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Abstract

In this paper we study the question assuming MA+¬CH does
Sacks forcing or Laver forcing collapse cardinals? We show that
this question is equivalant to question of what is the additivity of
Marczewski’s ideal s0. We give a proof that it is consistent that
Sacks forcing collapses cardinals. On the other hand we show
that Laver forcing does not collapse cardinals.

Introduction

Let S be Sacks perfect set forcing [32]; p ∈ S iff p ⊆ 2<ω is a nonempty subtree
and for every s ∈ p there exists t ⊇ s such that tˆ0 ∈ p and tˆ1 ∈ p. The
ordering is defined by p ≤ q iff p ⊆ q. Define [p] = {x ∈ 2ω : ∀n x � n ∈ p}.

The s0 ideal of subsets of 2ω is defined by X ∈ s0 iff for every p ∈ S there
exists q ≤ p with X∩ [q] = ∅. Define add(s0) = min{|F | : F ⊆ s0,

⋃
F /∈ s0}.

Marczewski’s ideal s0, which first appeared in [24], has been studied by
a number of authors, Aniszczyk, Frankiewicz, Plewik [4], Brown [11][12][13],
Brown, Cox [14], Brown, Prikry [15], Corazza [16], Morgan [29], and Paw-
likowski [31]. Aniszczyk [5] has asked if MA implies that the ideal s0 is
c-additive, i.e., is it true that the union of fewer than continuum many s0

sets is an s0 set, i.e., add(s0) = c. It is a folklore result that assuming the
proper forcing axiom the ideal s0 is c-additive (see Abraham [1]). It is also
an easy exercise to show the consistency of add(s0) = ω1 plus the continuum
is large. This happens in the Cohen real model.

Theorem 1.1. (MA+¬CH) add(s0) is the minimum κ such that for some
p ∈ S we have p |`S cof(c) = κ.

This means that the question of the additivity of the s0 ideal is the same
as the question of whether Sacks forcing collapses cardinals. In the proof
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we only use that c is regular and MA holds for countable posets. It is well
known that Sacks forcing cannot blow up the continuum. In fact Sacks [32]
showed that every new element y of 2ω there is a homeomorphism (with
perfect domain and range) coded in the ground model which maps the Sacks
real to y.

Question: Is it consistent with ZFC that c = ω2, add(s0) = ω1, and S
does not collapse c?

Question (Laver): Does d = ℵ1 imply that S collapses c to d?

The remainder of the section is concerned with three other cardinals as-
sociated with the ideal of s0-sets. These cardinals have been extensively
studied for the ideals of measure and category, see for example Judah and
Shelah [19].

non(s0) = min{|X| : X /∈ s0, X ⊆ 2ω}
cov(s0) = min{|F | : F ⊆ s0,

⋃
F = 2ω}

cof(s0) = min{|F | : F ⊆ s0 and ∀A ∈ s0 ∃B ∈ F A ⊆ B}
Note that non(s0) = c, since any small set of reals is in s0.
In Veličković’s model ([36]) he gets MA, c = ω2, and cov(s0) = ω1. The

same is true in the model of Theorem 2.1.

Theorem 1.2. It is relatively consistent with ZFC that c = ω2 = cov(s0)
and add(s0) = ω1.

Fremlin noted that cof(s0) > c. Theorem 1.3 slightly improves this.

Theorem 1.3. cof(cof(s0)) > c

This argument also produces an s0 set of cardinality c (Gurevich and
Shelah [18] see also [28]). Pierre Matet [25] has also proved a similar result
for cof(r0) where r0 is the ideal of Ramsey null sets.

So we get (in ZFC) that

ω1 ≤ add(s0) ≤ cov(s0) ≤ c = non(s0) < cof(cof(s0)) ≤ cof(s0) ≤ 2c.

The remaining two theorems in this section are easy consistency results
to indicate that the inequality

c < cof(cof(s0)) ≤ cof(s0) ≤ 2c
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is best possible. For simplicity of notation we only consider models of CH.

Theorem 1.4. Let V |= GCH, κ any cardinal of cofinality greater than
ω1, and let P be the partial order of countable functions from κ to ω1. If G
is P-generic over V , then V [G] |=“ω1 = c and cof(s0) = 2ω1 = κ”. So, for
example, it is consistent that ω2 = cof(cof(s0)) < cof(s0) = ℵω2.

Theorem 1.5. Let V be a model of CH and κ be any regular cardinal
with ω1 < κ ≤ 2ω1. Then there exists a generic extension V [G] (with same
cardinals and function 2λ) in which cof(s0) = κ.

In section 2 we show that it is consistent with MA+¬CH that the addivity
of the s0 ideal is ω1, (equivalently Sacks forcing collapses the continuum.)

Theorem 2.1. It is consistent with MA+¬CH that the ideal of s0 sets is
not ω1-additive.

This result was also obtained independently by Velickovic [36] about the
same time. Velickovic starts with a model of PFA and forces to kill the
additivity of the s0 ideal and proves that his forcing does not add any new
subsets of ω1.

It is clear from the construction that c can be made arbitrarily large,
but for simplicity we make it ω2. It is not clear that add(s0) can be made
anything we want. We assume the reader is familiar with the usual proof of
the consistency of MA (see Kunen [21]).

A similar theorem has been proved for Silver forcing by Steprans [35].
For Silver forcing the ideal analagous to s0 is the Mycielski ideal [30].

The technique we use is based on an unpublished proof of Kunen who
showed that MA+¬CH does not settle the existence of (ω∗

1, c)-gaps or (c∗, c)-
gaps. Kunen [22] also uses this argument in his proof that it is possible for
ℵω1 to be the first cardinal for which MA fails. It has also been used to
prove other statements are independent of MA+¬CH, see Abraham, Rubin,
Shelah [2], Abraham, Todorcevic [3], Devlin [17], and Steprans [35].

Kunen’s idea can be summarized as follows. To get the consistency of
MA+¬CH+P where P is some statement, do a ccc iteration of of small ccc
posets. At each step you either force with a ccc poset Q which preserves the
statement P or you force with a ccc poset R which destroys the ccc-ness of
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Q but preserves statement P. In either case you have taken care of Q and
preserved statement P.

Section 3 is about Laver forcing L. Conditions in L are subtrees p ⊆ ω<ω

with the property that there exists a node s ∈ p called its root such that:

1. for every t ∈ p either t ⊆ s or s ⊆ t,

2. for every t ∈ p if s ⊆ t, then the set split(p, t) =def {n ∈ ω : tˆn ∈ p}
is infinite.

The order relation is given by subset. This forcing was used by Laver [23] to
prove the consistency of the Borel conjecture.

Theorem 3.1. Assume MA. Then L does not collapse cardinals.

Analogously to the s0 sets we can define the Laver null sets l0 to be all
X ⊆ ωω such that for every p ∈ L there exists q ≤ p with q ∈ L such that
[q] ∩X = ∅. It is easy to see that Theorem 3.1 also shows that MA implies
that add(l0) = c.

The corresponding theorem for Mathias forcing ([26]) is easy to prove.
The fact that the additivity of the ideal of Ramsey null sets is greater than
ω1 under MA+¬CH plays a key role in Silver’s proof [34] that analytic sets
are completely Ramsey.

In section 4 we consider a notion of forcing which is half-way in between
Sacks forcing S and Laver forcing L. This forcing is often called superperfect
tree forcing or rational perfect set forcing, see Kechris [20], Miller [27], Blass
and Shelah [9], Blass [10]

Let F be superperfect tree forcing which we define as follows. For p a
subtree of ω<ω define the splitting nodes of p:

splitnodes(p) = {s ∈ p : ∃∞n ∈ ω sˆn ∈ p}.

Define p ∈ F iff

1. p is a nonempty subtree of ω<ω,

2. splitnodes(p) is dense in p, i.e., ∀s ∈ p ∃t ∈ splitnodes(p) with t ⊇ s,
and

3. if any node in p splits it is a splitting node, i.e., if there exists more
than one n ∈ ω such that sˆn ∈ p, then there are infinitely many n ∈ ω
such that sˆn ∈ p.
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Theorem 4.1. Assume MA. Then F does not collapse cardinals.

As is the case with Ramsey null and Laver null sets, MA implies that
add(f 0) = c, where f 0 is the ideal of all subsets X ⊆ ωω such that for every
p ∈ F there exists q ≤ p with q ∈ F such that [q] ∩X = ∅.

Its seems in general that MA can only handle those forcing which have
some kind of infinite splitting going on, e.g. Mathias, Laver, superperfect,
whereas for those whose conditions are compact, e.g. Sacks, Silver, it is
consistent with MA that they collapse the continuum.

In the appendix we solve a problem posed by M. Foreman.

1 Sacks forcing and Marczewski’s ideal

Let S be Sacks perfect set forcing, p ∈ S iff p ⊆ 2<ω is a nonempty subtree
and for every s ∈ p there exists t ⊇ s such that tˆ0 ∈ p and tˆ1 ∈ p. The
ordering is defined by p ≤ q iff p ⊆ q. Define [p] = {x ∈ 2ω : ∀n x � n ∈ p}.

The s0 ideal of subsets of 2ω is defined by X ∈ s0 iff for every p ∈ S there
exists q ≤ p with X ∩ [q] = ∅.

add(s0) = min{|F | : F ⊆ s0,
⋃

F /∈ s0}

Theorem 1.1 (MA+¬CH) add(s0) is the minimum κ such that there exists
p ∈ S such that p |`S cof(c) = κ.

proof:
We will need the following lemma.

Lemma 1.1 Suppose that D ⊆ S is open and dense, then there exists A ⊆ D
a maximal antichain with the property that for every p ∈ S if

[p] ⊆
⋃

q∈A[q], then there exists A′ ∈ [A]<c such that [p] ⊆
⋃

q∈A′ [q].

proof:
Let S = {qα : α < c}. Build A = {pα : α < c} and {xα : α < c} ⊆ 2ω by

induction on α. At stage α if [qα] is not covered by
⋃

β<α[pβ], then choose
xα ∈ [qα] \

⋃
β<α[pβ] otherwise let xα = x0. If qα is compatible with some pβ

then let pα = p0. Otherwise since a perfect set can be divided into perfectly
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many disjoint perfect sets it is possible to find pα ≤ qα such that [pα] is
disjoint from {xβ : β ≤ α}.
�

Now suppose |` cof(c) = κ. We show add(s0) ≤ κ. Let

|`S “τ : κ → c is cofinal”.

For each α < κ let

Dα = {p ∈ S : ∃β p |` τ(α) = β}.

Let Aα ⊆ Dα be the antichains obtained from the lemma. And let

Xα = 2ω \
⋃

p∈Aα

[p].

Since Aα is a maximal antichain it is easy to see that Xα is an s0 set. Now
suppose that c is regular and κ < c. We claim that X =

⋃
α<κ Xα is not an

s0 set. If it is we must have [p]∩X = ∅ for some p ∈ S. But this implies that
[p] ⊆

⋃
q∈Aα

[q] for each α so there exists A′
α ⊆ Aα of cardinality less than c

such that [p] ⊆
⋃

q∈A′
α
[q]. By the definition of Dα this means there exists Yα

of cardinality less than c such that

p |` ∀α < κ τ(α) ∈ Y̌α.

This contradicts the fact that τ is a cofinal map.
For the other direction suppose that add(s0) = κ and suppose for contra-

diction that |`S cof(c) > κ. We can assume κ < c. Let Xα be s0 sets such
that

X =
⋃
α<κ

Xα

is not s0. Working below the appropriate p∗ (namely, some withness to the
fact X /∈ s0), we have that every p satisfies [p] ∩X 6= ∅. Let Dα = {p ∈ S :
[p] ∩Xα = ∅}. It is easy to see that Dα is open dense. Let Aα ⊆ Dα be any
maximal antichain. Let S = {pα : α < c} be listed without repetitions and
define an S name τ : κ → c by τ(α) is the unique β such that pβ ∈ G ∩ Aα

where G is the S-generic filter. Since the cofinality of c is greater than κ in
the extension, we can find β < c and p ∈ S such that

p |` ∀α < κ τ(α) < β.
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Let H = {pα : α < β}. Clearly for every r ≤ p and α < κ there exists
q ∈ Aα ∩H which is compatible with r. Define for s ∈ p, ps = {t ∈ p : s ⊆
t or t ⊆ s}. For a fixed α, there are two possibilities:

1. for every q ∈ Aα ∩H the set [q] ∩ [p] is nowhere dense in [p], or

2. there exists q ∈ Aα ∩H such that for some s ∈ p we have ps ≤ q.

But (1) is impossible, since by MA we could find a perfect r ≤ p such that
for every q ∈ Aα ∩H we have [r] ∩ [q] = ∅. Also (1) is impossible for any ps

in place of p. Hence we can find Eα ⊆ p such that for every s ∈ Eα there
exists q ∈ Aα such that ps ≤ q and Eα is a dense set of nodes in p, ie. for
every t ∈ p there exists s ⊇ t with s ∈ Eα.

Consider the forcing notion:

P = {(F, n) : ∅ 6= F ⊆ p ∩ 2n}

and ordered by (F, n) ≤ (F ′, n′) iff n ≥ n′ and F ′ = {s � n′ : s ∈ F}. Since
P is countable, forcing with it is the same as Cohen real forcing. Given G
a P-filter let r =

⋃
{F : ∃n (F, n) ∈ G}. It is easy to write down countably

many dense sets which will guarantee that r ∈ S. Also κ many dense sets
which will make it true that for every α < κ there exists n < ω for every
s ∈ r ∩ 2n there exists q ∈ Aα with rs ≤ q. But this implies that for every α

[r] ⊆
⋃

q∈Aα

[q]

and so [r] ∩
⋃

α<κ Xα = ∅. This contradiction finishes the proof of Theorem
1.1.
�
Three other cardinal functions of an ideal I are non, cov, and cof :

non(I) = min{|X| : X /∈ I, X ⊆ 2ω}
cov(I) = min{|F | : F ⊆ I,

⋃
F = 2ω}

cof(I) = min{|F | : F ⊆ I and ∀A ∈ I ∃B ∈ F A ⊆ B}

Theorem 1.2 It is relatively consistent with ZFC that c = ω2 = cov(s0) and
add(s0) = ω1.

proof:
The iterated Sacks forcing model is described in Baumgartner-Laver [8].

It is obtained by starting with a ground model which satisfies CH and then
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iterating S ω2 times with countable supports. The continuum ends up being
ω2 and no cardinals are collapsed.

The fact that add(s0) = ω1 follows from half of the proof of Theorem 1.1
and the theorem (proved in [8]) that Sacks forcing over Vω2 collapses ω2.

To see that cov(s0) = ω2 let Vα for α ≤ ω2 be the iteration sequence. Let
〈Xα : α < ω1〉 ∈ Vω2 be s0 sets. In Vω2 let fα : S → S be such that for every
p ∈ S fα(p) ≤ p and [fα(p)] ∩Xα = ∅. Since the iteration has the ω2 chain
condition by a Lowenheim-Skolem argument it is possible to find γ < ω2 so
that

〈fα � SVγ : α < ω1〉 ∈ Vγ.

But, we claim the γth Sacks real xγ is not in
⋃

α<ω1
Xα. If it was, then for

some condition p ∈ P[γ,ω2) and some α < ω1 we would have:

p |` xγ ∈ Xα.

But letting q = p(γ) ∈ S and letting r(γ) = fα(q) and r(β) = p(β) for β > γ
we see that

r |` xγ /∈ Xα.

�

Theorem 1.3 cof(cof(s0)) > c

proof:
Let κ = cof(s0) and {Yα : α < κ} ⊆ s0 be a cofinal family. Let

{pα : α < c}

be all perfect subsets of 2ω × 2ω,

{xα : α < c} = 2ω, and Lα = {(xα, y) : y ∈ 2ω}.

Build qα ⊆ Lα perfect such that for every β < α if pβ ∩Lα is countable, then
qα is disjoint from pβ. This is easily done since any perfect set splits into c

many disjoint perfect sets. Now we assume for contradiction that cof(κ) ≤ c.
Let F : c → κ have unbounded range. Since κ = cof(s0) for each β < c the
set

{Yα ∩ qβ : α < F (β)}
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is not cofinal in the s0 subsets of qβ. So there exists an s0 set Zβ ⊆ qβ such
that Zβ is not covered by any Yα with α < F (β). Then Z =

⋃
β<c Zβ is not

covered by any Yα, so it suffices to see that Z is an s0 set. Let p ⊆ 2ω × 2ω

be any perfect set. If p∩Lβ is uncountable for any β, then let q ⊆ p∩Lβ be
perfect such that q ∩ Zβ = ∅, then q ∩ Z = ∅. Otherwise p ∩ Lβ is countable
for every β. If p = pα, then by construction qβ ∩ pα = ∅ for every β ≥ α. It
follows that

(p ∩ Z) ⊆ (p ∩
⋃
β<α

Lβ).

But p∩ (
⋃

β<α Lβ) is a set of cardinality less than c and so there exists q ⊆ p
perfect such that q ∩ (

⋃
β<α Lβ) = ∅, and hence q ∩ Z = ∅.

�

Theorem 1.4 Let V |= GCH, κ any cardinal of cofinality greater than ω1,
and let P be the partial order of countable functions from κ to ω1. If G is
P-generic over V , then V [G] |=“ω1 = c and cof(s0) = 2ω1 = κ”. So, for
example, it is consistent that ω2 = cof(cof(s0)) < cof(s0) = ℵω2.

proof:
Countably closed forcing does not add any reals. By the usual chain

condition argument and decomposition as a product forcing it is enough to
see:

If G : ω1 → ω1 is ω<ω1
1 -generic over V then in V [G] there exists an s0 set

X which is not covered by any s0 set in V .
By a similar construction as in the proof of Theorem 1.3 we can find

in V disjoint perfect sets qα for α < ω1 = c such that any X ⊆ 2ω which
meets each qα in a singleton is an s0-set. Now just use the generic function
G : ω1 → ω1 to pick out a single element of each qα.
�

Theorem 1.5 Let V be a model of CH and κ be any regular cardinal with
ω1 < κ ≤ 2ω1, then there exists a generic extension V [G] (with same cardinals
and function 2λ) in which cof(s0) = κ.

proof:
To bring down cof(s0) but leave 2c large, force with the following partial

order P:
(X, f) ∈ P iff
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1. X ∈ s0,

2. f : S → S is a countable partial function, and

3. ∀p ∈ domain(f) f(p) ≤ p and [f(p)] ∩X = ∅.

The ordering on P is defined by (X ′, f ′) ≤ (X, f) iff X ′ ⊇ X and f ′ ⊇ f .
Clearly P is countably closed and two elements of P with the same f are
compatible, so it is ω1-centered. It is also true that it is well met, ie. infimums
exist.

Now define Pω1
ω to be those elements of p ∈ Pω1 with countable support,

ie. there are at most countably many α < ω1 such that p(α) 6= (∅, ∅). It is
easy to see that forcing with Pω1

ω adds an 〈fα : α < ω1〉 such that if

Xα = 2ω \
⋃
p∈S

[fα(p)]

then each Xα ∈ s0 and for every Y ∈ s0 ∩ V there exists α < ω1 such that
Y ⊆ Xα. Now just like in the usual proofs of Generalized Martin’s Axiom,
see [33], [37], or [7], we iterate forcing with Pω1

ω κ many times with countable
supports. Since cofinally often we add a function f : ω1 → ω1 which is ω<ω1

1

generic, by the argument of Theorem 1.4 we see that cof(s0) ≥ κ. Since
the iteration satisfies the ω2 chain condition every subset of 2ω appears at
some intermediate stage, and is covered by one of the generic s0 sets. Hence
cof(s0) ≤ κ.
�

2 Martin’s Axiom and Marczewski’s ideal

In this section we start with a model satisfying the continuum hypothesis
and by an inductive construction, we will get a model for Martin’s Axiom
where the Marczewski’s ideal, s0, is not ω1 additive.

Theorem 2.1 It is consistent with MA+¬CH that the ideal of s0 sets is not
ω1-additive.

proof:
Recall that [T ] = {x ∈ 2ω : ∀n < ω x � n ∈ T}.
Define (∗)〈Tj : j < ζ〉 where ζ ≤ ω2 and each Tj ∈ S as follows:
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(∗)〈Tj : j < ζ〉: Given 〈Fα : α < ω1〉 pairwise disjoint finite subsets of ζ
there exists α 6= β such that ∀i ∈ Fα∀j ∈ Fβ [Ti] ∩ [Tj] = ∅.

The Construction: By induction on ζ ≤ ω2 we shall

1. define 〈Pi, Qj : j < ζ, i ≤ ζ〉 a finite support iteration of ccc forcing
notions with as usual Pζ+1 = Pζ ∗Qζ ,

2. define 〈Tj : j < ζ〉 ∈ V Pζ such that V Pζ |= (∗)〈Tj : j < ζ〉,

3. make sure that {Tj : j < ω2} is dense in S ∩ V Pω2 , and

4. make sure that MA holds in V Pω2 .

In order to make MA true we list all possible Pω2 names for posets of
cardinality ω1 say Rζ for ζ < ω2. We then apply Lemma 2.2 to the ground
model V Pζ to get either that forcing with Pζ ∗Rζ satisfies (∗)〈Tj : j < ζ〉 or
there exists Q such that forcing with Pζ ∗Q satisfies (∗)〈Tj : j < ζ〉 and Rζ

does not have ccc. Let T ′
ζ be any element of S ∩ V Pζ . However make sure

that at the end we have {T ′
ζ : ζ < ω2} is dense in S ∩ V Pω2 ; because Tζ ≤ T ′

ζ

(see (∗∗) below) this ensures that {Tζ : ζ < ω2} is dense. Note that since
QT ′

ζ
(defined below) is a countable poset it cannot destroy (∗) nor can adding

one tree destroy (∗).
We then let Qζ = R ∗QT ′

ζ
or Qζ = Q∗QT ′

ζ
which ever preserves (∗). This

concludes the proof of Theorem 2.1.
�

Lemma 2.1 In V Pω2 the additivity of s0 ideal is ω1, in fact cov(s0) = ω1.

proof:
Choose 〈Ti,j ∈ S : i < ω1, j < ω2〉 such that for each i, j there is a unique

ζ(i, j) such that Ti,j ⊆ Tζ(i,j) and also for each i < ω1

Ai = {Ti,j : j < ω2}

is a maximal antichain in S. This is easy to do since the family {Tζ : ζ < ω2}
is dense in S and every condition in S has a perfect set of incompatible
extensions. If

Xi = 2ω \
⋃

T∈Ai

[T ]

11



then each Xi is an s0-set since Ai is a maximal antichain. But 2ω =
⋃

i<ω1
Xi,

since otherwise if x ∈ 2ω \
⋃

i<ω1
Xi, then choosing Fα = {ζ(α, β)} where

x ∈ [Tα,β] ⊆ [Tζ(α,β)] witnesses the failure of (∗).
�

The following lemma is the key to preserving (∗) while at the same time
making MA true.

Lemma 2.2 Suppose V |=“(∗)〈Tj : j < ζ〉, R is ccc”, and V R |=“¬(∗)〈Tj :
j < ζ〉”. Then there exists a ccc partial order Q such that V Q |=“(∗)〈Tj :
j < ζ〉 and R is not ccc”.

proof:
Let 〈F ′

α : α < ω1〉 be R-names and r ∈ R such that

r |`R “〈F ′
α : α < ω1〉 is a counterexample to (∗)”.

Let 〈rα, Fα : α < ω1〉 ∈ V be such that each rα ≤ r and

rα |` F ′
α = F̌α.

For some A ∈ [ω1]
ω1 we have that 〈Fα : α ∈ A〉 is a ∆-system. Note that

root of this ∆-system must be empty because if for some α 6= β Fα∩Fβ 6= ∅,
then rα and rβ are incompatible. But R has the ccc.

Define Q to be the set of all q ∈ [A]<ω0 such that if α 6= β ∈ q, then

∀i ∈ Fα∀j ∈ Fβ [Ti] ∩ [Tj] = ∅.

Order Q by inclusion. Note that if q ∈ Q and α, β ∈ q we have rα and rβ are
incompatible in R. Hence forcing with Q adds an uncountable antichain to
R. So it is enough to prove the following two claims.

Claim 1. Q satisfies ccc.
proof:

If not let 〈qα : α < ω1〉 be pairwise incompatible. For some B ∈ [ω1]
ω1

we have that 〈qα : α ∈ B〉 forms a ∆-system with root q∗. Now qα ∪ qβ ∈ Q
iff (qα \ q∗) ∪ (qβ \ q∗) ∈ Q. Therefore without loss of generality we may
assume 〈qα : α ∈ B〉 are pairwise disjoint. If we let Kα =

⋃
δ∈qα

Fδ, then
〈Kα : α ∈ B〉 are pairwise disjoint. Therefore by applying (∗) in V , there are
α 6= β ∈ B satisfying

∀i ∈ Kα∀j ∈ Kβ [Ti] ∩ [Tj] = ∅
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and so qα ∪ qβ ∈ Q.
�

Claim 2. Q preserves (∗).
proof:

Let q ∈ Q and 〈H ′
α : α < ω1〉 be a Q-name such that such that

q |`Q “〈H ′
α : α < ω1〉 are pairwise disjoint finite subsets of ζ”.

Let 〈qα, Hα : α < ω1〉 ∈ V be such that qα ≤ q and

qα |` “H ′
α = Ȟα”.

Then for some B ∈ [ω1]
ω1 the following form ∆-systems: 〈qα : α ∈ B〉 and

〈Hα : α ∈ B〉. By ccc of Q we have that the root of 〈Hα : α ∈ B〉 must be
empty. Let q∗ be the root of the q’s so qα ∩ qβ = q∗ for α 6= β ∈ B. Now we
define

Kα =
⋃

δ∈qα\q∗
Fδ ∪Hα.

Since the H’s and F ’s are pairwise disjoint families it is easy to find C ∈ [B]ω1

such that Kα for α ∈ C are pairwise disjoint.
Hence by (∗) in V there exists α 6= β ∈ C such that

∀i ∈ Kα∀j ∈ Kβ [Ti] ∩ [Tj] = ∅.

But this means that qα ∪ qβ ∈ Q and

qα ∪ qβ |`Q “∀i ∈ H ′
α∀j ∈ H ′

β [Ti] ∩ [Tj] = ∅”.

Since we started with an arbitrary condition and name we have (∗) holds in
V Q. Hence Claim 3 is proven and this finishes the proof of Lemma 2.2.
�

Next we show that property (∗) is preserved at limit stages. Note that
(∗) is trivially preserved at stage ω2. The preservation of (∗) at stages of
cofinality ω1 is more delicate and requires that we specify the details of
exactly how we pick the trees Ti.

For T ′ ∈ S let QT ′ = {(F, n) : ∅ 6= F ⊆ T ′ ∩ 2n}
Order QT ′ by (F, n) ≤ (G, m) iff n ≥ m and G = {s � m : s ∈ F}.

Forcing with QT ′ naturally determines a perfect subtree T of T ′ as follows:
if G is QT ′ generic, then let

T = {s : ∃(F, n) ∈ G s ∈ F}.
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In our construction Tj is obtained by forcing with QT ′ for some T ′. Recall
that Ts = {t ∈ T : s ⊆ t or t ⊆ s}. For T which is QT ′-generic it is easy to
see that

1. if T0 ∈ S is in the ground model, then for some n < ω for every
s ∈ 2n ∩ T0 ∩ T Ts ⊆ T0, and

2. for any p ∈ QT ′ there exists n < ω, t0, t1, q0, q1 ≤ p such that t0 and t1
are disjoint, q0 |` T ∩ 2n = t0, and q1 |` T ∩ 2n = t1.

Our construction will satisfy the following:

(∗∗) For every α < ω2 Tα is QT ′
α
-generic over V Pα for some T ′

α ∈ S∩V Pα .

Lemma 2.3 Assume (∗∗) and suppose F = {αl : l < m} ⊆ ζ is finite and
enumerated in increasing order, and p ∈ Pζ, then there exists q ≤ p, n < ω,
and 〈Ql ⊆ 2n : l < m〉 such that for each l < m

q |` “ Tαl
∩ 2n = Q̌l”

and for any k < l < m if s ∈ Ql ∩Qk then

q |` “ Tαls ⊆ Tαk
”.

proof:
Left to the reader.

�

Lemma 2.4 Assume (∗∗) and suppose γ ≤ min(H) where H ⊆ ζ is finite
and p ∈ Pζ, then there exists q0, q1 ≤ p with q0 � γ = q1 � γ and disjoint
t0, t1 ⊆ 2n for some n < ω such that for each α ∈ H and i = 0, 1

qi |` “Tα ∩ 2n ⊆ ťi”.

proof:
It is easy to show:

Suppose P1, P2 are arbitrary posets and T ′
i ∈ S∩V Pi . Given p1 ∈ P1∗QT ′

1

and p2 ∈ P2 ∗ QT ′
2

there exists n < ω, q1 ≤ p1, q2 ≤ p2, t0 ⊆ 2n, t1 ⊆ 2n such
that t0 ∩ t1 = ∅ and for i = 0, 1 qi |` Ti ∩ 2n ⊆ ťi.

The lemma follows by iteratively applying this statement to all pairs in
H with V Pγ as the ground model.
�
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Lemma 2.5 Assume (∗∗) and suppose that ζ is a limit ordinal and for all
α < ζ

V Pα |= (∗)〈Tj : j < α〉,

then V Pζ |= (∗)〈Tj : j < ζ〉.

proof:
Let

p |` “〈F ′
α : α < ω1〉 are pairwise disjoint finite subsets of ζ”.

We must show there exists q ≤ p and α 6= β such that

q |` ∀i ∈ F ′
α∀j ∈ F ′

β [Ti] ∩ [Tj] = ∅.

Let 〈pα, Fα : α < ω1〉 ∈ V be such that pα ≤ p and

pα |` F ′
α = F̌α.

For some A ∈ [ω1]
ω1 {Fα : α ∈ A} forms a ∆-system. The root of this

∆-system must be empty, since Pζ satisfies ccc.

Case 1. Cofinality of ζ is ω.
For some B ∈ [A]ω1 , and γ < ζ we have that Fα ⊆ γ and pα ∈ Pγ for every

α ∈ B. Let G be a Pγ-filter such that C = {α ∈ B : pα ∈ G} is uncountable.
( Note that such a G must exist, else there would exist a maximal antichain
Q such that for every q ∈ Q there exists α < ω1 q |` C ⊆ α. Since Q would
be countable this would imply that A is countable. ) Then by applying (∗)
in V [G] there exists α 6= β ∈ C such that ∀i ∈ Fα∀j ∈ Fβ [Ti] ∩ [Tj] = ∅.
Then q ∈ G with q ≤ pα and q ≤ pβ is as required.

Case 2. Cofinality of ζ is ω1.
Apply Lemma 2.3. By cutting down to uncountable subset of A we can

assume that |Fβ| = m and 〈Ql : l < m〉 are the same for each β ∈ A.
By passing to an uncountable subset of A we can assume that there

exists γ < ζ such that Fα = Gα ∪ Hα where for each α ∈ A Gα ⊆ γ
and 〈min(Hα) : α ∈ A〉 is unbounded in ζ, and if α, β ∈ A and α < β then
max(Hα) < min(Hβ). Apply Lemma 2.4 to each Hα obtaining qi

α for i = 0, 1
with

qα =def q0
α � min(Hα) = q1

α � min(Hα)
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and disjoint tα0 , tα1 . Again by passing to an uncountable subset we may assume
t0, t1 are the same for each α ∈ A. By cutting down A and increasing γ we
may suppose that {support(q0

α)∪support(q1
α) : α ∈ A} is a ∆-system whose

root is a subset of γ. By the same argument as was used in Case 1, we can
find distinct α, β ∈ A such that qα and qβ are compatible and

∀i ∈ Gα∀j ∈ Gβ [Ti] ∩ [Tj] = ∅.

Claim 1. q0
α and q1

β are compatible.
proof:

By definition qδ = qi
δ � min(Hδ). Also qα and qβ are compatible elements

of Pγ. Since the supports form a ∆-system with root contained in γ they are
compatible.
�

Claim 2. q0
α ∪ q1

β |` ∀i ∈ Fα∀j ∈ Fβ [Ti] ∩ [Tj] = ∅.
proof:

Case a. i ∈ Gα and j ∈ Gβ.
This is true by the way we picked α and β.

Case b. i ∈ Hα and j ∈ Hβ.
q0
α |` Ti ∩ 2n ⊂ t0 and q1

α |` Tj ∩ 2n ⊂ t1, but t0 ∩ t1 = ∅.
Case c. αl = i ∈ Hα and βk = j ∈ Gβ.

Let Fα = {αl : l < m} and Fβ = {βl : l < m}, and so k < l. Note that

qα |` Tαl
∩ 2n = Ql

and
qβ |` Tαk

∩ 2n = Qk.

If s ∈ Ql ∩Qk, then
qα |` Tαls ⊆ Tαk

.

But by Case (a) we know

qα ∪ qβ |` [Tαk
] ∩ [Tβk

] = ∅.

Consequently qα ∪ qβ |` [Tαl
] ∩ [Tβk

] = ∅.
Case d. αl = i ∈ Gα and βk = j ∈ Hβ.

Same as Case (c).
�
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3 Laver tree forcing

Let L be Laver tree forcing, that is conditions are subtrees p ⊆ ω<ω with the
property that there exists a node s ∈ p called its root such that:

1. for every t ∈ p either t ⊆ s or s ⊆ t,

2. for every t ∈ p if s ⊆ t, then the set split(p, t) =def {n ∈ ω : tˆn ∈ p}
is infinite.

Theorem 3.1 Assume MA. Then L does not collapse cardinals.

Given A = 〈As ∈ [ω]ω : s ∈ ω<ω〉 and s ∈ ω<ω define ps(A) = p ∈ L to be
the unique Laver tree such that the root of p is s and for every t ⊇ s with
t ∈ p we have that split(p, t) = At.

Lemma 3.1 Suppose |` τ ∈ V and B = 〈Bs : s ∈ ω<ω〉 where each Bs ∈
[ω]ω. Then there exists a countable X and A = 〈As ∈ [Bs]

ω : s ∈ ω<ω〉 such
that for every s ∈ ω<ω

ps(A) |` τ ∈ X.

proof:
Laver proved that for any p ∈ L there exists q ≤ p with the same root

and X countable such that
q |` τ ∈ X.

Build pn ∈ L as follows. At stage n, let s be the nth element of ω<ω. If
s ∈ pm for some m < n, then do nothing. Otherwise, take pn ≤ ps(B) and
Xn countable such that s is the root of pn and pn |` τ ∈ Xn. For every t ∈ pn

such that s ⊆ t, let At = split(pn, t). Finally let X =
⋃

n<ω Xn.
�

The next lemma proves the theorem.

Lemma 3.2 Suppose MA, κ < c, and p |` τ : κ → V , then there exist q ≤ p
and 〈Xα : α < κ〉 such that for every α Xα is countable and q |` τ(α) ∈ X̌α.

proof:
To simplify notation let p = ω<ω.
Let Q = {〈As : s ∈ ω<ω〉 : As ∈ [ω]ω} and for A, B ∈ Q define A ⊆∗ B iff

for all s ∈ ω<ω As \Bs is finite.
Build Aα ∈ Q for α < κ such that
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1. α < β implies Aβ ⊆∗ Aα.

2. there exists a countable set Xα such that for every s ∈ ω<ω

ps(Aα) |` τ(α) ∈ Xα.

At stage α use the MA to get A ∈ Q such that for all β < α A ⊆∗ Aβ. (This
is a well known consequence of Martin’s Axiom, apply Solovay’s Lemma,
Kunen [21] p.57, to each of the families {Aβs : β < α} for s ∈ ω<ω.) Then
use Lemma 3.1 to get Aα ⊆∗ A as desired.

Now consider the following poset:

P = {(T, W ) : T is a finite subtree of ω<ω, W ∈ [κ]<ω}

Order P by (T,W ) ≤ (T ′, W ′) iff

1. W ⊇ W ′, T ⊇ T ′, and

2. ∀n < ω ∀s ∈ (T \ T ′) ∩ ωn+1 ∀α ∈ W ′ s(n) ∈ Aα,s.

Since any two conditions with the same T part are compatible, P is σ-
centered, so we can apply MA to it. For G a P-filter let

q = ∪{T : ∃W (T,W ) ∈ G}.

If G meets the dense subsets of P of the form

Ds,n = {p ∈ P : p |` s /∈ q or ∃m > n sˆm ∈ Tp}

then we will have that q ∈ L with the empty sequence as its root. For any
α < κ let

Dα = {p ∈ P : α ∈ Wp}.

Each Dα is dense.
Hence by MA we can get q ∈ L with the empty node as root such that

for every α < κ there is finite subtree T ⊆ q such that for every t ∈ q \ T we
have t ∈ pt�(|t|−1)(Aα). This implies that for every r ≤ q there exists s such
that ps(Aα) is compatible with r. It follows that

q |` ∀α < κ τ(α) ∈ Xα.

�
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4 Superperfect trees

Superperfect tree forcing F is defined as follows. For p a subtree of ω<ω define
the splitting nodes of p:

splitnodes(p) = {s ∈ p : ∃∞n ∈ ω sˆn ∈ p}.

Define p ∈ F iff

1. p is a nonempty subtree of ω<ω,

2. splitnodes(p) is dense in p, ie ∀s ∈ p ∃t ∈ splitnodes(p) with t ⊇ s, and

3. if any node in p splits it is a splitting node, ie if there exists more than
one n ∈ ω such that sˆn ∈ p, then there are infinitely many n ∈ ω such
that sˆn ∈ p.

Theorem 4.1 Assume MA. Then F does not collapse cardinals.3

proof:
Call a sequence 〈Ps : s ∈ ω<ω〉 good iff

1. each Ps ⊆ ω<ω is infinite,

2. t ∈ Ps implies s $ t, and

3. for s ∈ ωn if t, t′ ∈ Ps and t 6= t′, then t(n) 6= t′(n).

Given any good sequence 〈Ps : s ∈ ω<ω〉 we determine 〈ps ∈ F : s ∈ ω<ω〉
as follows. For each s let S be is smallest subset of ω<ω such that Ps ⊆ S
and if t ∈ S then Pt ⊆ S. Then ps is the unique condition in F such that
S = splitnodes(ps). In other words, Ps says that s is a splitting node and
the splitting nodes immediately below s are Ps. Define 〈Ps : s ∈ ω<ω〉 ≤
〈Qs : s ∈ ω<ω〉 iff ps ⊆ qs for each s ∈ ω<ω. An equivalent definition
would be for each s ∈ ω<ω and t ∈ Ps there exists k and s0, s1, . . . , sk where
s = s0 ⊆ s1 ⊆ . . . ⊆ sk = t si+1 ∈ Qsi

for i = 0, 1, . . . , k − 1.

3Added post publication: Goldstern, Roslanowski, and Spinas found a mistake in this
proof. The relation ≤∗ is not transitive. A correct proof is given in the paper: Goldstern,
Martin; Johnson, Mark J.; Spinas, Otmar Towers on trees. Proc. Amer. Math. Soc. 122
(1994), no. 2, 557–564.
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Lemma 4.1 Given τ such that |`F“τ ∈ V ”, and good 〈Ps : s ∈ ω<ω〉 there
exists a good 〈Qs : s ∈ ω<ω〉 ≤ 〈Ps : s ∈ ω<ω〉 and a countable set Σ such
that for every s ∈ ω<ω qs |`“τ ∈ Σ”.

proof:
For any p ∈ F with smallest splitting node s (ie root) there exists q ⊆ p

such that s ∈ splitnodes(q) and a countable Σ such that q |`“τ ∈ Σ”. Now
just apply this fact repeatedly down the s ∈ ω<ω.
�

Define 〈Ps : s ∈ ω<ω〉 ≤∗ 〈Qs : s ∈ ω<ω〉 iff there exists 〈P ′
s : s ∈ ω<ω〉 ≤

〈Qs : s ∈ ω<ω〉 such that for every s ∈ ω<ω Ps =∗ P ′
s (equal mod finite).

Similarly for p, q ∈ F define p ≤∗ q iff there exists f : splitnodes(p) → ω such
that pf ⊆ q, where

pf = p \ {r ∈ ω<ω : ∃s ∈ splitnodes(p)∃n < f(s) sˆn ⊆ r}.

We think of pf as being obtained from p by pruning finitely many nodes from
beneath each splitting node of p. Note that pf ∈ F.

Lemma 4.2 The following are equivalent:

1. 〈Ps : s ∈ ω<ω〉 ≤∗ 〈Qs : s ∈ ω<ω〉

2. for every s ∈ ω<ω, ps ≤∗ qs.

proof:
Left to reader.

�

Lemma 4.3 (MA) Suppose γ < c and 〈Pα
s : s ∈ ω<ω〉 for α < γ are good

and have the property that α > β implies 〈Pα
s : s ∈ ω<ω〉 ≤∗ 〈P β

s : s ∈ ω<ω〉.
Then there exists a good 〈Ps : s ∈ ω<ω〉 such that for every α < γ 〈Ps : s ∈
ω<ω〉 ≤∗ 〈Pα

s : s ∈ ω<ω〉.

proof:
Let Q be the following poset, (As : s ∈ F, H) ∈ Q iff

1. H ⊆ γ, F ⊆ ω<ω, As ⊆ ω<ω for s ∈ F are all finite,

2. t ∈ As implies s $ t, and
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3. t, t′ ∈ As and t 6= t′ implies t(n) 6= t′(n), where s ∈ ωn.

We define (Âs : s ∈ F̂ , Ĥ) ≤ (As : s ∈ F, H) iff

1. F̂ ⊇ F , Ĥ ⊇ H, Âs ⊇ As for s ∈ F , and

2. for each s ∈ F if t ∈ Âs \ As and α ∈ H, then t ∈ splitnodes(pα
s ).

Note that Q is ccc, in fact σ-centered, since (As : s ∈ F, H ∪ Ĥ) extends
both (As : s ∈ F, H) and (As : s ∈ F, Ĥ). For any α < γ

{(As : s ∈ F, H) ∈ Q : α ∈ H}

is dense in Q, since (As : s ∈ F, H ∪ {α}) ≤ (As : s ∈ F, H). In order to
quarantee that At grows up into an infinite set, we need only check that the
following sets are dense. Fix t ∈ ωn and m < ω and define

Et,m = {(As : s ∈ F, H) ∈ Q : t ∈ F,∃r ∈ At r(n) > m}

To check this let (As : s ∈ F, H) ∈ Q and put t into F by letting At = ∅
if neccessary. Let α = max{H} and let p = pα

s . Then there exists f :
splitnodes(p) → ω such that for every β ∈ H we have pf ⊆ pβ

s . Consequently
any r ∈ splitnodes(pf ) with r ⊃ s and r(n) > m can be added to At. Finally
if G is sufficiently Q-generic, then 〈Ps : s ∈ ω<ω〉 defined by

Pt =
⋃
{At : ∃(As : s ∈ F, H) ∈ G, t ∈ F}

is as required.
�

Lemma 4.4 (MA) Suppose κ < c is an uncountable regular cardinal and
pα ∈ F for α < κ and r ∈ F have the property that for every α < κ r ≤∗ pα.
Then there exists q ⊆ r and Γ ∈ [κ]κ such that q ⊆ pα for every α ∈ Γ.

proof:
For each α < κ let fα : splitnodes(r) → ω be such that rfα ⊆ pα where

as before,

rf = r \ {t ∈ ω<ω : ∃s ∈ splitnodes(f)∃m < f(s); sˆm ⊂ t}

that is fα(s) tells what finite set of nodes below the splitting node s of r we
should prune from r so as to end up with subtree of pα. It is well known that
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MA gives us f : splitnodes(r) → ω that for all α < κ for all but finitely many
s ∈ splitnodes(r) fα(s) < f(s). By changing f on a finite set we can find
Γ ∈ [κ]κ such that for all α ∈ Γ and for all s ∈ splitnodes(r) fα(s) < f(s). It
follows from this that q = rf ⊆ pα for all α ∈ Γ
�

Proof of Theorem 4.1: Suppose that forcing with F did collapse cardinals,
then there would exist regular cardinals κ < λ ≤ c, p ∈ F and a name τ such
that

p |` τ : κ → λ is increasing and cofinal.

To simplyfy notation assume p = ω<ω. Using Lemma 4.1 and Lemma 4.3
build a sequence of good 〈Pα

s : s ∈ ω<ω〉 for α < κ such that

1. α > β implies 〈Pα
s : s ∈ ω<ω〉 ≤∗ 〈P β

s : s ∈ ω<ω〉 and

2. for any α there exists a countable Σ such that for every s ∈ ω<ω

pα
s |`“τ(α) ∈ Σ”.

Use Lemma 4.3 one more time to obtain 〈Rs : s ∈ ω<ω〉 such that 〈Rs :
s ∈ ω<ω〉 ≤∗ 〈Pα

s : s ∈ ω<ω〉 for each α < κ. Fix s (say the empty node) and
define r = rs and pα = pα

s . Since these satisfy the hypothesis of Lemma 4.4
we can obtain q ⊆ r and Γ ∈ [κ]κ such that q ⊆ pα for every α ∈ Γ. But now
there exists countable sets {Σα : α ∈ Γ} such that

q |` ∀α ∈ Γ τ(α) ∈ Σα

which means that the range of τ cannot be cofinal in λ.
�
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Appendix: Stationary subsets of ω2

In this appendix we solve a problem posed by M. Foreman: Does forcing with
S add a stationary subset of ω2 which does not contain a stationary subset
of the ground model?

Note that if ω2 is collapsed to ω1, then there exists a club subset of ω2

which does not contain an unbounded subset of the ground model. If c = ω1,
then every new stationary subset S of ω2 contains an old stationary set. This
is because S has cardinality ω1 and so some p ∈ S must force stationarily
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many α ∈ S. Amoeba Sacks forcing is defined by P = {(p, n) : n < ω, p ∈ S}
where (p, n) ≤ (q, m) iff p ⊆ q, n ≥ m, and p ∩ 2m = q ∩ 2m. It is proper. If
c > ω2 and MA(Amoeba Sacks), then every stationary subset of ω2 contains
a ground model stationary set. To see this note that if

p |`S “S ⊆ ω2 is stationary”

then by using Amoeba Sacks forcing we can find q ≤ p such that for every
α < ω2 there exists n < ω such that for every s ∈ 2n ∩ q either qs |` α ∈ S
or qs |` α /∈ S. Hence there must be some s ∈ q such that

{α < ω2 : qs |` α ∈ S}

is stationary.

Theorem 1 Suppose c = ω2 then forcing with S adds a stationary subset of
ω2 that does not contain a stationary set from the ground model.

proof:
Let S = {qα : α < ω2}. Use Lemma 2 to obtain for each β < ω2 an

antichain {pβα ≤ qα : α < β}. Let pi
βα ≤ pβα for i = 0, 1 be two incompatible

extensions.
Now let S = {〈p1

βα, β̌〉 : α < β < ω2}. Then the following two facts hold:

1. |`S S ⊆ ω̌2

2. for every p ∈ S {α < ω2 : p |` α ∈ S or p |` α /∈ S} is bounded in ω2.

Thus neither S nor its complement can contain a stationary set (or even an
unbounded subset of ω2) which is in the ground model. Since one of the two
must be stationary the theorem is proved.
�

Lemma 2 Suppose c = ω2 and Q = {qα : α < ω1} ⊆ S, then there exists an
antichain {pα : α < ω1} such that for each α < ω1 pα ≤ qα.

proof:
Inductively construct pα so that for every β > α [pα] ∩ [qβ] is nowhere

dense in [qβ]. This is easy to do. At stage α, find r ∈ S such that

[r] ⊆

(
[qα] \

⋃
β<α

[pβ]

)
.
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Then split [r] into ω2 perfect disjoint sets. Note that for any β > α at most
countably many of these perfect sets can fail to be nowhere dense in [qβ]. Let
pα be any of the remaining ones.
�

By a theorem of Balcar and Vojtas [6], Lemma 2 is true in much more
generality. All that is really needed is: every p ∈ P has ω2 incompatible
extensions. Consequently the result holds for all of the standard tree kinds
of forcing, eg Laver, Mathias, Silver, etc.
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