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Abstract

In this paper we use the Recursion Theorem to show the existence
of various infinite sequences and sets. Our first result is that there
is an increasing sequence e0 < e1 < · · · such that Wen = {en+1}
for every n. Similarly, we prove that there exists an increasing
sequence such that Wen = {en+1, en+2, . . .} for every n. We call a
nonempty computably enumerable set A self-constructing ifWe =
A for every e ∈ A. We show that every nonempty computably
enumerable set which is disjoint from an infinite computable set
is one-one equivalent to a self-constructing set.

Kleene’s Recursion Theorem says the following:

For any computable function f there exists an e with ψe = ψf(e).

In this Theorem 〈ψe : e ∈ ω〉 is a standard computable numbering of all
partial computable functions. For example, ψe might be the partial function
computed by the eth Turing machine. The number e is referred to as a fixed
point for f and this theorem is also called the Fixed Point Theorem.

For a proof of Kleene’s Theorem see any of the standard references,
Cooper [1], Odifreddi [3], Rogers [4], or Soare [6]. See especially Smullyan [5]
for many variants and generalizations of the fixed point theorem. The Recur-
sion Theorem applies to all acceptable numberings (in the sense of Rogers,
see Odifreddi [3] p.215-221). All natural enumerations are acceptable. We
use We to denote the domain of ψe and hence 〈We : e ∈ ω〉 is a uniform
computable listing of all computably enumerable sets.

The proof of the Recursion Theorem is short but tricky. It can be uni-
formized to yield what is called the Recursion Theorem with Parameters.
The proof also yields an infinite computable set of fixed points by using the
Padding Lemma. See Soare [6] pages 36-37.

We will use the following version of the Recursion Theorem with Param-
eters which includes a uniform use of the Padding Lemma:
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Lemma 1 For any computable function f : ω×ω → ω there is a computable
function h : ω → ω such that Wh(x) is an infinite computable set for every x
and for every y ∈ Wh(x) we have that ψf(x,y) = ψy.

The proof is left to the reader.

It is an exercise (see Miller [2] section 13) to show (using Smullyan’s
double recursion theorem or more particularly its n-ary generalization, see
[5] Chapter IX) that for any n > 0 there is a sequence

e0 < e1 < · · · < en

such that Wei
= {ei+1} for i < n and Wen = {e0}. It occurred to us to ask if

it would be possible to have an infinite sequence like this. We show that it
is.

Theorem 1 There is a strictly increasing sequence:

e0 < e1 < · · · < en < · · ·

such that
Wen = {en+1} for every n.

Proof
We use We,s to denote the set of all y < s such that ψe(y) converges in

less than s-steps. We use 〈x, y〉 to denote a pairing function, a computable
bijection from ω2 to ω, e.g., 〈x, y〉 = 2x(2y + 1)− 1.

Let q(e, x) be a computable function such that for all x and e:

Wq(e,x) =

{
{y} if (∃s∃y ∈ We,s y > x) and 〈s, y〉 is the least such pair
∅ otherwise.

Such a q is constructed by a standard argument using the s-m-n or Param-
eterization Theorem. To see this, one defines a partial computable function
θ as follows:

θ(e, x, y) =

{
0 if (∃s∃y ∈ We,s y > x) and 〈s, y〉 is the least such pair
↑ otherwise.

The uparrow stands for a computation that diverges, i.e, does not halt. By
the s-m-n Theorem there is a computable q such that

ψq(e,x)(y) = θ(e, x, y) for all e, x, y.
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Using Lemma 1 let h be a computable function such that for every e, the
set Wh(e) is an infinite set of fixed points for q(e, ·), i.e., Wx = Wq(e,x) for all
x ∈ Wh(e). Let e be a fixed point for h, so We = Wh(e).

Let x be any element of We. Then x ∈ Wh(e) so Wx = Wq(e,x) = {y}
where y > x and y ∈ We. Hence, starting with any e0 ∈ We we get an
infinite increasing sequence as required.
QED

Note that to obtain a sequence with Wen+1 = {en} is trivial. Also note
that the sequence in Theorem 1 must be computable. This is not necessarily
true for our next result:

Theorem 2 There exists a computable strictly increasing sequence 〈en : n <
ω〉 such that for every n

Wen = {em : m > n}.

Proof
Using the s-m-n Theorem find q a computable function such that for every
x and e:

Wq(e,x) = {max(We,s) : s ∈ ω} \ {0, 1, . . . , x}.
As in the above proof, let h be a computable function such that for every

e, the set Wh(e) is an infinite set of fixed points for q(e, ·), i.e., Wx = Wq(e,x)

for all x ∈ Wh(e). Let e be a fixed point for h, so We = Wh(e).
Note that We is infinite and let

{e0 < e1 < e2 < . . .} = {max(We,s) : s ∈ ω}.

For any x ∈ We = Wh(e) we have that

Wx = Wq(e,x) = {max(We,s) : s ∈ ω} \ {0, 1, . . . , x}.

Hence for any n we have that

Wen = {em : m > n}.

QED

A variation on this theorem would be to get a computable strictly in-
creasing sequence e0 < e1 < · · · such that

ψen(m) = en+m+1 for every n,m < ω.
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The proof of this is left as an exercise for the reader.

Usually the first example given of an application of the Recursion The-
orem is to prove that there exists an e such that We = {e}. We say that a
nonempty computably enumerable set A is self-constructing iff for all e ∈ A
we have that We = A. So We = {e} is an example of a self-constructing set.
Our next result shows there are many self-constructing sets.

Theorem 3 For any nonempty computably enumerable set B the following
are equivalent:

1. B is disjoint from an infinite computable set.

2. There is a computable permutation π of ω such that A = π(B) and A
is self-constructing.

Proof
(2) → (1)
Let E be an infinite computable set such that for every e ∈ E we have

that We = ∅. Any self-constructing set is disjoint from E.

(1) → (2)
Given any e consider the following computably enumerable set Qe. Let

{c0 < c1 < c2 < . . .} = {max(We,s) : s ∈ ω}

which may be finite or even empty. Then put

Qe = {cn : n ∈ B}.

By the s-m-n Theorem we can find a computable q such that for every e:

Wq(e) = Qe.

By the Padding Lemma there is a computable h such that for every e the set
Wh(e) is infinite and for all x ∈ Wh(e) we have that Wx = Wq(e). Now let e be
a fixed point for h so that Wh(e) = We. Let A = Qe. Then for all x ∈ A we
have that Wx = A. So A is self-constructing.

To get π let D and E be two infinite pairwise disjoint computable sets
disjoint from B. Take one-one computable enumerations of them:

D = {dn : n < ω} and E = {en : n < ω}.
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Note that We = Wh(e) is infinite and let C be the infinite computable set:

C = {c0 < c1 < c2 < . . .} = {max(We,s) : s ∈ ω}.

Since We = Wh(e) is a set of fixed points, it is coinfinite and hence C ⊆ We

is coinfinite. Take a one-one computable enumeration of the complement C
of C:

C = {cn : n < ω}.

Now we can define π:

π(cn) =


d2n if n ∈ D
d2n+1 if n ∈ E
n otherwise

π(cn) = en.

Note that π bijectively maps C to E and C to E. Furthermore if n ∈ B then
π(cn) = n, and since A = {cn : n ∈ B} we have that π(A) = B.
QED

As a corollary we get that there are self-constructing sets of each finite
cardinality and there is a self-constructing set which is not computable, in
fact, there is a creative self-constructing set.

It is not hard to show that

S = {e : We is self-constructing}

is Π0
2-complete. To see this first note that it is easy to show that S is Π0

2.
We can get a many-one reduction f of

Tot =def {e : We = ω}

to S as follows. Fix an infinite self-constructing set A with one-to-one com-
putable enumeration A = {an : n ∈ ω}. By the s-m-n Theorem construct a
computable f so that for every e:

Wf(e) = {an : n ∈ We}.

Hence, e ∈ Tot iff f(e) ∈ S. Since Tot is Π0
2-complete (see Soare [6] page

66), S is too.
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An anonymous referee came up with this very nice proof of Theorem 1:

Define a total computable function f(j, n) as follows:

Wf(j,n) =

{
{ψj(n+ 1)} if ψj(n+ 1) ↓
∅ otherwise.

By using the padding lemma, we may construct f so that f(j, n+1) > f(j, n)
for every j, n. By the fixed point theorem there exist a j such that for every
n we have that ψj(n) = f(j, n). Hence ψj is total and ψj(n+ 1) > ψj(n) all
n. Furthermore,

Wψj(n) = Wf(j,n) = {ψj(n+ 1)}

for every n.

On the otherhand perhaps we would not have thought of Theorem 3 if
we had not been thinking about using a computable set of fixed points.

It is traditional for our qualifying exam in Logic to always have a problem
which uses the recursion theorem (Kleene was the first logician in Madison).
After over twenty years of exams it is hard for us to think of another original
problem using the recursion theorem.

Some other examples of the use of the recursion theorem are the following:

1. The set {e : We = {1, . . . , e}} is m-complete for the class of differences
of computabily enumerable sets.

2. Suppose A is a simple set and A = {an : n ∈ ω} is a 1-1 computable
enumeration of A. Then there exist infinitely many n such that

Wan = {am : m > n}.

This last problem was our motivation for the proof of Theorem 1.
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Appendix

The appendix is not intended for final publication but for the on-line
electronic version only.

Theorem 1 There exists an infinite strictly increasing sequence 〈en : n < ω〉
such that for every n

Wen = {em : m > n}
and the sequence is not computable.

Proof
This is a combination of the proof of Theorem 2 and Theorem 3. Fix B a
computably enumerable but not computable set. For any e let

{c0 < c1 < c2 < . . .} = {max(We,s) : s ∈ ω}

By the s-m-n Theorem find computable q such that for any x and e

Wq(e,x) = {cn : n ∈ B and cn > x}.

Take h computable so that for every e, Wh(e) is an infinite set of fixed points
for q(e, ·), i.e., x ∈ Wh(e) implies Wx = Wq(e,x). Take e to be a fixed point for
h, so Wh(e) = We.

For this e as above define cn:

{c0 < c1 < c2 < . . .} = {max(We,s) : s ∈ ω}.

Let {en : n < ω} list the set {cn : n ∈ B} in strictly increasing order.
Clearly the set {en : n < ω} is computably enumerable but not computable
since the sequence of cn’s is a strictly increasing computable sequence and B
is computably enumerable but not computable.

Fix any cm for m ∈ B. Then cm ∈ We = Wh(e) and so

Wcm = Wq(e,cm) = {cn : n ∈ B and cn > cm}.

If ek = cm this means that

Wek
= {el : l > k}.

QED
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Theorem 2 There is a computable strictly increasing sequence e0 < e1 < · · ·
such that

ψen(m) = en+m+1 for every n,m < ω.

Proof
As in the proof of Theorem 2 given any e let

{e0 < e1 < e2 < . . .} = {max(We,s) : s ∈ ω}

and using the s-m-n Theorem find q a computable function such that for
every x, m, and e:

ψq(e,x)(m) = en+m+1 where n is minimal so that en ≥ x}.

Let h be a computable function such that for every e, the set Wh(e) is an
infinite set of fixed points for q(e, ·), i.e., ψx = ψq(e,x) for all x ∈ Wh(e). Let e
be a fixed point for h, so We = Wh(e).

Now for any n we have that en ∈ We = Wh(e) and so ψen = ψq(e,en) and
hence for every m:

ψen(m) = en+m+1.

QED


