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Abstract

Define z to be the smallest cardinality of a function f : X → Y
with X,Y ⊆ 2ω such that there is no Borel function g ⊇ f . In this
paper we prove that it is relatively consistent with ZFC to have
b < z where b is, as usual, smallest cardinality of an unbounded
family in ωω. This answers a question raised by Zapletal.

We also show that it is relatively consistent with ZFC that there
exists X ⊆ 2ω such that the Borel order of X is bounded but there
exists a relatively analytic subset of X which is not relatively
coanalytic. This answers a question of Mauldin.

The following is an equivalent definition of z:

z = min{|X| : X ⊆ 2ω,∃Y ⊆ X Y is not Borel in X}

For one direction we can use for each Y ⊆ X its characteristic function
f : X → 2. For the other direction use that a function is Borel iff the inverse
image of each basic open set is Borel.

The following answers a question raised by Zapletal [6] see appendix A.

Theorem 1 It is relatively consistent with ZFC that b < z.

Define p ∈ P(A) for A ⊆ 2ω iff p is a finite set of consistent sentences of
the form:

1. “x ∈ ∩m<ωUnm” where x ∈ A, n ∈ ω, or

2. “x /∈ Unm” where x ∈ 2ω, n, m ∈ ω, or

3. “[s] ⊆ Unm” where s ∈ 2<ω, n, m ∈ ω.

1Thanks to University of Florida, Gainesville and to Boise State University, Idaho
for their hospitality during the time this paper was written and to J.Zapletal and
T.Bartoszynski for some helpful discussions.
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By consistent we simply mean the following:

• p cannot contain both “x ∈ ∩m<ωUnm” and “x /∈ Unk” for some x, n, k,
and

• p cannot contain both “x /∈ Unm” and “[x � k] ⊆ Unm” for some
x.n, m, k.

The ordering on P(A) is given by inclusion: p ≤ q iff p ⊇ q. Note that the
set A enters into the picture only in sentence of type (1).

This partial order is from Miller [2] where there are versions for all count-
able Borel orders (this is for Σ0

3). It can be looked on as a generalization
of almost disjoint forcing of Jensen and Solovay. I learned about describing
almost disjoint forcing as sets of sentences from Jack Silver.

Now suppose that G is P(A)-generic over V . Define

UG
nm = ∪{[s] : “[s] ⊆ Unm” ∈ G} and WG

n = ∩m<ωUG
nm

Lemma 2 For any x ∈ V ∩ 2ω

1. x /∈ UG
nm iff “x /∈ Unm” ∈ G

2. x ∈ WG
n iff “x ∈ ∩m<ωUnm” ∈ G

3. x ∈ A iff x ∈ ∪n<ωWG
n

Proof
To prove (1) working in V , fix x ∈ 2ω and n, m < ω. The following set is
dense:

Dx,n,m = {p ∈ P(A) : ∃k “[x � k] ⊆ Unm” ∈ p or “x /∈ Unm” ∈ p}

To see this note that if “x /∈ Unm” is not in p we can always find k large
enough so that p ∪ {“[x � k] ⊆ Unm”} is a consistent set of sentences. Now
suppose x ∈ UG

nm, then for some k we have that “[x � k] ⊆ Unm” ∈ G and
hence by consistency, “x /∈ Unm” /∈ G. On the other hand, if “x /∈ Unm” /∈ G,
then since Dx,n,m is dense for some k we have that “[x � k] ⊆ Unm” ∈ G and
hence x ∈ UG

nm.
To prove (2) note that the following set is dense:

Dx,n = {p ∈ P(A) : ∃k “x /∈ Unk” ∈ p or “x ∈ ∩m<ωUnm” ∈ p}
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To see this note that if “x ∈ ∩m<ωUnm” /∈ p, then for large k (so that Unk is
not mentioned in p), the sentences p ∪ {“x /∈ Unk”} are consistent.

To prove (3) note that if x ∈ A then the following is dense:

Dx = {p ∈ P(A) : ∃n “x ∈ ∩m<ωUnm” ∈ p}

and we can only assert “x ∈ ∩m<ωUnm” for x ∈ A.
QED

Note that it follows from the Lemma that A ∩ V = (∪n<ωWG
n ) ∩ V and

so that A is a Σ0
3 relative to the ground model reals.

Lemma 3 P(A) is ccc.

Proof
This is a standard ∆-systems argument. Suppose two conditions p and q
agree on all sentences of the form:

“[s] ⊆ Unm”

and also they agree on all sentences of the form:

“x ∈ ∩m<ωUnm” or “x /∈ Unm”

whenever x is mentioned in both p and q. Then p ∪ q is consistent.
QED

Next we must prove that P(A) does not add a dominating real.
Working in V , for Y ⊆ 2ω countable define p ∈ P(A)Y iff p ∈ P(A) and

∀x, n, k (“x /∈ Unk” ∈ p or “x ∈ ∩m<ωUnm” ∈ p) → x ∈ Y }.

Or in other words, P(A)Y are the conditions in P(A) which only mention
elements of Y .

Lemma 4 Suppose p ∈ P(A) and q ∈ P(A)Y . Then
p and q are compatible iff r and q are compatible
where

r = p \ {“x ∈ ∩m<ωUnm” : x /∈ Y, n < ω}
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Proof
Incompatibility cannot arise between sentences of type (1) and (3). That is,
any pair of the form:

“[s] ⊆ Unm”, “x ∈ ∩m<ωUnm”

is consistent. It follows that the “x ∈ ∩m<ωUnm” ∈ p for which x /∈ Y cannot
conflict with the sentences of q since by definition q cannot mention any x
which is not in Y .
QED

Define. T = (p, (ti, ni, mi : i < N)) is a Y -template iff

1. p ∈ P(A)Y , ti ∈ 2<ω, ni, mi, N ∈ ω,

2. if “y ∈ ∩m<ωUnim” ∈ p, then y /∈ [ti], and

3. if “[s] ⊆ Unimi
” ∈ p, then [s] ∩ [ti] = ∅.

Define. For ~x = (xi : i < N) ∈
∏

i<N [ti]

p(~x) = p ∪ {“xi /∈ Unimi
” : i < N}

Note that by the definition of Y -template that p(~x) ∈ P(A), i.e., is con-
sistent, for every ~x ∈

∏
i<N [ti].

Lemma 5 Suppose that |`τ ∈ ω, there exists Σ ⊆ P(A)Y a maximal an-
tichain deciding τ , and (p, (ti, ni, mi : i < N)) is a Y -template. Then there
exists k < ω so that for every ~x ∈

∏
i<N [ti] there exists q ∈ P(A)Y such that

p(~x) ∪ q ∈ P(A) and q|`τ < k.

Proof
For q ∈ P(A)Y define

Uq = {~x ∈
∏
i<N

[ti] : p(~x) ∪ q ∈ P(A)}

Note that Uq is open. To see this, suppose ~x ∈ Uq so that p(~x) ∪ q ∈ P(A).
Note that although some xi might be in Y it can’t be that “xi /∈ Unimi

” ∈ p(~x)
and “xi ∈ ∩m<ωUnim” ∈ q, because they are compatible. Hence, there must
be a sufficiently small neighborhood of xi say t′i = xi � ki ⊇ ti with the
properties that
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1. if “z ∈ ∩m<ωUnim” ∈ p ∪ q, then z /∈ [t′i], and

2. if “[s] ⊆ Unimi
” ∈ p ∪ q, then [s] ∩ [t′i] = ∅.

Hence, ~x ∈
∏

i<N [t′i] ⊆ Uq.
Now since Σ ⊆ P(A)Y is a maximal antichain we know that

∪{Uq : q ∈ Σ} =
∏
i<N

[ti]

So by compactness since each Uq is open, there exists a finite F ⊆ Σ such
that

∪{Uq : q ∈ F} =
∏
i<N

[ti]

and since each q ∈ Σ decides τ , the Lemma follows.
QED

In order to prove the full result we must show that the iteration does not
add a dominating real. To do this we prove the following stronger property
(see Bartoszynski and Judah [1] definition 6.4.4):

Lemma 6 The poset P(A) is really vbounded-good, i.e., for every name τ for
an element of ωω there exists g ∈ ωω such that for any x ∈ ωω if there exists
p ∈ P(A) such that p|`∀∞n x(n) < τ(n), then ∀∞n x(n) < g(n).

Proof
Suppose that |`τ ∈ ωω. Using ccc get Y ⊆ 2ω countable so that for every

n < ω there exists a maximal antichain Σ ⊆ P(A)Y which decides τ(n). List
all Y -templates as (Tn : n < ω). By Lemma 5 there exists g ∈ ωω with the
property that for every l < ω and n < l if

Tn = (p, (ti, ni, mi : i < N))

then for every ~x ∈
∏

i<N [ti] there exists q ∈ P(A)Y such that p(~x)∪ q ∈ P(A)
and q|`τ(l) < g(l). (To get g(l) apply Lemma 5 to τ = τ(l) and each of the
templates (Tn : n < l) and then take g(l) to be the maximum of all the k′s.)

Now suppose that p0|`∀l > l0 x(l) < τ(l) and

p0 = p ∪ {zi ∈ ∩m<ωUn′
i,m

: i < N ′} ∪ {xi /∈ Unimi
: i < N}

where p ∈ P(A)Y and zi, xi /∈ Y .
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Take ti sufficiently long so that ti ⊆ xi and

T = (p, (ti, ni, mi : i < N))

is a Y -template. Assume that l0 is sufficiently large so that T = Tk for some
k < l0. By our construction for each l > l0, there exists q ∈ P(A)Y such
that p(~x) ∪ q ∈ P(A) and q|`τ(l) < g(l). But by Lemma 4 this means that
p0 ∪ q ∈ P(A) and hence x(l) < g(l).
QED

The above proof is similar to that of Lemma 6.5.8 [1].
Now we prove Theorem 1. Starting with a model of CH we iterate with

finite support ω2 times

Pα+1 = Pα∗
◦
P (

◦
Aα)

where we dovetail to list all A ⊆ 2ω of size ω1 in the final model. Since the
finite support iteration of reallyvbounded-good ccc forcing adds no dominating
real (see Bartoszynski and Judah [1] Theorem 6.5.4), we have that in the
resulting model b = ω1. On the other hand by Lemma 2 we have that
z = ω2.
QED

Define (see Zapletal [6] Appendix A)

sn = min{|X| : X ⊆ T ,∀A Σ1
1 X ∩ A 6= X ∩WF}

where T is the set of ω-trees and WF is the set of well-founded trees. An
equivalent definition is:

sn = min{|X| : X ⊆ 2ω ∃A Σ1
1 ∀B Π1

1 X ∩ A 6= X ∩B}

The equivalence is easy to show because the set of well-founded trees is
a universal Π1

1 set. It is not hard to see that z ≤ sn. So we have the relative
consistency of b < sn.

The following proposition is mostly due to Rothberger [5]. It implies that
we must go up to at least the third level of the Borel hierarchy to get the
consistency of b < sn. It shows why P(A) which makes A ∩ V a Σ0

3 relative
to the ground model reals cannot be improved to a forcing which makes it a
relative Σ0

2.

Proposition 7 For κ an infinite cardinal the following are equivalent:
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1. b > κ

2. For all X ⊆ 2ω with |X| ≤ κ and for all Σ1
1 sets A ⊆ 2ω there exists a

Σ0
2 set B ⊆ 2ω such that X ∩ A = X ∩B.

3. For all X ⊆ 2ω with |X| ≤ κ and for all Σ0
2 sets A ⊆ 2ω there exists a

Π0
2 set B ⊆ 2ω such that X ∩ A = X ∩B.

4. For all X ⊆ 2ω with |X| ≤ κ and for all countable A ⊆ X there exists
a Π0

2 set B ⊆ 2ω such that A = X ∩B.

Proof
(2) → (3) and (3) → (4) are trivial.
To see (1) → (2) let

A = {x ∈ 2ω : ∃y ∈ ωω (x, y) ∈ C}

where C ⊆ 2ω × ωω is closed. Suppose that A ∩X = {xα : α < κ}. Choose
yα ∈ ωω so that (xα, yα) ∈ C for each α < κ. Since b > κ we can choose
zn ∈ ωω for n < ω so that for all α < κ there exists n < ω with yα ≤ zn

(pointwise). Define
Cn = {(x, y) ∈ C : y ≤ zn}

Cn is compact and therefore so is its projection:

An = {x ∈ 2ω : ∃y (x, y) ∈ Cn}

But A ∩X = (∪n<ωAn) ∩X.
To see (4) → (1) let X ⊆ ωω with |X| = κ. Now since ωω is homeomorphic

to [ω]ω and [ω]ω ⊆ P (ω) ' 2ω by applying (4) we can find a Π0
2 set G ⊆ P (ω)

such that
G ∩ (X ∪ [ω]<ω) = [ω]<ω

But note that F = P (ω) \G is a σ-compact set which is disjoint from [ω]<ω,
i.e. a subset of [ω]ω ' ωω and covers X. But is easy to show that for any
σ-compact subset F of ωω there exists f ∈ ωω such that g ≤∗ f for all g ∈ F .
QED

Remark. One way to get the consistency of b < z < sn is as follows:
Start with a ground model of 2ω = ω1, 2ω1 = ω2, and 2ω2 = ω17. Do a finite
support iteration of P(Aα) for α < ω3, so that for limit ordinals α we take
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Aα = A (the universal Σ1
1-set) and for successor ordinals α we take |Aα| = ω1

as in the above proof. In the final model we will have b = ω1 since it is an
iteration of really vbounded-good ccc partial orders. Also we will have z ≤ ω2

because 2ω2 = ω17 and 2ω = ω3. We also have z ≥ ω2 because of dovetailing
over all A of size ω1. And we will have sn = ω3 = c because we have cofinally
often used the universal Σ1

1-set.

The following Theorem answers a question of Dan Mauldin (see [4] prob-
lem 7.8 and [3] p.212).

Theorem 8 It is relatively consistent with ZFC that there exist a separable
metric space X such that the Borel order of X is bounded, but not every
relatively analytic subset of X is Borel in X.

Proof
We use almost exactly the same partial order but with one crucial difference.
Instead of using arbitrary subsets A ⊆ 2ω we let B ⊆ 2ω be a fixed universal
Π0

3 set. The partial order P(B) is Borel, ccc, and adds a generic Σ0
3 set whose

intersection with the ground model is the same as B’s with the ground model.

Define. A partially ordered set P is very Souslin iff

1. P is ccc,

2. P, ≤, {(p, q) ∈ P2 : p, q incompatible } are Σ1
1, and

3. {Σ ∈ Pω : Σ enumerates a maximal antichain } is Σ1
1.

We will need the following Lemma:

Lemma 9 (Zapletal [6] see Appendix C, Lemmas C.0.14 and C.0.17) Sup-
pose P is a very Souslin real partial order and Pω2 the countable support
iteration of P. Then

V Pω2 |= sn = ω1.

Lemma 9 does not require large cardinals (LC) as many of Zapletal’s
results do. It does mean that partial order P(A) is not very Souslin even
when A is taken to be analytic. However, if we change A to make it Borel,
then it is very Souslin:
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Lemma 10 For B Borel the partial order P(B) is very Souslin.

Proof
The following sets are Borel:

1. P(B)

2. {(p, q) ∈ P(B)× P(B) : p ⊆ q}

3. {(p, q) ∈ P(B)× P(B) : p and q are incompatible }

4. {(p, Y ) : Y ∈ [2ω]ω and p ∈ P(B)Y }

5. {((Tn : n < ω), Y ) : Y ∈ [2ω]ω and {Tn : n < ω} = all Y -templates }

Next we verify that being a maximal antichain in P(B) is Σ1
1.

Claim. Σ ⊆ P(B) is a maximal antichain iff

1. Σ is an antichain and

2. there exists Y ⊆ 2ω countable and (Tn : n < ω) such that

• Σ ⊆ P(B)Y and

• (Tn : n < ω) enumerates the set of all Y -templates

and for all n if Tn = (p, (ti, ni, mi : i < N)), then there exists

K, (tji : j < K), and (qj : j < K) such that

(a)
∏

i<N [ti] = ∪j<K

∏
i<N [tji ]

(b) qj ∈ Σ

(c) qj ∪ p ∈ P(B)

(d) “y ∈ ∩m<ωUni,m” ∈ qj → y /∈ [tji ]

(e) “[s] ⊆ Unimi
” ∈ qj → [tji ] ∩ [s] = ∅
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Proof
Condition (2) is just a detailed restatement of Lemma 5 and its proof. It
guarantees by Lemma 4 that every p ∈ P(B) is compatible with some q ∈ Σ.

This proves the claim and the lemma easily follows.
QED

Hence by Zapletal’s Lemma 9 if we iterated P(B) with countable support
ω2 times then in the resulting model sn = ω1. Hence there is some X ⊆ 2ω

of size ω1 with a relatively analytic set which is not relatively coanalytic.
(Actually the proof of Lemma 9 shows that the ground model reals would do
for such an X). But note that every Π0

3 set occurs as a cross section of our
universal Π0

3-set B and by Lemma 2 becomes Σ0
3 with respect to the ground

model. Hence it is easy to see that for every X ⊆ 2ω of size ω1 for every Σ0
3

B there exists a Π0
3 C such that X ∩B = X ∩ C. This proves Theorem 8.

QED
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Appendix

(Not intended for publication, electronic version only.)
Our first proof of b < sn used large cardinals and the following Lemma:

Lemma 11 (Zapletal [6] Thm 5.4.12) (LC) Suppose P is a real, proper,
universally Baire forcing such that

V P |= V ∩ ωωis unbounded in ≤∗

Then
V Pω2 |= V ∩ ωωis unbounded in ≤∗

where Pω2 stands for the ω2 iteration with countable support of P.

The hypothesis (LC) stands for large cardinals, for example, unboundedly
many measurable Woodin cardinals would be enough. In other words for
a nice enough forcing, not adding a dominating real is preserved by the
iteration. It is easy to get a two step iteration so that neither step adds a
dominating real but the two steps do. For example, force ω1-Cohen reals
followed by the Hechler partial order of the ground model.

Fix A ⊆ 2ω a universal Σ1
1 set, i.e., it is lightface Σ1

1 and every boldface
Σ1

1 occurs as a cross section via some effective homeomorphism of 2ω × 2ω

and 2ω. In this case the partial order P(A) is Σ1
1, ccc, and determined by a

real - so it satisfies the hypothesis of the Lemma.
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