which is one-to-one that for all but countably many α there are infinitely many n with $\hat{g}_{\alpha}(n) = k(n)$. To see this suppose $k: \omega \to \beta$ is one-to-one and let $\hat{k} = f_{\beta} \circ k$ which maps ω to ω . Then for some $\alpha_0 > \beta$ for all $\alpha \ge \alpha_0$ there will be infinitely many n with $g_{\alpha}(n) = \hat{k}(n)$. This means that $g_{\alpha}(n) = f_{\beta}(k(n))$. Since k is one-to-one, there will be infinitely many such nwhere $f_{\beta}(k(n)) = f_{\alpha}(k(n))$. But $g_{\alpha}(n) = f_{\alpha}(k(n))$ implies $\hat{g}_{\alpha}(n) = k(n)$.

To get rid of the requirement that k be one-to-one, let $j: \omega_1 \times \omega \to \omega_1$ be a bijection and $\pi: \omega_1 \to \omega_1$ be projection onto first coordinate, i.e., $\pi(j(\alpha, n)) = \alpha$. Define $h_{\alpha}(n) = \pi(\hat{g}_{\alpha}(n))$. Given any $k: \omega \to \omega_1$ define $\hat{k}(n) = j(k(n), n)$. Then since \hat{k} is one-to-one for all but countably many α there will be infinitely many n with $\hat{g}_{\alpha}(n) = \hat{k}(n)$. But this implies

$$h_{\alpha}(n) = \pi(\hat{g}_{\alpha}(n)) = \pi(\hat{k}(n)) = k(n)$$

Hence $(h_{\alpha} : \alpha < \omega_1)$ satisfies (**).

Proposition 7 Suppose (*), then there exists $(x_{\alpha,\beta} \in 2^{\omega} : \alpha, \beta < \omega_1)$ such that for every dense open $D \subseteq 2^{\omega}$ there exists $\alpha_0 < \omega_1$ such that for every $\alpha \geq \alpha_0$ there is a $\beta_{\alpha} < \omega_1$ such that $x_{\alpha,\beta} \in D$ for every $\beta \geq \beta_{\alpha}$.

proof:

We use that there are $\{h_{\alpha} : \omega \to \omega : \alpha < \omega_1\}$ with the property that for every $X \in [\omega]^{\omega}$ and $h : \omega \to \omega$ for all but countably many α there are infinitely many $n \in X$ with $h(n) = h_{\alpha}(n)$ (see (S^{**}) in the proof of Prop 4). This implies that there exists $(X_{\alpha} \in [\omega]^{\omega} : \alpha < \omega_1)$ such that for every $Y \in [\omega]^{\omega}$ for all but countably many α there are infinitely many $x \in X_{\alpha}$ such that $|Y \cap [x, x^+)| \ge 2$ where x^+ is the least element of X_{α} greater than x. Fix α and enumerate $X_{\alpha} = \{k_n : n < \omega\}$ in strict increasing order. Define

$$P_{\alpha} = \{g : \omega \to FIN(\omega, 2) : \forall n \ g(n) \in 2^{[k_n, k_{n+1})} \}$$

By (S^{**}) there exists $g_{\alpha,\beta} \in P_{\alpha}$ for $\beta < \omega_1$ with the property that for any h in P_{α} and infinite $Y \subseteq \omega$ for all but countably many β there are infinitely many $n \in Y$ with $h(n) = g_{\alpha,\beta}(n)$. Define $x_{\alpha,\beta} \in 2^{\omega}$ by $x_{\alpha,\beta}(m) = g_{\alpha,\beta}(n)(m)$ where n is the unique integer with $k_n \leq m < k_{n+1}$. Equivalently $x_{\alpha,\beta} = \bigcup_n g_{\alpha,\beta}(n)$. (Without loss we may assume $k_0 = 0 \in X_{\alpha}$.)

Given $D \subseteq 2^{\omega}$ dense open let $\hat{D} \subseteq 2^{<\omega}$ be the set of all s with $[s] \subseteq D$. Construct an infinite $Z \subseteq \omega$ so that for every $z \in Z$ there exists $t \in 2^{<\omega}$ with $|t| \leq z^+ - z$ such that for every $s \in 2^{<\omega}$ with $|s| \leq z$ we have $s t \in \hat{D}$ where s t is the concatenation of s with t. By construction there exists α_0 so that for every $\alpha \geq \alpha_0$ the there are infinitely many $x \in X_{\alpha}$ with $|[x, x^+) \cap Z| \geq 2$.

Fix $\alpha \geq \alpha_0$ and as above $X_{\alpha} = \{k_n : n < \omega\}$. Let

$$Y = \{n : |[k_n, k_{n+1}) \cap Z| \ge 2.$$

Note that by the definition of Y there is a $h \in P_{\alpha}$ with the property that for every $n \in Y$ for every $s \in 2^{k_n}$ we have $s \cup h(n) \in \hat{D}$. For some β_{α} for every $\beta \geq \beta_{\alpha}$ there are infinitely many $n \in Y$ with $h(n) = g_{\alpha,\beta}(n)$ and so $x_{\alpha,\beta} \in D$.

This is similar to the argument of Miller [9]. Obviously the set of $x_{\alpha,\beta}$ in Prop 7 is nonmeager. Although it seems a little bit like a Luzin set, it isn't. In the first version of this paper I asked:

Does the existence of a nonmeager set of reals of size ω_1 imply (*)?

To my surprise O. G. González [4] proved that in fact, the existence of a nonmeager set of reals of size ω_1 , i.e., non(meager)= ω_1 implies (*), so they are equivalent. It also follows from his result that the Luzin like set of Proposition 7 is equivalent to (*). Judah and Shelah [5] have shown that it is consistent that non(meager)= ω_1 and there are no Luzin sets. This holds in the model obtained by countable support iteration of length ω_2 of superperfect tree forcing¹ over a ground model of CH. González [4] also gives a model in which (*) holds and there are no Luzin sets, in fact, in his model it is true that for any nonmeager subset $X \subseteq \omega^{\omega}$ there is an $f \in \omega^{\omega}$ such that for uncountably many $g \in X \quad \forall n \ f(n) \neq g(n)$.

This paper was motivated by a result in an earlier version of A.Medini [7] which showed that (*) implies that there is an uncountable $X \subseteq 2^{\omega}$ with the Grinzing property: for every uncountable $Y \subseteq X$ there is an uncountable family of uncountable subsets of Y with pairwise disjoint closures in 2^{ω} . To do this Medini used a result from Miller [8]. This has been superceded by a proof in ZFC of an uncountable $X \subseteq 2^{\omega}$ with the Grinzing property.

References

- Bagemihl, F.; Sprinkle, H. D.; On a proposition of Sierpinski's which is equivalent to the continuum hypothesis. Proc. Amer. Math. Soc. 5, (1954). 726-728.
- Bartoszynski, Tomek; Combinatorial aspects of measure and category. Fund. Math. 127 (1987), no. 3, 225-239.
- [3] Goldstern, M.; Judah, H.; Iteration of Souslin forcing, projective measurability and the Borel conjecture. Israel J. Math. 78 (1992), no. 2-3, 335-362.
- [4] González, Osvaldo Guzmán; The onto mapping of Sierpinski and nonmeager sets, eprint Jan 2016.
- [5] Judah, H.; Shelah, S.; Killing Luzin and Sierpinski sets. Proc. Amer. Math. Soc. 120 (1994), no. 3, 917-920.

¹So called Miller forcing. I also called it rational perfect set forcing.

- [6] Kunen, Kenneth; Set theory. An introduction to independence proofs. Studies in Logic and the Foundations of Mathematics, 102. North-Holland Publishing Co., Amsterdam-New York, 1980. xvi+313 pp. ISBN: 0-444-85401-0
- [7] Medini, Andrea; Distinguishing perfect set properties in separable metrizable spaces, eprint May 2014.
- [8] Miller, Arnold W.; Mapping a Set of Reals Onto the Reals, Journal of Symbolic Logic, 48(1983), 575-584.
- [9] Miller, Arnold W.; A Characterization of the Least Cardinal for which the Baire Category Theorem Fails. Proceedings of the American Mathematical Society, 86(1982), 498-502.
- [10] Sierpinski, Waclaw; Hypothese du continu. New York, Chelsea Pub. Co., 1956.

Arnold W. Miller miller@math.wisc.edu http://www.math.wisc.edu/~miller University of Wisconsin-Madison Department of Mathematics, Van Vleck Hall 480 Lincoln Drive Madison, Wisconsin 53706-1388