Remark 3.4 A Dedekind Finite Borel Set

Arnold W. Miller August 2012

Asaf Karagila pointed out that Remark 3.4 in my paper, A Dedekind finite Borel set [5], directly contradicts Theorem 3.3 (c) in Does GCH imply AC locally? by A. Kanamori and D. Pincus [3]. Neither of the papers provides a proof.¹ Here we give a proof of Remark 3.4 [5].

The Feferman-Levy model \mathcal{N} is described in Cohen [1] p.143, Jech [2] p.142, and in the on-line only appendix to Miller [4]. We use the notation from [4]. $\mathbb{C}ol$ is the Levy collapse of \aleph_{ω} , $\mathbb{C}ol_n$ the collapse of \aleph_k for k < n, $G_n = \mathbb{C}ol_n \cap G$ where $G \mathbb{C}ol$ -generic over M. The model \mathcal{N} is the symmetry model $M \subseteq \mathcal{N} \subseteq M[G]$ determined by the group \mathcal{H} of automorphism of $\mathbb{C}ol$ which finitely permute finitely many of the collapsing maps domains and the filter of subgroups generated by $(H_n : n < \omega)$ where

$$H_n = \{ \rho \in \mathcal{H} : \forall p \in \mathbb{C}ol_n \ \rho(p) = p \}.$$

Definition 1 Let $\langle , \rangle : \omega \times \omega \to \omega$ be a fixed bijection, i.e., a pairing function. For each $n \in \omega$ define the map $\pi_n : 2^{\omega} \to 2^{\omega}$ by:

$$\pi_n(x) = y \text{ iff } \forall m \in \omega \ y(m) = x(\langle n, m \rangle).$$

Definition 2 In the Feferman-Levy model \mathcal{N} , take $F_n = M[G_n] \cap 2^{\omega}$. Define

$$B = \{ x \in 2^{\omega} : \forall n \ \pi_n(x) \in F_{n+1} \setminus F_n \ or \ [\pi_n(x) \in F_n \ and \ \pi_n(x) = \pi_{n+1}(x)] \}.$$

The set B is uncountable because there is a map h from B onto 2^{ω} . Define h by $h(x) = \pi_n(x)$ iff $\pi_n(x) = \pi_m(x)$ for all m > n. Such an n must exist because for any x there exists n such that $x \in F_n$ and hence $\pi_m(x) \in F_n$ for all m. It is easy to check that h maps B onto 2^{ω} .

Proposition 3 In the Feferman-Levy model \mathcal{N} the set B has the property that there is no one-to-one map taking 2^{ω} into B.

¹Aki Kanomori tells me that Theorem 3.3 (c) was incorrectly stated. Instead of \mathcal{N} it should be the Solovay-type inner model $\mathcal{N}_0 \subseteq \mathcal{N}$. This is the model $HOD(^{\omega}ON)$ of \mathcal{N} . See page 155 of **Consequences of the Axiom of Choice** by Rubin and Howard who call \mathcal{N}_0 Truss's model.

A. Miller

Proof

Suppose for contradiction that there is in \mathcal{N} a one-to-one map $f: 2^{\omega} \to B$. Define

$$C_n = \{ x \in B : \forall m > n \ \pi_m(x) = \pi_n(x) \}$$

and note that $B = \bigcup_n C_n$ and each C_n is countable.

Let

$$p \Vdash \stackrel{\circ}{f}: 2^{\omega} \to \stackrel{\circ}{B}$$
 is one-to-one

and suppose that $p \in \mathbb{C}ol_n$ and H_n (the subgroup of \mathcal{H} which is the identity on $\mathbb{C}ol_n$) fixes f. Since C_n is countable and f is one-to-one, we may choose N >> n and $q \leq p$ such that

$$q \Vdash f^{-1}(\overset{\circ}{C}_n) \subseteq \overset{\circ}{F}_N$$

Now let x_N° be a canonical name for a real which codes the generic collapse of \aleph_N . The important property it has is that $x_N \in F_{N+1} \setminus F_N$ and its values are completely determined by N^{th} coordinate of the generic filter and not any earlier ones, e.g., the $\leq n$ coordinates. Take $r \leq q$ such that

$$r \Vdash \overset{\circ}{f}(\overset{\circ}{x}_N) = \overset{\circ}{y}, \pi_n(\overset{\circ}{y}) = \tau, \text{ and } \tau \in \overset{\circ}{F}_{n+1} \setminus \overset{\circ}{F}_n$$

where τ is a $\mathbb{C}ol_{n+1}$ -name for an element of 2^{ω} . For $G \mathbb{C}ol$ -generic over M and containing r note that $\tau^{G_{n+1}} \in M[G_{n+1}] \setminus M[G_n]$. So we can find k and $r_0, r_1 \leq r$ such that

- r_0 and r_1 are the same on every coordinate except n,
- $r_0 \Vdash \tau(k) = 0$, and
- $r_1 \Vdash \tau(k) = 1.$

Now let $\rho \in \mathcal{H}$ be an automorphism of $\mathbb{C}ol$ which fixes every coordinate except n and makes $\rho(r_0)$ and r_1 compatible. To do this move the domain of $r_0 \upharpoonright (\{n\} \times \omega)$ disjoint from the domain of r_1 . Since $\rho \in H_n$ it fixes \mathring{f} , i.e., $\rho(\mathring{f}) = \mathring{f}$. Since ρ fixes the N^{th} coordinate $\rho(\mathring{x}_N) = \mathring{x}_N$. But this means that

$$\rho(r_0) \Vdash \pi_n(\mathring{f}(\mathring{x}_N))(k) = 0$$

and

$$r_1 \Vdash \pi_n(\stackrel{\circ}{f}(\stackrel{\circ}{x}_N))(k) = 1$$

which contradicts that $\rho(r_0)$ and r_1 are compatible. QED

References

- Cohen, Paul J.; Set theory and the continuum hypothesis. W. A. Benjamin, Inc., New York-Amsterdam 1966 vi+154 pp.
- [2] Jech, Thomas J.; The axiom of choice. Studies in Logic and the Foundations of Mathematics, Vol. 75. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. xi+202 pp.
- [3] Kanamori, A.; Pincus, D.; Does GCH imply AC locally?, Paul Erdos and his mathematics, II (Budapest, 1999), 413-426, Bolyai Soc. Math. Stud., 11, Jnos Bolyai Math. Soc., Budapest, 2002.

http://math.bu.edu/people/aki/7.pdf

 [4] Miller, Arnold W.; Long Borel hierarchies, Math Logic Quarterly, 54(2008), 301-316.

http://www.math.wisc.edu/~miller/res/longbor.pdf

 [5] Miller, Arnold W.; A Dedekind Finite Borel Set, Arch. Math. Logic 50 (2011), no. 1-2, 1–17. http://www.math.wisc.edu/~miller/res/ded.pdf

Arnold W. Miller miller@math.wisc.edu http://www.math.wisc.edu/~miller University of Wisconsin-Madison Department of Mathematics, Van Vleck Hall 480 Lincoln Drive Madison, Wisconsin 53706-1388