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Abstract: For X a separable metric space define p(X) to be the
smallest cardinality of a subset Z of X which is not a relative γ-
set in X, i.e., there exists an ω-cover of X with no γ-subcover of
Z. We give a characterization of p(2ω) and p(ωω) in terms of de-
finable free filters on ω which is related to the pseudo-intersection
number p. We show that for every uncountable standard analytic
space X that either p(X) = p(2ω) or p(X) = p(ωω). We show
that the following statements are each relatively consistent with
ZFC: (a) p = p(ωω) < p(2ω) and (b) p < p(ωω) = p(2ω)

First we remind the reader of the definition of a γ-set. An open cover U
of a topological space X is an ω-cover iff for every finite F ⊆ X there exists
U ∈ U with F ⊆ U . The space X is a γ-set iff for every ω-cover U of X
there exists a sequence (Un ∈ U : n < ω) such that for every x ∈ X for all
but finitely many n we have x ∈ Un, equivalently

X =
⋃

m<ω

⋂
n>m

Un or ∀x ∈ X ∀∞n ∈ ω x ∈ Un.

We refer to the sequence (Un : n < ω) as a γ-cover of X, although techni-
cally we are supposed to assume that the Un are distinct. In this paper all
our spaces are separable metric spaces, so we may assume that all ω-covers
are countable. This is because we can replace an arbitrary ω-cover with a
refinement consisting of finite unions of basic open sets.

The γ-sets were first considered by Gerlits and Nagy [5]. One of the
things that they showed was the following. The pseudo-intersection number
p is defined as follows:

p = min{|F| : F ⊆ [ω]ω has the FIP and ¬∃X ∈ [ω]ω ∀Y ∈ F X ⊆∗ Y }
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where FIP stands for the finite intersection property, i.e., every finite subset
of F has infinite intersection, and ⊆∗ denotes inclusion mod finite. The set
X in this definition is called the pseudo-intersection of the family F .

Gerlits and Nagy [5] showed that every γ-set has strong measure zero (in
fact, the Rothberger property C ′′) and that Martin’s Axiom implies every
set of reals of size smaller than the continuum is a γ-set. Their arguments
show that

p = non(γ-set ) =def min{|X| : X is not a γ-set }

where we only consider separable metric spaces X.
The property of being a γ-set is not hereditary. In fact, a γ-set X of size

continuum is constructed in Galvin and Miller [4] using MA, which has the
property that there exists a countable F ⊆ X such that X \F is not a γ-set.
However, any closed subspace of a γ-set is a γ-set.

Babinkostova, Guido and Kocinac [1] have defined the notion of a relative
γ-set. This is also studied in Babinkostova, Kocinac, and Scheepers [2]. For
X ⊆ Y define X to be a γ-set relative to Y iff for every open ω-cover U of
Y there exists a sequence (Un ∈ U : n < ω) such that

X ⊆
⋃

m<ω

⋂
n>m

Un.

Note that if Z ⊆ X ⊆ Y and X is a relative γ-set in Y , then Z is also.
Define the following cardinal number:

p(Y ) = min{|X| : X ⊆ Y is not a γ-set relative to Y }.

Perhaps it should be written non(γ relative to Y ).
In Just, Scheepers, Szeptycki, and Miller [8] many cardinal characteris-

tics for covering properties are shown to be equal to well-known cardinals.
Scheepers has noted that the cardinal numbers of the relativized version of
the Rothberger property C ′′ work out to be either cov(meager) (the cardi-
nality of the smallest cover of the real line with meager sets) or non(SMZ)
(the cardinality of the smallest non strong measure zero set of reals).

Scheepers has raised the question of what we can say about the relativized
versions for the γ-property. We begin with the easy

Proposition 1 p ≤ p(ωω) ≤ p(2ω) ≤ c
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Proof
If X is a γ-set, then it is a γ-set relative to any superspace. Let |X| = p(ωω)
be a subset of ωω which is not a relative γ-set. Then X is not a γ-set relative
to itself, and hence p ≤ |X| = p(ωω).

For the second inequality, suppose X ⊆ 2ω is not a γ-set relative to 2ω

with |X| = p(2ω). Let U be an ω-cover of 2ω witnessing that X is not a
relative γ-set in 2ω. Then

{U ∪ (ωω \ 2ω) : U ∈ U}

is an ω-cover of ωω witnessing that X is not a γ-set relative to ωω, and so
p(ωω) ≤ |X| = p(2ω).
QED

We give another characterization of p(ωω) and p(2ω). A filter is free iff it
contains the cofinite sets. For F ⊆ P (ω) a free filter on ω, define

pF = min{|X| : X ⊆ F and ¬∃a ∈ [ω]ω ∀b ∈ X a ⊆∗ b}.

Note that p is the minimum of pF for F ⊆ P (ω) a free filter, since every family
with the FIP generates a filter. We have the following characterizations:

Theorem 2 (a) p(ωω) is the minimum of pF such that F ⊆ P (ω) is a Σ1
1

free filter.
(b) p(2ω) is the minimum of pF such that F ⊆ P (ω) is a Σ0

2 free filter.

Proof
Suppose X ⊆ ωω with |X| = p(ωω) and U is an open ω-cover of ωω

witnessing that X is not a relative γ-set. Without loss of generality we may
assume that U is a countable family of clopen sets, say U = {Un : n ∈ ω}.
Let f : ωω → P (ω) be the Marczewski [12] characteristic function of sequence

f(x) = {n : x ∈ Un}.

This is a continuous mapping so its image G = f(ωω) is Σ1
1. Since U was an

ω-cover the image G has the FIP and note that the filter F generated by a
Σ1

1 family G with the FIP is Σ1
1, i.e.,

X ∈ F iff ∃F ∈ [G]<ω ∩ F ⊆ X.

Now assume |X| < pF and hence |f(X)| < pF . Then there exists a ∈ [ω]ω

such that for each b ∈ X we have that a ⊆∗ f(b). It follows that (Un : n ∈ a)
is a γ-cover of X which is a contradiction. Hence p(ωω) = |X| ≥ pF and so
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p(ωω) ≥ min{pF : F is a Σ1
1 free filter }.

To see the other inequality, suppose F ⊆ P (ω) is a Σ1
1 filter and X ⊆ F

has no pseudo-intersection with |X| = pF . Let f : ωω → F be a continuous
onto map. For each n ∈ ω define Un = f−1({x ∈ F : n ∈ x}). Define
U = {Un : n ∈ ω}. Then U is an ω-cover of ωω. Choose Y ⊆ ωω with
f(Y ) = X and |Y | = |X|. If Y is relative γ in ωω, then there exists a ∈ [ω]ω

such that (Un : n ∈ a) is a γ-cover of Y . For each b ∈ X we have c ∈ Y
with f(c) = b. For each n if c ∈ Un, then f(c) ∈ f(Un) and so n ∈ b. It
follows that a ⊆∗ c for all c ∈ X. Since we are assuming that there is no
such a, we must have that Y is not a γ-set relative to ωω and therefore

p(ωω) ≤ |Y | = |X| = pF

and therefor
p(ωω) ≤ min{pF : F is a Σ1

1 free filter }.
The proof for p(2ω) is similar. To see that

p(2ω) ≥ min{pF : F is a Σ0
2 free filter }

choose X ⊆ 2ω with |X| = p(2ω) and U a countable clopen ω-cover of 2ω with
no γ-subcover of X. Let f : 2ω → P (ω) be defined by f(x) = {n : x ∈ Un}.
Then f is continuous and so its range is a compact set f(2ω) = C ⊆ P (ω)
which has the FIP. Note that the filter F generated by C is Σ0

2 in P (ω). To
see this note that for each n < ω the map h : Cn → P (ω) defined by

h(X1, . . . , Xn) = X1 ∩X2 ∩ · · · ∩Xn

is continuous and so its range Cn is compact. For each n let Dn be the
compact set

Dn = {(x, y) : x ∈ Cn and x ⊆ y}.
and let π(x, y) = y be the projection onto the second coordinate. Then

F = ∪n<ωπ(Dn)

and so F is Σ0
2.

Hence, if |X| < pF , then |f(X)| < pF and therefor there exists a ∈ [ω]ω

with a ⊆∗ f(x) for each x ∈ X and therefor x ∈ Un for all but finitely many
n ∈ a and (Un : n ∈ a) is a γ-cover of X, which is a contradiction.
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To see that

p(2ω) ≤ min{pF : F is a Σ0
2 free filter }

suppose that F is a Σ0
2 free filter in P (ω) and for contradiction pF < p(2ω).

First note that there exists a compact C ⊆ F such that for every x ∈ F
there exists a y ∈ C with x =∗ y. To see this, suppose that F = ∪n<ωCn.
For each n < ω let

C∗
n = {x ⊆ ω : n ⊆ x and ∃y ∈ Cn ∀i ≥ n(i ∈ y iff i ∈ x)}

then C = ∪n<ωC∗
n does the trick. Now suppose X is a subset of F with no

pseudo-intersection and |X| = pF < p(2ω). Choose a map f : 2ω → C which
is continuous and onto and select Y ⊆ 2ω with |Y | = |X| such that for each
x ∈ X there exists y ∈ Y with f(y) =∗ x. Let

Un = f−1({x ∈ C : n ∈ x}).

Then U = {Un : n < ω} is an ω-cover of 2ω and since Y is a relative γ-set
there exists a ∈ [ω]ω such that for every y ∈ Y we have that y ∈ Un for
all but finitely many n ∈ a. Hence for each x ∈ X there is y ∈ Y with
a ⊆∗ f(y) =∗ x which means that X does have a pseudo-intersection which
is contrary to what we assumed.
QED

For another paper studying the connection between γ-sets and free filters,
see LaFlamme and Scheepers [10].

Lemma 3 (a) Suppose that X is homeomorphic to a closed subspace of Y ,
then p(Y ) ≤ p(X).

(b) Suppose that f : X → Y is continuous and onto, then p(X) ≤ p(Y ).

Proof

(a) Suppose Z ⊆ X with |Z| = p(X) is not relatively γ in X and this is
witnessed by a family U of open sets of Y which is an ω-cover of X. Then

{U ∪ (Y \X) : U ∈ U}

is an ω-cover of Y which shows that Z is not relatively γ in Y . Hence
p(Y ) ≤ |Z| = p(X).
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(b) Suppose Z ⊆ Y with |Z| = p(Y ) is not relatively γ in Y and this is
witnessed by an ω-cover U . Choose W ⊆ X with |W | = |Z| and f(W ) = Z.
Let V = {f−1(U) : U ∈ U}. Since f is onto, V is an ω-cover of X. We claim
that there is no sequence (Un ∈ U : n < ω) such that (f−1(Un) : n < ω) is
a γ-cover of W . This is because x ∈ f−1(Un) implies f(x) ∈ Un and since
f(W ) = Z, then (Un : n < ω) would be a γ-cover of Z. It follows that
p(X) ≤ |W | = |Z| = p(Y ).
QED

Theorem 4 Suppose X is an uncountable Σ1
1 set in a Polish space, i.e., a

nontrivial standard analytic space, then
(a) if X is not σ-compact, then p(X) = p(ωω) and
(b) if X is σ-compact, then p(X) = p(2ω).

Proof
Every Σ1

1 set is the continuous image of ωω and every uncountable Σ1
1 set

contains a homeomorphic copy of 2ω. It follows from Lemma 3 that

p(ωω) ≤ p(X) ≤ p(2ω).

(a) If X is not σ-compact, then Hurewicz [6] (see Kechris [9] 21.18) proved
that there exists a closed subspace of X which is homeomorphic to ωω. Hence
by Lemma 3 we have p(X) ≤ p(ωω).

(b) Suppose X is σ-compact. We need to show that p(2ω) ≤ p(X). We first
consider the special case that X = ω × 2ω. Choose Y ⊆ ω × 2ω to be non
relatively γ in ω× 2ω with |Y | = p(ω× 2ω). Since ω× 2ω is zero dimensional
we can assume that there exists an ω-cover U = {Cn : n < ω} of clopen sets
in ω×2ω with no γ-subcover of Y . As in the proof of Theorem 2 we consider
f : ω × 2ω → P (ω) defined by

f(x) = {n < ω : x ∈ Cn}.

The function f is continuous since the Cn are clopen. The image

f(ω × 2ω) ⊆ P (ω)

is a σ-compact family of subsets of ω with the finite intersection property.
Hence f(ω × 2ω) generates a σ-compact filter F as in the proof of Theorem
2. Note that f(Y ) is a subset of F without a pseudo-intersection. Hence
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pF ≤ |f(Y )| ≤ |Y | = p(ω× 2ω) and so we have p(2ω) ≤ p(ω× 2ω) and hence
p(2ω) = p(ω × 2ω).

Now suppose that X is any σ-compact metric space. Note that there is a
continuous onto mapping f : ω × 2ω → X and so by Lemma 3 we have that

p(X) ≥ p(ω × 2ω) = p(2ω).

QED
The main result of this paper is the following theorem:

Theorem 5 The following statements are each relatively consistent with
ZFC:

(a) p = p(ωω) < p(2ω) and
(b) p < p(ωω) = p(2ω)

Proof

Part(a).
Given an ω-cover U of 2ω define the poset P(U) as follows:

1. p ∈ P(U) iff p = (F, (Un ∈ U : n < N)) where N < ω and F ∈ [2ω]<ω.

2. p ≤ q iff F p ⊇ F q, Np ≥ N q, Up
n = U q

n for each n < N q, and x ∈ Up
n for

each x ∈ F q and n with N q ≤ n < Np.

This poset is the obvious one for generically creating a γ-subcover of U
for the ground model elements of 2ω.

Lemma 6 The partial order P(U) is σ-centered. Furthermore, suppose G is
P(U)-generic over V . Define (Un : n < ω) by Un = Up

n for any p ∈ G with
Np > n. Then ∀x ∈ V ∩ 2ω ∀∞n x ∈ Un.

Proof
σ-centered is clear, since if (Np

n : n < Np) = (N q
n : n < N q) then the

condition (F p ∪ F q, (Np
n : n < Np)) extends both p and q. The fact that Un

is defined for every n < ω follows from U being an ω-cover and a density
argument, i.e., given any p with Np ≤ n extend it by adding Uk which cover
Fp. To see that (Un : n < ω) is a γ-cover of 2ω ∩ V let x ∈ 2ω be in the
ground model V . The set

D = {p ∈ P(U) : x ∈ Fp}
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is dense in P(U) and if x ∈ Fp for some p ∈ G then x ∈ Un for every n ≥ Np.
QED

The model for p = p(ωω) < p(2ω) is obtained by starting with a model of
GCH and doing a finite support iteration of P(Uα) for α < ω2 where at each
stage in the iteration

V [Gα] |= Uα is an ω-cover of 2ω

and where we have dove-tailed so as to ensure that for any U such that

V [Gω2 ] |= U is a countable ω-cover of 2ω

then for some α < ω2 we have that U = Uα. This dovetailing can be done
since there are only continuum many countable ω-covers of 2ω and the in-
termediate models satisfy the continuum hypothesis. In the model V [Gω2 ]
we have that p(2ω) = ω2, so we need only show that p(ωω) = ω1. As usual,
define Rothberger’s unbounded number:

b = min{|X| : X ⊆ ωω ∀g ∈ ωω ∃f ∈ X ∃∞n f(n) > g(n)}.

Lemma 7 p(ωω) ≤ b

Proof
Suppose X ⊆ ωω and |X| < p(ωω). We need to show that X is eventually
dominated. Without loss of generality we may assume that the elements of
X are increasing and X is infinite. For each n < ω let

Un = {Un
m : m < ω} where Un

m = {f ∈ ωω : f(n) < m}.

Each Un is an ω-cover of ωω. There is a standard trick due to Gerlits and
Nagy [5] for replacing a sequence of ω-covers by a single ω-cover. Let

{xn : n < ω} ⊆ X

be distinct and let

U = {U \ {xn} : n < ω, U ∈ Un}.

Then U is an ω-cover of ωω, since given any finite set F then xn /∈ F for
large enough n and so F ⊆ U \ {xn} for some U ∈ Un.
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Since X is a relative γ-set in ωω there exists a sequence from U which is
a γ-cover of X. Now since we threw out xn from each element Un at most
finitely many of the elements of this sequence can come from the same Un.
By taking an infinite subsequence we may assume that (Un

g(n) : n ∈ A) is a
γ-cover of X for some infinite A ⊆ ω. It follows that for every f ∈ X that

∀∞ n ∈ A f(n) < g(n).

Since the f ∈ X are increasing if we extend g to all of ω by letting g(m) =
g(n) where n ∈ A is minimal so that n ≥ m, then g eventually dominates
every f ∈ X on all of ω.

It follows that |X| < b. Since X was arbitrary we get that p(ωω) ≤ b.
QED

Our goal is to show that b = ω1 holds in this model. For the next two
lemmas we assume U is an ω-cover of 2ω and the forcing is P(U).

Lemma 8 Suppose we are given (Un ∈ U : n < N), k < ω, and a term τ
such that |`τ ∈ ω. Then there exists l < ω such that for every p ∈ P(U) with
|F p| ≤ k and (Un ∈ U : n < N) = (Up

n ∈ U : n < Np) there exists q ≤ p such
that q|`τ < l.

Proof
Call q ∈ P(U) good iff

1. N q ≥ N

2. Un = U q
n for all n < N , and

3. q decides τ , i.e. for some m, q|`τ = m.

For good q define:

U(q) = {(x1, . . . , xk) ∈ (2ω)k : ∀i (N ≤ i < Nq) → {x1, . . . , xk} ⊆ U q
i }.

Note that each U(q) is an open subset of (2ω)k. The family

{U(q) : q is good }

covers (2ω)k. This is because given any (x1, . . . , xk) there exists a condition
q ≤ ({x1, . . . , xk}, (Un : n < N)) which decides τ and therefor is good. By
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compactness there exist finitely many good q, say Γ, such that {U(q) : q ∈ Γ}
covers (2ω)k.

Since each good q decides τ and Γ is finite, we can find l so that for each
q ∈ Γ

q|`τ < l.

Note that for any p as in the Lemma, if F p ⊆ {x1, . . . , xk} where

(x1, . . . , xk) ∈ U(q),

then q and p are compatible since (F p ∪ F q, (N q
n : n < N q)) extends both of

them.
QED

It is not hard to see from this lemma that our forcing does not add a
dominating sequence. In order to prove the full result we need to show
this for the iteration. To do this we prove the following stronger, but more
technical, property (see Bartoszynski and Judah [3] definition 6.4.4).

Lemma 9 The poset P(U) is really vbounded-good, i.e., for every name τ for
an element of ωω there exists g ∈ ωω such that for any x ∈ ωω if there exists
p ∈ P(U) such that p|`“ ∀∞n x(n) < τ(n)”, then ∀∞n x(n) < g(n).

Proof
Let kn, (U

n
m : m < Nn) for n < ω list with infinitely many repetitions all

pairs of k < ω and finite sequences from U . Using Lemma 8 repeatedly we
can construct g ∈ ωω such that for every l < ω:
for any n < l and p ∈ P(U) with

|F p| ≤ kn and (Un
m : m < Nn) = (Up

m : m < Np)

there exists q ≤ p such that q|`τ(l) < g(l).
Now suppose p|`∀∞n x(n) < τ(n). By extending p (if necessary) we may

assume there exists n0 such that p|`∀n > n0 x(n) < τ(n). By making n0

larger (if necessary) we may assume that

|F p| = kn0 and (Un0
m : m < Nn0) = (Up

m : m < Np).

Claim ∀n > n0 x(n) < g(n).
Proof
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Suppose not and x(l) ≥ g(l) for some l > n0. By our construction of g we
have that there exists q ≤ p such that q|`τ(l) < g(l). But this means that
q|`τ(l) < x(l) which contradicts the fact that p|`∀n > n0τ(n) > x(n). This
proves the Claim and the Lemma.
QED

It follows (see Bartoszynski and Judah [3] Theorem 6.5.4) that the finite
support iteration using P(Uα) at stage α does not add a dominating real and
so over a ground model which satisfies CH we have that V [Gω2 ] satisfies that
b = ω1 and hence p(ωω) = ω1 by Lemma 7. This proves Theorem 5 part (a),
the consistency of p = p(ωω) < p(2ω).

Part (b) (the consistency of p < p(ωω) = p(2ω)) is simpler. It is well
known that p > ω1 implies that 2ω1 = 2ω. For example, see Rothberger [14].
Now starting with a ground model V which satisfies 2ω = ω2 and 2ω1 = ω3,
do a finite support iteration using P(Uα) at stage α < ω2 where Uα is an
ω-cover of V [Gα] ∩ ωω. Dovetail so that Uα for α < ω2 lists all countable
ω-covers of ωω in the final model V [Gω2 ]. This can be done since in all these
models the continuum is ω2. The analogue of Lemma 6 holds for ωω in place
of 2ω so in the final model we have that p(ωω) = ω2. Also we get p = ω1

since 2ω1 = ω3 > ω2 = 2ω. This finishes the proof of Theorem 5.
QED

One obvious question is

Question 10 Is it consistent to have p < p(ωω) < p(2ω)?

Question 11 (Scheepers) Are either p(ωω) or p(2ω) the same as some other
well-known small cardinal? See Vaughan [16] for a plethora of such cardinals.

In Laver’s model [11] for the Borel conjecture, we have that b = d = ω2

and p(2ω) = p(ωω) = ω1. In Laver’s model there is a set of reals of size ω1

which does not have measure zero, i.e., non(measure)=ω1, Judah and Shelah
[7], see also Bartoszynski and Judah [3] or Pawlikowski [13]. But it is easy
to see that p(2ω) ≤ non(measure), i.e., if X ⊆ 2ω and |X| < p(2ω) then X
has measure zero. Let {xn : n < ω} ⊆ X be distinct and look at

U = {C ⊆ 2ω : ∃n xn /∈ C is clopen and µ(C) <
1

2n
}.

This is an ω-cover of 2ω and so there exists a sequence Cn ∈ U with X ⊆
∪n ∩m>n Cm. For any n at most finitely many Cn have measure > 1

2n which
shows that X has measure zero.
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It is also true that p(2ω) ≤ non(SMZ), i.e., if |X| < p(2ω) then X has
strong measure zero. The result of Gerlits and Nagy [5], that γ-sets have the
Rothberger property C ′′, relativizes to show that if X ⊆ 2ω and |X| < p(2ω),
then X has the relative Rothberger property and this implies that X has
strong measure zero.

Question 12 2 Suppose that Y = ∪n<ωXn is an increasing union where Y
is a separable metric space. If each Xn is relatively γ in Y , is Y a γ-set? If
not, suppose each Xn is a γ-set, then is Y a γ-set?

Tsaban [15] Lemma 22 shows that the answer to this question in the Borel
cover case is yes. It is also connected to the existence of a group which is a
γ-set, [15] Theorem 20.
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The appendix is not intended for final publication but for the electronic
version only.

Appendix
Scheepers Remarks

Def. X ⊆ Y is C ′′ (Rothberger) in Y iff for every sequence (Un : n < ω) of
open covers of Y there exists a cover (Un ∈ Un : n < ω) of X.

Prop.
(a) non(C ′′ in ωω)=non(C ′′)=cov(meager)= non(SMZ in ωω)
(b) non(C ′′ in 2ω) = non(SMZ in 2ω)= non(SMZ in R)

Proof
Here we mean strong measure zero in the usual metric on the reals and for

ωω or 2ω the metric d(x, y) = 1
n+1

where n is minimal such that x(n) 6= y(n).

(a) Fremlin and Miller (1988) prove:
non(C ′′)=cov(meager)=non(SMZ in ωω)
non(C ′′) ≤non(C ′′ in ωω) since if X is not relatively C ′′ it is not C ′′.
non(C ′′ in ωω) ≤ non(SMZ in ωω) since C ′′ ⊆ SMZ.

(b) Suppose X ⊆ 2ω fails to be relatively C ′′. Note that by compactness of
2ω we may assume there is a sequence (Un : n < ω) of finite clopen covers
of 2ω for which there is no (Un ∈ Un : n < ω) which covers X. Now choose
εn > 0 so that any interval [s] with diameter less than εn is a subset of some
Un. For the converse, suppose X fails to have SMZ in 2ω which is witnessed
by (εn : n < ω). Then the sequence Un = {C ⊆ 2ω : diam(C) < εn} witnesses
that it is not C ′′.

non(SMZ in 2ω)=non(SMZ in [0, 1])=non(SMZ in R) is easy to prove.
QED

These cardinals can be different, for example, in the iterated modified
Silver reals model, see Miller (1981), cov(meager)= ω1 while non(SMZ in
2ω) = ω2.

Def. X has the Menger property M iff for every sequence (Un : n < ω) of
open covers there exists (Vn ∈ [Un]<ω : n < ω) such that X ⊆ ∪n ∪ Vn.
Def. X has the Hurewicz property H iff for every sequence (Un : n < ω) of
open covers there exists (Vn ∈ [Un]<ω : n < ω) such that X ⊆ ∪m ∩n>m ∪Vn.
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Then it is known, see Miller and Fremlin (1988) that

d = non(M) b = non(H).

Relativizing H or M to 2ω doesn’t work since 2ω has property H and M. For
ωω it is easy to see:

Prop.
(a) non(M) ≤ non(M in ωω) ≤ d ≤ non(M)
(b) non(H) ≤ non(H in ωω) ≤ b ≤ non(H)
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Question 12

This was answered by Francis Jordan (There are no hereditary productive
γ-spaces, eprint Spring 08). He proves that the increasing countable union
of γ-sets is a γ-set.

Lemma 13 For any γ-set Y and sequence (Un : n < ω) of ω-covers of Y
there exists (Vn ∈ [Un]ω : n < ω) such that

⋃
n<ω Vn is a γ-cover of Y .

The proof is left to the reader. (Gerlits-Nagy)

Suppose Xn for n < ω are γ-sets, Xn ⊆ Xn+1 for each n and X =⋃
n<ω Xn. Given any ω-cover of X we may extract from it a sequence Un such

that each Un is a γ-cover of Xn. Let U0
n = Un. Using the Lemma construct

a sequence (Up
n : p ≤ n < ω) by induction on p such that Up+1

n ∈ [Up
n]ω and⋃

{Up+1
n : p + 1 ≤ n < ω} is a γ-cover of Xp. Any sequence (Un ∈ Un

n : n < ω)
is a γ-cover of X.
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