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RIGID BCREL SETS AND BETTER QUASICRUER THECRY

Fons van Engelen
Arnold V. M:LLlerl
John Steel

Abstract: A topological space is rigid iff the only
autochomeomorphism it has is the identity. We show that no zero
dimensional infinite Borel set is rigid. Our proof is partly based
on the well foundedness of the Borel Wadge degrees. We generalize
this theorem of Martin using the theory of better quasiorders. 1In
addition we give a simple proof of one of the main lemmas of BRO
theory, namely the minimal bad array lemma.

1. Lipschitz and Wadge degrees for 2°.
In Van Wesep (19781, Lipschitz and Wadge games anxdi degrees for Balre space
o’ are discussed; here, we need these notions for the Cantor set 2. The

Lipschitz game G,(A,B) vhere ABC 2, is played as follows: I and IT

alternate playing O or 1; in the end, player I has played « € 2”, player
IT has played 8 € 2.
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II wins this run of the game Ge(A,B) iff [a € A (==) B € B].

The Wadge game Gw(A,B) is defined exactly the same, except that II also

has the option of passing (provided he mekes infinitely meny moves). Define

A<, B iff II has a winning strategy in G,(A,B).

Simllarly we can define Ang. It can be shown that Ang 1ff there is a
contimuous £:2° - 2° such that A = £ 1[B], and A<, B iff there is such

f which also satisfies d(f(a),f(’)) ¢ dla,a’) for all a,a’ € 2, with d
the ususl Beire space metric.

Define A=, B iff A, B and B, A

Define A <, B iff A<, B and mot B¢, A.

Similarly defime 'S, -and £, .. Both ¢, and (. are quasiorders, il.e.
reflexive and transitive relations, and clearly Sp Tefines <. . The
w-degree a of a set AC 2° is defined to be a={B<;2“’|AEwB}.

lemmas can all be proved similarly to the results in Van Wesep [1978b] which
studles <, amd ¢, for subsets of W’

1.1 lenma. (AD) (Wadge) For any A,BC 2° either A, B or
B <, (2\4).

1.2 Lemma. (AD) (Martin) There does not exist an infinite descending <

sequence.
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1.3 lema. (D) (Wadge) If A<, 2“\A then A contains a nonempty

relatively clopen subset B with B ‘W A,

1.4 Lemma. (AD) If not A < 2°\A then for any B ¢, A we have that

BSeA.

This follows from 1.1 since if not B¢, A, then A, (2°\B) and since
B<, A implies (2\B) < (@\A); so A <o (8°\A) contradiction.
Note that A <, B implies 2”\A ¢, 2°\B. Hence the first Lemma implies

there cannot be three sets {A,B,C} which are mutually <, incamparable,

since if not A ge B and not B ge A then A = (2°\B). 8o if we ldentify

sets and their complements and mod out by =, we get a linear order. The

second Lemma, says this order is a well order. In Section 3 we will generalize
this result. The third Lemma says self dual A have simpler clopen subsets.
The fourth Lemma says that non self dual Wadge degrees consist of a single
Lipschitz degree.

All of these Lemmas are true locally for determined classes. ZFC proves
that they are true for all Borel A and B. Projective determinacy implies
that they are true for all projective A and B.

2. Rigid subsets of 2.

If r c P(2”), let N denote the set of all finite boolean combinations
of sets in I'. We first show that non-trivial rigid spaces do not appear at
the lower levels of the Borel hierarchy in 2°.

2.1 Lemma. No non-trivial, i.e. having more than one point, rigid subset of

2 isin W1 .
Proof. In van Engelen [1985], topological properties Pﬁl = "o-compact"”,
1 1 .
and P4k ’ P4k+l ’ P4k+2 ’ P4k+3 ’PZ;+2 ’ Pikh") » for k <o, were defined,

such that if we order these properties by
2

P « P < P'?' <P2

P < P:L < Pl < < P
-1 4k 4k+1 4K+2 4k+3 4k+2 4R+3 4(k+1)
for each k ¢« w, then up to homeamorphism, there exists exactly one subset
Xx(ll) of 2 which is Pgi), and nowhere P;J) (i.e. no non-empty clopen
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by

subset of thse space is P;‘j)) for all P&J) « P &

These spaces X =~ are

all homogeneous, i.e. any two points can be interchanged by an
autchomeomorphism.

Furthermore, the elements of on

5 8re exactly those spaces that have one of

the above properties.
Now suppose that some non-trivial rigid subset A of 2Y is in lﬂg ;  then

A has at most one isolated point, since interchanging two isolated polnts of
A and leaving the other points fixed is a non-trivisl autchomeomorphism of A.

If pe€ A 1s isolated, then A\{p} € bﬂg is dense in itself; <thus, some

rigid dense in 1tself subset of ¥ is PS‘) for some 1,n, and hence there
is such a subset B such that Pz(zi) 1s minimal. Since each non-empty clopen

subset of B is also a rigid subset of oY without isolated points, B is

Pr(li)’ and nowhere PIEIJ) for all ngj) < Px(xi); s0 if n < w, then Bxxr(li),

S0 B 1is homogeneous, a contradiction. Hence, n =-1, i.e. B is
o—compact. If B 1is nowhere compact and nowhere countable, then B~ @ x 2
(@ is the space of rationals) by a result of Alexandroff and Uryschn [1928];
but @ x 2° is not rigid, so some non-empty clopen subset C of B is
compact or countable. If C 1is campact, then C is a compact
zero-dimensional space without isolated poimts, so C=x 2° (Brouwer [1910]),
and 1f C 1is countable, then C =~ Q (Sierpinski [1920]); in both cases, we
have the required contradiction. o

For 1€ {0,1}, let
6, = {z € 2% 3vm > n z(m) = 1},

If x€ 2“’\((&)O U6,), then x consists of blocks of zeros separated by blocks

of omes; defime :2°\(8,U 0) »2° by ¢(x)(m) =0 1ff the n°° block of

zercs or ones has even length. Iet 2:2°° 5 2°Y e such that

¢(x) = U e(xt n). For Ac2’, pu
N«w
A" - o7lal
= ¢ U GO.
Some more notation: if s € 2Y, let [s] = {xe 2: s is an initial
segment of =x}. In a game GW(A,B), if 7+ is a strategy for II, and I
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plays «a, II plays B following 7, then we write B = 7(a), i.e. we also
consider T as a (continuous) function from 2° to 2°. If T is a winning
strategy for player II, then A = v “(BI.

2.2 lemma. (AD) Let AC 2° be such that Aemg, end AN [s]= A

*
for each s € 2. Then A <, A

Proof. The proof resembles that of Van Wesep [1978bl, Theorem 3.1; it
x
esentially appeared in Steel [1977]. If -(A $u A), then 2"\A $w A by the

Vadge Lema; 1let g, be a vimning strategy for II in G (2”\a,A").
Furthermore, let gl be the strategy telling II to copy I's moves, and for

se2“ 1et T, be & winning strategy for II in Gw(A,A N [sl), which we

may assume starts by writing down s.
Iet n<w, and foreach 1< n, let o =Tq for some s 62“‘), and

21 4 i
for each 1 < 1, 1let On141 € {go,gl}.
Consider the finite diagram
%n %an-1 T 91 %

fon f2n-1 b A #

The filling in for <oi:i < 2n) consists of filling in a finite colum =x, of

i
zeros and ones below A, (1 ¢ 2n), such that

1
@D) =

(2) for each m ¢« n, Xy, 18 the response of 7, to X, ..;
m

(3) for each m < n, if Xon 1S the response of oy ., tO Tomo
then Xy = E(Eppy) A oppy gy or
Tl T Faml M Topy <€y -
CLAIM. Suppose that s, € 29, ogy =Tg for 1 <n. Then there exists
i
on = Ts then for all (Ogpep P D <D € {go,gl
the filling in for (oii 1 {( 2n) has at least n entries below AO .

s €2 such that if o

i

}n

’

N
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Indeed, for j ¢ 2n, put 5J=¢oaj if j 1is odd and oy =8y 050y
otherwise. If for some x ¢ 27, &Jo v+r 00y 1(x) is defined for each

X n
J < 2n, andeach oy .M € {go,gl} , then it is clear that a

sufficiently long initial segment of x does the job. If this is not the
case, then for each x € 2” there exist (o, .,: m:n) € {g),g;}" and § < 2n

such that gy 0 o0 0pn_1(®) is not defined, i.e.

hj(x)=oJOGJ+lo "'OUzn_l(X)GQOUG Since for each 1 < n,

1
(1) ye A (= ”21(3’) € A;

(1) y € A (— (y) € A if o

921+1 2i+1 = 81
*
(i11) y ¢ A (== go(y) €A (== “’go(y) €A or go(y) € 6,

(==) 021+1(y) 1s defined and o ) € A,

211
it is clear that in the described situstion we have:
x € A if and only if for some (ozmlzmm Y € {go,gl

h‘j(x)ee0 and |{izj:ai=g0}| is even, or

hj(x)ee1 and |{123:oi=g0}| is odd.

}n

’

Thus, A 4is a finite union of sets of the form h‘l[eol and 1 '06.], which

J J 1
are easily seen to be mg; but A ¢ mg , & contradiction. This proves the
claim.
By the claim, we can find an infinite sequence (s,:1 < w) of elements from

1
2“ such that for each a € {0,1}, and each n < v, the filling in for
<oi:1 < 2n), where Opy = Tsi(i < n), Oni41 = ga.(i)(i <n) has at least n
entries in the Oth column. The union of all these fillings is a complete
filling in of the infinite diagram

2n %on-1 91 %0

T fann f2n i T A

i.e. belov each A, we can put yi‘e 2” such that for each m « o,
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a a
Yom < Tsm(yaml)’

a
o . (‘p°go)(y2m2)
and if a(m) = 1 them yo .4 = a .

y2m+2

Put M - {a€ 2°:iy> € A}. By AD, M has the property of Baire, so there

exists s € 2“ such that Mn [s] is elther meager or cameager relative to
[s], say meager. Iet k = min{n:n ¢ dom(s), n odd}, and consider the map
T : [s] » [s] defined
by T(a)(k) = 1 - ak),
T(a)(J) = a(j) if J # k.
Clearly, TI[M] 41s of the same category as M, and thus meager. But

yiayi(a) for n>k, SO yzeB iff y;rl(a')CEB for n<k (use

(1),(i1),(441) from the proof of the claim above), and thus
T(¥ N [s]] = [8]\M, and we have a contradiction. o

Let I C#(2%), andput IS = (2\B:BcT}. Asuset A of 2° is
everywhere properly I' if An (sl € I'\'Y for each s € 2“. T is
reasonably closed if for each A€ I', we have

(1) A" e r;

() if B, A, then BeET.

The following theorem is due to Steel [1980].

2.3 Theorem. (AD) If T C P(2”) is reasonably closed, and A,BC 2 are
everywhere properly I, and either both meager or both comeager, them A and
B are homeoamorphic.

We are now ready to prove the main theorem

2.4 Theorem. (AD) No non-trivial subset of 2° is rigid.

Proof. Suppose there is such a subset. As in the Aproof of lemma 2.1, we
can show that there must also be such a subset which is dense in 1ltself; and
using the property of Balre, there is such a subset which 1s also meager or
comeager. So put o = {BC 2¥:B rigid, dense in 2, and meager or

comeager}, and let

a = min{w-degree of B : B € «}.



206 VAN ENGELEN, MILLER and STEEL

say & 1is the w-degree of A € d.
It se2?, ant £:2° 2" is defined by £ =" x, then

-1 . =
As-fs[[s]nA]Gsd, since A = [slNA, and [s]nAgwA, we have
A <, A, whenoe AL = A by minimelity of 2. So AN [s] =, A for each

s€2Y and Aemg

minimality of a, and by Lemma 1.3, a is non self-dual, and hence
aAn (sl e r\fd for each s € 2“, i.e. A is everywhere properly I.
Since a is non self-dual by lemma 1.4 1f ngAthenteA._ It is

*
by lema 2.1. Thus, by lemma 2.2, A < A. Again by

easy to see that B <, A implies B <, A . Player II's strategy in
Ge(B‘,A‘) is to simply copy player I's moves except when player I switches

from playing the digit 1 t¢o playing 1-1; at these times a simulated play in
Ge(B,A) has taken place, so after consulting pleyer IIL's strategy in that game

he plays either one 1 or two 1's to adjust the parity correctly. Hence
r = {8|B Sw A} 1is reasonmably closed. Then with fs as above, we have that

Ay = fzé)[[O] nal, a5 - f:i)[[ll N Al are also everywhere properly I, and

both of the same category as A, s0 [O]rleAOzAlz[l]nA; thus,

interchanging [0l N A, [1) N A yields a non-trivial autchomecmorphism of A,
a contradiction. O

For Theorem 2.3, wo only need AD for games with payoff set in . Thus,
analyzing the above results, we see that restricting the determinacy hypothesis
yields Theorem 2.4 for a restricted class of subsets of 2, e.g. PD implies
no projective subset of 2° 1is rigid, and the following theorem of ZFC.

2.5 Theorem. No non-trivial Borel subset of 2° is rigid.

This answers a question of Eric van Douwen who independently showed that no

zer0 dimensional Borel set which is the union of a I3 and a 35 is rigid.

An alternative proof of Theorem 2.5 can be deduced from the results in
van Engelen [1985] and [1986], as follows.
Put

o

“)!
do-{AC2 .Aeés,

A rigid, dense in itself},



RIGID BOREL SETS AND BETTER QUASIORDER THEORY 207

@, = {ac2’: ABorel, A¢ A, Arigid, dense in itself}.

In van Engelen [1985], for each limit o « Wy

closed-hereditary topological property P is defined such that, up to

and each n < w, a

homecmorghism, there exists exactly one subset of 2°

Xi” which is Pw, and nowhere P(i) for all properties P(l)

n n
in lemma 2.1;

X° vhich is P, and novhere P, forall f e lo,a) (@o);

1 .

Xa n which is Pa o nowhere Pa +nl and which contains
no closed copy of X' . o (nemn).

xim which is P, novhere P ., and such that every
non-empty clopen subset contains a closed copy of
Xf:+n—1 (e m.

These spaces are all homogeneous; furthermore, the eledxents of Ag are exactly

those spaces that have one of the properties Pa o
Suppose that o # ¢®; then there is a B € lw,0;) such that some A € o

is PB , but no Besdo is Pﬂ( for some ~ € [w,B8). Since sﬂo is closed

with respect to taking non-empty clopen subsets of its elements, A is nowhere
P for v € [w,B).

If B is a Limit, then Azx‘; if B>w, and if B =w, then Azxi

by lemma 2.1. So B = a+n for some limit a <o, axi some n €M, and A

is P nowhere Pa el If each non—empty clopen subset of A contains

at+n ’

g s
a closed copy of X§+n—1 , them AZx Xa+n and if some non-empty clopen

. ool
subset C of A contains no closed copy of X§+n_1, then C~Xa+n. In

both cases, A contains a non-empty clopen homogeneous subset, a clear
contradiction. Thus, oy = o.

To show that 941 = ¢, we use the results of van Engelen [1985]1. Note that
if Be€ 941 , and V is clopen in B and non-empty, them V € 941 since

dy = ®; thus, as in the proof of Theorem 2.4, it follows that if dy # o,
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then there exists A € «, such that AN [s] = A for each se2Y, and A

is meager or comeager, while moreover the w-degree a of A 1is minimal. By
van Engelen [1986], prcofs of Lemma 3.3 and 4.1, either I = [A] is reasonably
closed and T # I, or A contains a non-empby clopen subset of w-degree
strictly less than a; thus by minimality of a, [ 1is reasonably closed, and
A 1s everywhere properly I'. We then obtain a contradiction as in the proof
of Theorem 2.4. a

Using the axiom of choice i1t is possible to construct a non-trivial rigid
subset of 2 (see Kuratowski [19251).

2.6 Theorem. If V - I, then there exist a n% subset of 2° so that both

it and its camplement are rigid.

Proof. Define La to be point definable 1ff the Skolem-hull of (La,e) is
isomorphic to (La,e). Note that if La is point definable so is La o It

is well known that there are unboundedly many o ¢« w, such that La is point

1

definable (see Boolos and Putnam (1968) or Mansfield and Weitkamp (1985)). For

example, if (Lﬁ,e) is an elementary substructure of (Lw ,e), then for the
1

first a > § such that La E "6 1is countable"”, La is point definable, since

6 is definable in L ., as the first uncountable ordinal and an elementary

substructure X would have that & C X and hence would collapse to say L

which satisfied "6 is countable”. By the minimality of « we would have
a =A. Since L has bullt-in Skolem functions polnt definable L have the
property that there exists EC o x © recursive in 'Ih(La,e) such that
(w,BE) = (La,e). Since the first order theory of L = appears in say Lo
we hawve that for any point definable L there exists ECow x w, EE€ L.
ard (w,E) ~ (La,e).

3

Define X C 2° to be the set of all =x ¢ 2¥ such that there exists a limit
ordinal « such that L~ is point definable, thers exists EC o x o

recurgive in x such that (w,E) ~ (La,e), and x 1is the first element of

()

2 constructed not in La and satisfying these two conditions for «. X is
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1

my since x € X 1ff there exist a model M hyperarithmetic in x such that

Mx (L, .e) end ¥ [F'xeX' (l.e. the definition above). Let cc2’ be

the set of accumilation points of X, i.e. x € C 1iff every open neighborhood
of x contains uncountably many points of X. Clearly C is homeomorphic to

2. Wo show that XN C snd C\X are rigid. For x€ X write x=x if

X is in X because of «a.
Iavrentiev’'s Theorem lmplies that for any homeomorphism h:A - B with

A,BC 2¥ arbitrary there exists a homeomorphism k:G -» H of Hg sets G and

H with G2 A, H2B, and kM A=h (see Ruratowski (1966) p. 429). Note

that 1f k is & continuous functicn with ng domain coded in L for some

limit o and x € dam(k) N La , then Xk(x) € La . This is true since k(x)

is recursive in x and a code for k. Now suppose for contradiction that
n:XNC->XNC is a nontrivial autohomeomorphism and k it's extension
above. -

Since every point of XN C is an accumulation point of X N C there are
uncountably many x € XN C such that k(xX) # x. Since V =L there exists
v <oy with kX LHG all coded in L . Hence there exists a.§ point

definable with v ¢ a « f and either k(x) = x; or K (x) = X, . But then
XB € Lﬁ , contradiction. Now let us show that C\X is rigid. Suppose for

contradiction £:C\X -» C\X is a nontrivial homeomorphism and k:G - H a

homeamorphism extending £ with GHC C 10

2 sets.

Note that for x€ GN X k(x) € X and for x€ EN X, k “(x) € X. Hence
it is enough to see that there are uncountably many x € XN G such that
k(x) #x. But k 1is nontrivial so for some u€ G, k(u) =v and u g v.
Choose n < o S0 that k(luwnl NG) C [vinl N H anxd urn £ vin where
[wnl = {x € 2¥|xn = wn}. So it is enough to see that [wnl NGN X is
uncountable. But if it were countable, then XN CN [urn] would be a Borel
set so XN € would not be rigid. . D

In Theorem 2.6 we could have in fact found a lightface Hi
? set C.) One way to do

set X. (The

boldface parameter only coming in because of the @

1t is to demand that if « = w2~B + wen 1is point definable, then X, is in

the n'> clopen subset of 2°. This ensures that every point of 2° is an

accumulation point of X.
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Zero dimensionality is important in Theorem 2.5 because of the results of
de Groot and Wille (1988) who show that there is a nontrivial compact subset of
the plane which is rigid. There caennot be a nontrivial Borel rigid subset of
the real line, since such a set cannot contain an interval, hence must he zero
dimensional and so embeddable into 2°.

Call a set BC R, where R is the real line with its usual order, order
rigid 1ff the identity is the only bijection £-B - B which preserves the
order on B inherited fram R. Note that the positive integers are order
rigid. Now we describe an uncountable order rigid Borel set. Here is its
order type. Let the rationals @ be listed {qn :n < ¢}. Replace the nt8
rational with the n element linear order I,. ILet X = ®R\®@) UnijLn with
the obvious order. X. is order rigid since for all =n, Ln must be mapped to

itself. It is not hard t0 see that X has the same order type as a closed
subset of R. (Inductively choose I’h of size n so that for every m ¢« n,

max(Lm) < mi.n(Ln) if q ¢ 9 and me.x(Ln) < min(Lm) if q, < 9 .) However

we can ask:

Question. Does there exist an order rigid Borel set B C R without isolated
points?

3. Better quasiorder theory.

A quasi order is s transitive, reflexive but not necessarily antisymmetric
binary relation <. We define x=y tomean x<{y and y <(x. If we mod
out by = then we get a partlal order. Hence Wadge reducidbility < (and
most other reducibilities) are natural examples of quasiorders. A well
quasiorder (WQO) 1is a quasiorder which has no infinite descending chains or
infinite antichains (where antichain here means pairwise incomparsble set). It
is easy to see using Remsey’'s Theorem that a quasiorder (Q,<) is a well
quasiorder 1ff for any sequence (a.n:n <w) from Q there exists n « m with

a, < &y - Martin’'s Theorem that the Wedge degrees of Borel sets are well
founded implies that gw 1s a well-quasiorder when restricted to the Borel

sets. Better quasiorders were introduced by Nash-Williams (1968). It is a
stronger condition than well—-quasi-ordering. Here we will use the definition
of better—quasiorder fram Simpson (1986). Iet [w]® be the set of all
infinite subsets of w with the inherited product topology

([0l c P(w) =2Y). For any set Q & Qarray isamap f : [XIY 5 Q where
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X € [0]Y, the range of f is countable, and for every q € Q, fﬁl(q) is
Borel. For any X € [0]° let X = X\{mn X}, i.e. all of X exoept its
least element. For (Q,<) & quasiorder a good Q-array is a @-arrvay
£ : (X1 > Q such that there exist Y € [X]® such that £(Y) < £(¥ ).

An array is bad iff it is not good. A quasiorder (Q,<) is
better—quasiordered (BQO) 1iff every Q-array is good. BQO implies WQO,
since if we are given (a.n:new) a sequence from Q, then just consider

the array f : [w]° » Q defined by f£(X) = Buin(x) -

Cne of the maln technical lemmas of BQO theory is the minimal bed array
leuma (sSee Simpson (1985) 9.17).

We pause to give a short simple proof of it. If (Q,<) is a quasiorder,
then a partial ranking of @ 1% a well founded partial ordering < of Q
such that q < p implies q < p. A minimal bed array is a bed array
£ : [X]Y > Q such that every array g : [Y]Y »Q, with Y e [XIY and for all
z e [YIY g@) < £(2), 1is good.

3.1 Theorem. Suppose (Q,<) is a quasiorder and ¢ & partisl ranking.
Let fo:[xo]“’—»Q be & bad array. Then there exists a minimal bed array

£:02°>Q with Xe [X)° amd £(2) ¢ £4(2) forall 2ze (R

Proof.

3.1.1 Lemma. Suppose X € [0]® for a <o and forall a < B <o

1 1’
X‘3 g*Xa (inclusion mod finite, i.e. XB\Xa finite). Then there exists 2 €

[0l amd 3T € [wll‘“ such that ZCN X .
a€l

[N
n n 1
Proof. Construct F, € [“’1] , 8, € [w]”, and A € [m1] S0 that
anle, sngsn+1, and AngAml; ard for every aanUAn, sng
X, . Given s ,F , and A; let Fn+l=FnU{a} for any a € A, let

Q=(a2r«' Xa)\sn, and let maeqnxa for each a €A . Then there
n+l

[A)
exists m and An+1€[Ab]1 such that for all a € A,,, m =m So let

a
s = s, U {m}. To finish the proof let Z-=Us, aod -UF . a]

n<w D<w

n+l
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We can also give a metamathematical proof of the lemma. First assume

X
MA + 1CH. Then there exist %€ [¢]” such that for all a <o, , 2C X .
Suppose Z\na C Xa . Then for infinitely many «, n =m1n, s0 Z\n works.
But now for some B a c¢.c.c. complete boolean algebra, and some & < @y

VB Er gz e [0l 33 € (61° Vaes 2zcC X"

But this is a E} sentence, so 1t must be true in V.

3.1.2 Larma. Suppose there is no minimal bad array beneath £ Then

0 -

there exists en «, sequence of bed arrays (f :a < wp) with £ [Xa]“’-a
* W

Q and for every a < f < xﬁg X, C X, and for all Ze[XanXﬁ],

fB(Z) < fa(Z) .

Proof. We construct the fa by induction on «. For successor steps a+l
since f 1snota.nd_n:lmalbadarra.y(si_noexgxo) we can choose f
o a a+l
with X ., € [Xa]“J as required. Now suppose 6 < w; 1s a limit ordinal and
we have already got (fa ta <« 6. First note that for any 2 € [w]®
then '

{o <61 2CX} is finite. Otherwise if ZC X where o < « R
a oy n n+l

£,(2) 5 £ (2) 5 +++ 3 £ (2) > -+ is en infinite descending Sequence
6] 1 ' n

contradicting the well-foundedness of g*. let X € [w]® be such that
x
XcC Xa for every a<5a.ndxgxo. This 1s easy to get because 6 is

countable. Define g : (X1 >Q by g(@) - £,(2) vhere a - max(B:Z C Xj}.

CLAIM. ¢ 4is an array.

Proof. Clearly the range of ¢ is countable. For any g€ Q, 2 € g"l(q)
iff

<6 [zgxa/\zef;l(q)/\vg (@< p 52X

]

CLATM. ¢ is bad.
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Proof. Suppose g(2) < g(Z) exd g(2) = £ (2) ad g2 ) = fB(Z*).
Since Z C %, 1t must be that a < f, and henoe £ (2 ) fB(Z*). But then

£ (2) ¢ £(2) contradicting the badness of £ . o

Now apply the successor step argument to g and get £, : [X 1Y 5 Q bad

55 %
vith £,(2) < g(@ 1l Ze [X]1. Note that for all Ze [Xn X 1°
* W *
g(z) = fa(Z) or g(Z) « fa(Z)’ so for all 2 € [X5 n Xa] fé(Z) < fa(z).

This finishes the proof of Lemma 3.1.2. o

The lemmas lmmediately imply the theorem, because if 2 C X, for
n

x
ay <ap ;<o , then <fan(Z) :n€w 1s an infinite ¢« descending chain.

a
*
Suppose (Q,<) is a quasiorder. Let Q = {& : " > Q|¢ is Borel} where
¢ 1is Borel means that the range of ¢ 1is countable and for all q € Q,
¢7@ 1is Borel. Define ¢ < 2, 1ff there exists a contimious map
o+’ >0’ such that for all x € o’ 2;(x) ¢ £,(0@@).

3.2 Theorem. If (Q,<) is BQO, then (Q ,< ) 1is BQO.

Proof. Given 1.8, € Q* consider the game G(el,ez) where player I

writes down x € " and player IT writes down y € o in alternating moves as

in the Lipschitz game. Player II wins the run of the game (x,y) iff
£,(x) < 2,(y). Since this is a Borel game one of the two players has a winning

*
strategy. Now suppose for contradiction that @ is not BQO and let

* £ 3
ey 1 X € [0]*) be abad Q -array. So for any X we have that ¢ ¢ ¢ ,
X X

and so there is a winning strategy o for player I in the game G(¢ ,¢ ),
X X

ie. vue o’ 2 (c(w) £ e ,(w). Now we will produce a bed array
X X

£ [0]¥ > Q contradicting Q is BQO. Iet X e [w]® be arbitrary and let
*
X0=Xamixn+l=xn. For each n 1let anbetheaanonioa.lwinnj_ng

X;n’exiwl).

there are only countably many distinct ex S0 we only need countable many

strategy for player I in the game G(¢ (By canonical we mean that
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strategies for player I and which strategy we take for G(ex,eY) deperds only

on which of countably many Borel sets X is in and which one Y is in.)
Given such a set up we can construct the usual infinite game diagram.

70 91 %2
% X X X
0 1 2 3
%o % o) %
0 1 2 3
X el X X
= 5 4 5
0 1 2 3
3 X3 X3 Xz
© 2 P =

In this diagram xi € v and x‘j € o and they are determined as follows.
Fach x‘g) is o,'s first move in the game o(&, ,¢
J XX
J T+l
; th . Xj+l .
strategy o j s k move in this game given that player II has played ( 9 :

). And each xﬁ is the

2 < k). Hence the diagram is filled out row by row by transferring information
from right to left as indicated by the arrows. Finally we define f£(X) =

ex(xo) (wvhere X, - X). It is easy to see that the graph of f is Ei ,
i.e. f£(X) = q iff there exist a gane dlagram with X =X amd £, (2D = q.

%

But since f is total it is Borel, and hence a @Q-array. But note that the
*
game diagram for X 1is the same as the diagram for X minus the first
*
colunn. Hence f(X ) =¢ (xl) where x- 1is the second colum of the diagram

for X. But o(x) == and G, 1is a wioning strategy for player I so it is
not the case that BXO(XO) < exl(xl). So £ is a bad Q-array. i

This result generalizes Martin’s Theorem that the Wadge ordering is well
founded, let Q = {0,1} where O and 1 are incomparable. If we let Q@ be
a well ordering, then we can think of this result as generalizing part of the
first periodicity theorem. The reducibility map could have been taken tc be
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Lipschitz since this is what the game gives us. Also under AD we can drop
the assumption that our labelings are Borel.
Carlson and Laver in unpublished work have considered the following

quasiorder. et ~; and %, be two Borel equivalence relations on W

Define < %, 1iff there exits a contimuous function f:10® 5 ¥ such that

~1
for all x,y€ o’ x R,y iff £(x) Ry f(y). Laver has proved that for any n
< w the set of Borel equivalence relations with n equivalence classes is
better—quasiordered by <. We arrived at 3.2 by generalizing the statement and
proof of this result. For any equivalence relation =~ with < n equivalence
classes let £:0 » n be any Borel map such that &(x) = e(y) iff =z~ y.
Give n the trivial quasiorder in which nothing is comparable to anything

*
elsg. Then ¢, < ¢, Iimplies (=

1 2 ¥ & Ry

Question Does < better—quasiorder all Borel equivalence relations?

Theorem 3.2 1s not true for well-quasiorders, since it is easy to see that
Q We0 implies @° is WQO and there ave Q WQO such that §° is not
WO (see Rado (1954) or Laver (1976)). ' ,

An ordering on Q more relevant to section 2 is to demand that the
reducibility be continucus and one-to-one. More precisely define £, <) £,

*
for 2,,8, € Q 1ff there exists a continuous one-to-one map o’ - o’ such

that for all x € o¥, el(x) < ez(o(x)). We are unable to show that the

complete analogue of Theorem 3.2 is true but we can verify a portion of it. We

* —
say that ¢ € Q is Zg iff for all g€ Q, el(q) “is Eg.

5.5 Theorem. Tf (Q,<) is BQO then the set of 302 in Q is BQ Iy

*

Proof. The theorem follows immediately from the next two lemmas.

5.5.1 Lemma. The set of I ¢ in @ is BQO by

I~

Proof. Here we use a result of Laver (1978) that labeled trees are BQO
under tree embedding. Define a one-to-cne map ociw © - o © 10 be a tree
embedding 1ff for all s,t€ o sCt e o(s) Colt), and
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olsnt) =o0(8)No(t) where sN %t 1s the largest common initial segment of
s and t. For (Q,¢) any quasiorder and let TQ = {e|e:w” > Q) and for

£y,65 € To, 2y < &, 1ff there exists a tree embedding 0w 56 such
that for every s € o ® el(s) < ez(o(s)). A special case of Laver’'s Theorem is
that if (Q,<) 1s B, then (TQ,S) is BQO. (Unlabeled versions of this

result were first proved by Nesh-Williems.) Now let 2:Y - Q bea Hg

element of Q*. Suppose the range of ¢ is {q;n:n < w}. Define ¢ € TQ as

follows: o(s) = q, vhere n 1is the least such that [s] N e’l(q,n) is

nonempty where [s] = {x<o”|sCx}. Note that since each e_l(q) is closed,

e(x) = g iff there are infinitely many n such that e(x|n) = q iff for
all but finitely many n &(x|n) = q. Consequently, for any .6, Hg
elements of @ if there exist a tree embedding o : o - o such that for
every s€ o 0,(s) < 2,(a(s)), then for every x € W

e, < 22( U o(x|n)). Therefore the map hi’ - «* defined by
nw

h(x) = U o(x|n) is clearly a continucus one-to-one map showing &

a
n<w 1

*
Sl 82.

3.3.2 Lamma,. Suppose for every BQO, (Q,<), the Hg elements of Q* are

*
elements of Q are BQO

B by <. Then for every BQO (Q.<) the 7;2+1

*

by <.

*
Proof. let 2i”>Q bea 30, element of Q. Foreach qeQ let

f_l(q) =U Xg where XE € IIS and {Xg:m € w} are palrwise disjoint. Define
mew ~

2 > @ x w) by E(x) = (é(x),m) where x € X?;(x)‘ Put the trivial

quasiorder on o, i.e. all elements are comparable. So Q x w 1s BQO,

hence the HS elements of (me)* are BQO. But ¢, gi ¢, dimplies ¢

*

$1

1

92. o

The proof of our next result is an easy modification of the Laver and
Nash-William Theorem (see Laver 1978) that BQO labeled trees are BQO under
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tree embeddability. Suppose (L,<;) is a scattered linear order, i.e. it

fails to contain an isomorphic copy of the rationals. A tree embedding
preserving the lexicographicel order is a one-to-one map o:LY » LY such
that for every s and t € LY sct implies o(s) Co(t) and o(s N
t) =o(s)No(t), end forevery n «w and s,t € LY if s|n=t|n and
s(n) <, t(n), then there exists m < » such that o(8)|m = o(£)|m and

o(8)(m) < o(t)(m). Given (Q,<) a quasiorder let f;BQ

*
¢, ¢ ¢, iff there exists o:LY 5 LY & tree embedding preserving the

= {e]e:L“ - Q) and

lexicographical order such that for sll s € LY ¢;(s) < 2,(a(s)).

3.4 Theorem. For any scattered linear order L and quasiorder (Q,<) if
Q is BQO, then &EQ is BQO.

Proof. The only additional ingrediemt to the theorem is lexicographical
order. The following witnessing lemma is all that is needed. Iet (Q,¢{) be a
quasiorder and define Sca.tQ = {¢|e:L » Q,L. is a scattered linear order}.

Define &) & e

that el(a) < ez(h(a)) for all a € Ll .

2 1ff there exlsts an order preserving map h::r_._L - 1'2 such

3.4.1 Iamma. Suppose (Q,<) is any quasiorder and (eg:X € Ll is a bad
ScatQ—arra.y. Then there exists Y € [w]® and ay € Ly for Xe€ [Y1Y. such

that (ep(a):X € [Y]) is a bad Q-arrey.

The proof of this Lemma for ordinals instead of scattered types can be found
in Simpson (1985) Theorem 9.19. We need the Hausdorff characterization of
scattered types. Let SO be the class of one point orders and for any ordinal

p >0, let Sp be the class of linear ordered sets L which are isamorphic
to either a well ordered sum

L0+I_.l+...+LB+... B «<a)

or a converse well ordered sum

'+LB+"'+LJ.+LO » B < a
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where each Lﬁ belongs to U{Sq:w < p}. The rank of a scattered order is the

least « such that it is in Sa. We give Scat. the partial ranking &, < £

q 1
1ff Ly €L, , rank(l)) « rank(Ly), and & = £,|L;. Now let (epiX € (Y1)

2

be a minimal bed array with €'y < &y 8ll X € [Y]°. By the Galvin-Prikry
Theorem (1973) we may essume that either for all X € [¥1° ramk(Ly) =0 or
for a1l X € [Y]Y rank(Ly) > 0. It is enough now to get a contradiction from
the latter. Again by appling the Galvin-Prikry Theorem, we may assume each Lx
1s either well-ordered sum of sets of smaller rank or it is always é. conversely
ordered sum of sets of smaller rank. So suppose the former and each

LJI{=L§+I%+”‘+I§+'” (B<ax)
vhere each Iy has strictly smaller rank. But now by applying the witness
lemma for ordinal sequences to (((Ig,e}'{r Lg) PP cap 1 XE€ [Y1¥y there
exists 2 € [Y]¥ and Py < ay for each X e [2]° such that

B
X .. . [3)
(L0 X e [21%)
1s a bed Soaty array. This contradicts the minimality of
I . (A)
(bg 1 X € [¥1™ . o

The rest of the proof of the theorem is the same as Laver (1971) or Laver
(1978). The witness lemma is also true for labeled scattered trees, i.e. trees
which fail to comtain 2°“. It seems an interesting technical question whether
or not the witness lemma is true for labeled countable orders or for labeled
2“ trees. Next we give two applications of Theorem 3.4.

Given a quasiorder (Q,<) 1let LII.NQ = {(1,£) : L is a countable linear

*

order and ¢:L - Q} and define (L.L’el) < (Lz,ez) 1ff there exists oLy =
L2 one-to-one, order preserving, continuous, and for all a € L,
el(a) < ez(o(a.)). Only the condition that o be continucus is new, otherwise

the following result is already known to Laver (1971).
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3.5 Theorem. If (Q,<) 1s BQO, then (LmQ,g*) is BQO.

Proof. Since every counteble linear order embeds into Q@ as a closed set
(so order topology is the seme as subspace topology) we may as well assume
* *
IJ‘NQ=(e|e:Q—>Q}. Iet L=w+w where o 1s the converse of « and
consider ¢o. Dofine s<"t for s, €L“ by s < t iff elther there
exists n such that s|n =t|n and s(n) ¢, 8@ or (s = tln axd

t(n) € mt) or (¢t =s8|n and s(n) € w). So for any s € L'“ we have s™(n
x
<*s<*s‘<m) forany n€ow and m€ w . Hence

@<~ @9 .

CIAIM. Suppose o:L“ 5 LY is a tree embedding which preserves the
*
lexicographical order. Then o is { order preserving and continuous in the
*
< order topology.

Proof. If s,t € LY are C incomparable it is clear that
x
s ¢t -0(s) ¢ o(t). But note that since

o(s™(x) N o(8™y) =o(s) ,

and o 1is lexicographical order preserving, it must be that x € v implies
o(s™(x)) & o(s) amd y€ o implies o(s) * o(s™(y)). Continuity is easy
to check sinoe the intervaels (s™(n),s™(m)) for n€w and m€ o forma
neighborhood basis for s. ' 8]

But now our result follows lmmediately from Theorem 3.4. ]

let (Q.,<) Ybe any quasiorder and define Dg= {¢:R - Q| range of ¢ is

countable and for every q € Q, e—l(q) is Eg}. For &q.8, € Dg define &,
< 2 i1ff there exists a one-to-one order preserving map o:R - R such that
o 1is continuous at every irrational number and for every a € R el(a.) <

¢,(0(a)), and for every a € R, & is rational iff o(a) is rational.

3.6 Theorem. If (Q.<) is BQO then so is (Dg,g).
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Proof. Iet L =o +o =2. Embed L into @ so as to preserve the

lexicographical order, i.8. s ‘lext iff s § t or there exists n s|n =

tln and s(n) < t(n). Let t:LY 5@ be an order preserving bijection so
that say the distance from t(s (m)) and t(s (n+l)) is less than 1/k for
all s € IX. Gilven a tree embedding o:L“ > LY which preserves the

lextcographical order define o :R » R by
o' (x) = suplt(o(r)) : t(r) < x)

CLATM. o* is one-to-ome, order preserving, continuocus except possibly on
Q, andmaps @ to @ and R\@ to R\Q.

Proof. The embedding t shows that (R,<) is isomorphic to (zg“’,glex)

with @ being mapped to 2‘“. Everything is easy to check except continuity
on 2°. But clearly from tres embedding we get continuity for the product
topology (where Z has the discrete topology). So we need only see that the
product topology on 7’ 1s the same as the lex-order topolegy. This means
that for every x € e X, - %, 1inlex order iff x - X; in product

topology. This is essy. o

Using 3.4 we have that the Q labeled 2‘“ trees are BQO under tree
embeddings which preserve lex order and so by the samé argument as Lemma 3.3.1

wo have that D) (the 10 elements of US) is BQO. Also by the same

argunent as Lemma 3.3.2 we have that Dg is BQO. o

It is easy to see we cannot demand that o be continuous at every point.
¥e would conjecture that 3.6 1s true for the set of all Borel maps ¢:R - Q.
Another conjecture we have is a Borel verslon of Fraisse’s conjecture. ILet
BORLIN be the set of all (I,¢{) such that LCR isBoreland (CR xR is
a Borel linear order. Define (Ll,gl) < (1.2,§2) iff there exists o:L; - L,

which is one-to-one and order preserving, 1.e. for all x,y € L,
XLy o(x) <5 o(y). We conjecture that (BORLIN, <) is BQO. We can get
other versions by demanding that o be continuous or by locking at Borel
lakelings.

Laver (1978) shows that counteble trees whose initial segments are well
ordered is BQO under tree embedding. Is the set of all countable partially
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ordered sets (T, <) which are tree-like (i.e. for every s € T {t|t < s} is
linearly ordered) BQO under tree embedding?
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