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RATIONAL PERFECT SET FORCING

Arnold W. Millerl

ABSTRACT. This paper introduces a notion of forcing intermediate between
Sacks perfect set forcing and Laver forcing. We say that a perfect subset
of the real line is a rational perfect set if the rationals in it are
dense in it. This forcing is equivalent to forcing with infinitely

branching afw trees. The real added is not dominated by the ground model
and is of minimal degree. Also, any nondominated real in the extension is
itself generic with respect to the same partial order. In the extension
there is no independent subset of @, 1i.e. every subset of w in the ex-
tension contains or is disjoint from some infinite subset of w in the
ground model.

§1. DEFINITIONS AND EQUIVALENCES. 1In this section we present two partial orders
and then show that they are isomorphic. For T a subtree of ZQD, the tree

of finite sequences of O0's and 1l's, let
[T] = {x € f:Vn xPn e T}

Such a tree is perfect if every node has two incomparable extensions. ZLet Q
be the set of all x e¢ 2% which are eventually zero. The rational perfect
trees are the perfect tree T C ZQD such that QN [T] 1is dense in [T], 1i.e.
for all s e¢ T there exists x € QN[T] with s © x. The trees arepartially
ordered by containment.

A subtree T of ®<w’ the finite sequences from w, is infinitely

branching if for all s e T there exists t D s such that for infinitely

many n < w, t"(n) ¢ T. These trees are also ordered by containment.

1. PROPOSITION. The partial order of rational perfect trees 1is isomorphic
to the partial order of infinitely branching trees.

Proof. Define the map f: QFU)—+ 2<m by induction on the length of the

sequence:
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144 ARNOLD W. MILLER

(a) f(®) = 9; and
(b) £(s™{n)) = £(s)7(000...0)"(1), where (000...0) 1is a

string of n =zeros.
The isomorphism of the partial order is gi\{en by
%(T) = {s e 7 Et e T s C £(t))}
Note that the function f has the following properties:

(a) for s,t e w
s Ct 1iff f(s) < £(t) ;
) £ is 1~1; and

(¢) £ 1is onto the sequences ending in a 1.
Now it is easy to check that f is the desired isomorphism. []

REMARK. We did not demand that in our infinitely branching trees every
node either branched infinitely or not at all, although clearly these trees
would form a dense subset. They correspond to the binary branching trees in

which the left most branch through each node is eventually zero.

§2. CHARACTERIZING THE GENERIC REAL. Let P be the partial order of infinitely
branching trees with the property that every node either has infinitely many

immediate extensions or only one immediate extension. Suppose G 1is P-generic
over the ground model M. Let f ¢ o> be such that for all pe G and n<w,

fFPne p. It ils easy to see that f 1is a total function and
G=f{peP|vn fPne p)

Thus we say f ¢ o is P-generic if f{p ¢ Pl wn fPne p] is a P-generic

filter. An easy density argument shows that any f e o which is P-generic
over M weakly dominated M. That is to say, for any g € a)mﬂM there are
infinitely many n < « such that g() < f(n). The following proposition is

the converse.

2. PROPOSITION. Suppose G 1is P-generic over M and f ¢ w NM[G] 1is
any real which weakly dominates M. Then f itself is P-generic (although it

may generate a different G).

Proof. The proof will follow easily from the following claims. Before

that we make some definitions.
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DEFINITIONS. (a) for peP and s e p let

XP = {n<w: s™n) e pl ;

S

]

(b) for peP let

split(p) {s € p: XE is infinite) ;

(c) for peP and s ¢ p let
p.={tep:tSsorsct];

S

(d) for s,t e a)<w let s <t 1f for all n < length(s), s(n) < t(n);

and
(e) s € split(p) 1is at level n 1if there are exactly n proper initial
segments of s in split(p).

2.1. CLATM. Suppose p |F "7 e @™ . Then there exists q < p such
that for all s e split(q) there exists t; € a)n such that for all n ¢ Xg

H = 3
qs,\<n> H— TMhn t

n
Proof. This will follow from a fusion argument. Suppose Pl < PL for
n < w and the first n levels of split(pn) are still in split(pn+1). Then

the fusion

q = P

n n
n<w

will be in P. Other proofs will require that only finitely many nodes are
kept at each step. Let Py=P- At stage n look at each s e split(pn) at

P
level n. For each me X © extend P .~ to decide 7 PMm. Paste all
s n,s™(m)

such extensions together to get Pl
2.2, CLATM. Given t:n e’ for neXe [w]w either:

(1) 9ye X1° du<wo ¥kteY t Mm=t,Mm and

[tn(m): ne Y] are distinct; or
(Z)EgewaneX tn<gl\n.

Proof. If for some mO {tn(mo): @, < n} 1is infinite, then (1) holds

for m the least such my - Otherwise (2) holds. D
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U‘)H

2.3. CLATM. Suppose p |F'"r e Then there exists q < p such that

for all s ¢ split(q) eilther:

(L) Hm Etewmghzxgbw Vnexg

qu(n) F'rPm+1=t"h(a)"; or

(2) E’geww Vnexggsewn s € grmn
qsl\<n> ”—"Tt‘n=s".

Proof. First apply Claim 2.1 and then use Claim 2.2 at each stage in

a fusion argument.

2.4. CLAIMM. Suppose split(p)=AUB. Then there exists q < p such that
either split(q) €A or split(g) < B.

Proof. Either there exists s ¢ split(p) such that split(ps) CA or
for every s e split(p) there exists t 2 s t e B. In the first case we are

done and in the second we do a fusion argument. []

2.5. CLAIM. Suppose p |F"r € " . Then there exists q < p such that
either:

m N O q
(1) for all sesplit(q)am Etew Eh. XS-—>w Vnexs
9g () F'"rpm+1l=t"h(n)"; or

(2) for all sc—:split(q)EgemeneXEErewn r<ghn
" = A\
and qs’\(n) Frrpn=1x".

Proof. This follows from Claims 2.3 and 2.4. [}

DEFINITION. For q e¢ P let Pq be the partial order of conditions

IN
el

2.6. CLAIM. Suppose q and T are as in Claim 2.5(1). Then there exists
a ¢ P and an order isomorphism p: P —> P~ such that q |[F"r is the generic
real associated with the Pa-generic filter p(G)".

* < *
Proof. Define p : q—>w by o (s)=t 1iff q_ F"rMm=t" and q
does not decide 7(m). Then q 1is the tree generated by the image of q
*
under p and p is defined similarly. 3

2.7. CLATM. Suppose q and T are as In Claim 2.5(2). Then there exists
Eg_ q and ge o® such that

qF"VYn T < g@"
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Proof. Obtain a by prunning ¢q if necessary so that for all
s ¢ split(q) at level n, Es _decides 7(n). To obtain this it is only
necessary to make sure that Xg < o\\(ntl) for all t at level m-1. To
finish the proof it is enough to note that for every n [m: :3 s € a
as |F"r(m)=m"} is finite. For suppose not. There must then exist s, at

i

level n of a and distinct ki € w such that for each 1 e w

qSi H_ "r(n) = ki"

Look at T= {51:3 i s < si]. Since the s are all on the nth 1level of E

i
there must be some s e T such that there are infinitely many m e w with

s™(m) € T. But by hypothesis there exist g ¢ o’ for all m e Xg

qs"(m) H— "rPom< gpm"

This would force infinitely many ki < g(n), a contradiction. []
The last three claims finish the proof of Proposition 2.

REMARK. Claim 2.4 is the only one that does not work for Laver forcing
(1976). This claim 1s analogous to the fact that if the rationals are split
into two pleces, then one of the two pieces contains a subset order isomorphic

to the rationals.

REMARK. Similar to Sacks forcing (1970), it is mot difficult to see that
rational perfect set forcing produces a real of minimal constructibility degree.

It is also known (Gray (1980)) that a Laver real has minimal degree.

REMARK. 1In the spirit of the first section, for any F C 2 a countable

dense-in~itself set, define
PF = {Q ¢ . Q perfect and F N Q is dense in Q)

Then for any x e 2 in a rational perfect set forcing extension which is not
in the ground model, there exist F such that x is PF-generic. Or we might

define
P={Q,F:QeP]

and order P by
Q,F < @F iff §cQ and FcF

Then just like Sacks forcing any real in M[G]\M for G P-generic over M

is itself "P-generic' over M.
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§3. INDEPENDENT SETS. 1In this section fix M a tramsitive model of ZFC which
we will refer to as our ground model. We think of V as a generic extension
of M.

DEFINITIONS. (a) X Cw 1is an independent set iff for all Y e [o]”
both X NnY and Y\X are infinite.

nM

(b)) f e o’ is a dominating real iff for all g e o’ NM for all but
finitely many n e @, g(n) < f(n).

(¢) £ e o is a weak dominating real iff for all g e o® NM there are

infinitely many n e w, g(n) < f(n).

3.1. PROPOSITION. (Folklore) 1If there exists a dominating real, then

there exists an independent set.

Proof. Suppose f 1is a dominating real and strictly increasing. Define

X = 0 and X f(xn). And let

X= U [x

on? ¥one1)
n=0

W

([a,b)={ne w: a<n<b)). Glven Ye M N {w] define

gn) =uyme Y m>na .

Then for all but finitely many n g(n) < f(n), hence for all but finitely
= . n infinite.
many m, X < g(xn) < f(xn) X+ So both X NY and Y\X are infinite. [}

REMARK. A slightly weaker version of Proposition 3.1 was proved by
Solomon (1977). This version was noticed by several people including Nyikos,

Galvin, Gruenhage, and the author.

REMARK. If r € w 1is a random real over M, then in M[r] there are
no weak dominating reals although r 1is itself an independent set. If £ e’
is a Cohen real, then f 1is a weak dominating real, it is easy to find an in-

dependent set, and there are no dominating reals in M[f].

The next proposition is a weak version of a result of Baumgartner and

Laver (1979). It is included here for mainly heuristic reasons.

3.2. PROPOSTITION. (Baumgartner and Laver) Perfect set forcing does not
add an independent set (i.e. if G is Sacks generic over M, then for any

Y e [w]® NM[G] there exists X e [w]® N M such that X CYorXNY=9).
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Proof. Suppose

p F"Y S o
CASE 1. Hda<p [{niqlne¥)=0.
CASE 2. Wq<pW¥Wn Jr<q r['néy"

(\/g means "for all but finitely many n".)

If Case 1 occurs, we are done. Case 2 requires a fusion argument. Define
p<,d iff p < q and the first n splitting levels of q are still in »p.
Then Case 2 implies

Va<p Vo ¥Vn dr< q 1 fr'ndx"

This is true because the finite intersection of cofinite sets 1is cofinite. But

1 2 3
> P 2 --. 8O that for each n
n-1 n

now build two sequences a, < a,<a,<...<a < ... and p=p, >p, >D, ...
n 0 0 L="2

" "
P |k a ¢ X

*
Then the fusiom p =

I D8

P, forces that "{an: n=1,2,...) Nx=9". 0
n=0

REMARK. This proposition 1is also true for the finite product of Sacks
forcing. In fact, it is not hard to see it is equivalent to the Halpern-
Lauchli theorem (1966). Laver (1982) has shown that it holds for the w-product
of Sacks forcing (and therefore for arbitrarily large products with countable

support).

REMARK. Like random reals, Sacks reals do not add weak dominating reals.

Rational perfect set forcing does, of course, add a weak dominating real.

3.3. PROPOSITION. Rational perfect set forcing does not add independent

sets.

Proof. The proof breaks down into the following steps. Suppose
p ||_ ny Ew”'

3.3.1. STEP. Construct q < p and (YS: s € split(q)) so that for all
s € split(q), for all m and for all but finitely many n ¢ Xg

9" (n) k0o - Tg N
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CONSTRUCTION. We use a straightforward fusion argument. Suppose s 1is
the lowest level splitting node of ¢q and we want to retain it. For each
*
ne Xz extend qSA<n> to qu(n> to decide Y N n. Choose a, S arbi-

trarily so that

* H—”Yﬂn:a n "
95™(n) n

By compactness, {an: n < w) has a convergent subsequence, say {ak cn < wl.
n
e — as n —> o, t
Suppos akn YS », Le

* ~
qg ={teq:t<s or :3 n s (kn) <t}

Now since a — YS, for any m < w for all but finitely many n
n

< "y nm=y N
sA<kn> s

The fusion argument finishes the construction.

3.3.2. STEP. Obtain p < q such that either
(a) {YS: s € split(p)) has the finite intersection property; or

(b) [wﬁ\Ys: s € split(p)) has the finite intersection property.

CONSTRUCTION. ©Let U be any nonprincipal ultrafilter on ®. Partition
split(q) according to whether YS e U. Now apply Claim 2.4.

3.3.3. STEP. Suppose {YS: s ¢ split(p)}] has the finite intersection
property. (The other case is handled anmalogously.) Build two sequences
a, < a <... and p> 4, > 9t >... so that for each n=1,2,..
" 1
a, |F a e Y

-]

and N q_ 1is a condition.
n
n=0
CONSTRUCTION. Along with our two sequences above we build another
sequence
F CF S
such that each Fn is a finite subset of split(qn). Qur construction will

guarantee that

U F_ = split( N q)
n=0 " n=0 O



RATIONAL PERFECT SET FORCING 151

STAGE. Suppose we have q,.1° an—l’ and Fn-l' We first get 4, and
a >a 4 by pruning finitely nodes from 9-1 and retaining Fn-l c Spllt(qn)
and making 1, ||--”an e ¥"'. This is done as follows. Choose a e N YS with

seF
n-1

a >a 4 arbitrarily. (This can be done because of the finite intersection
property.) Now let T be the (finite) tree generated by Fn-l . Now suppose
s e T 1is a terminal node (necessarily s e Fn-l)' Then since a e YS for all

qn-l
but finitely many n e Xs

"

-1, s™(m) IF &, € v

Prune a4, by throwing out the finitely many exceptions. For s e Fn 1
which is an interior node of T do exactly the same except also retain in
4y 9n-1
X, all elements of T which might have been in XS . Then a, [F”an e Y
and also F C split(q_). Now choose a finite F_OF such that
n-1 — n n — n-1
Fn c split(qn) and for each s ¢ Fn-l let Fn contain a new "witness" to the

fact s 1is to be a splitting node of the fusion, i.e. for some i ¢ w

s™{i) e qn\\T and there exists t e F_ such that s™{i) < t.

Let q= N 4, and X={an: n=1,2,...}. Then

q ey
In the analogous case ((b) of Step 3.3.2) we would have
Thmxny -
This ends the proof of Propositiom 3.3.

REMARK. This proposition is false for the product of rational perfect

set forcing. To see this, let @ well order afm. Define

£ U (cunxu)n) — 2

B =W
oy
£(s™(n), £ (m)) = £(s,t)"1 O™

where

0 if sdt

i =

1 if tds

and i(n+m) is a string of n+m 1's. Now suppose g,h e o are P xP

generic over M. Let X C w have as its characteristic function

U f(gMn,h[n)
n<w
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I claim that for any infinite Y Cw in M both X NY and YNX are in-
finite. ©Note that for any (p,q) ¢ P x P there is an n such that there
exists s e split(p) N o and q ne™ is infinite, hence there exists

teqhn o s 4 t, and therefore X can be made arbitrarily thin. Conversely,
there is an n such that there exists t e split(q) N w'  and p N o’ is in-
finite, hence there exists s e p N wn td s, and therefore X can be made

arbitrarily thick.

§4. P~POINTS. Recall that an ultrafilter U on « 1is a P-point iff whenever
given Xn e U for n<w there exists X € U such that for all n<w

X< X
= 'n

(i.e. contained in mod finite). Our next proposition gives a stronger version

of Proposition 3.3 assuming there is a P-point in the ground model. 1In fact,

it will give an alternative proof (though less direct).

4.1. PROPOSITION. Suppose U is a P-point and p |[F"Y C " (rational

perfect set forcing). Then there exists q < p and X € U such that either

q H_ ny E " or

q H_HX Ny = 0!!

Proof. Without loss we may assume there exists YS Cw for s e split(p)
such that for every s e split(p) and n < @ for all but finitely many
m e Xp

s

P |I—”YS An=YNnna"

Also without loss we can assume there exists X e U such that for all
s € splitép), X gf YS . (In the alternative case we would have an X ¢ U such
that X < Qu\\YS) for all s e split(p).)

We will build a sequence s, € split(p) and kn < ® an increasing

sequence. In the end both

{s : n even} and
n

{sn: n odd ) ,

will be the splitting nodes of some condition. To begin with let Sp= 817

first splitting node of p, and let k0==O. Also modify X if necessary so

that XYy, =Y .
0o 51
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STAGE n, mn even. Find some even m < n such that Sh would like
another splitting node beneath it at this stage (dovetailing so that every m
is given attention infinitely often). Choose a new s, € split (p) extending

s and sufficiently far out so that
m

Y nk =Y nk

Remember that for all but finitely many k e X ', Psn (k) |F”Yrﬁkn_l==Ys Nk

p m n-1

so that s_ > s™(k) would make
n = "m

Y nk =Y Nk

Now choose k_ > k so that
n n-1

XNk Y
n - S
n

STAGE n, n odd. Exactly the same but find some odd m < n.

Now let 95 <P be the condition whose splitting nodes are {sn: n even)
and let q <P be the condition whose splitting nodes are {sn: n odd}. And
let

n+l): n even) , and

<
]

XNnU {[k_,k
n

X =XﬁU[[kn,k n odd }

n+1) :

Without loss let us assume that X, € U. We claim that for every s ¢ split(qo)

0
c
XO — Ys
(Note that s= Sh for some even mn.) We will prove that X0 o Ys by in-
n
duction on n. If n=0 we are done by the choice of X. Otherwise we have
« N = N N = n
that xo\kn_st, Xy Nk, =X,Nk ,, and st ko1 YSm k .y for some
even m < n. But by induction we know that Xg& Y, 5 s0 ¥g &Y
Sm %n
Now we claim that
qo H_HXO E b

For suppose otherwise. Then there must be some S < 9, and m e XO such that

'5 ”_nm é

But let Sh be the first splitting node of S. Then for all but finitely many

ke x°
s
n
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pIF" N @) =Y N0 )",
n

contradicting that X, < Ys . This proves Proposition 4.1. E

n

0

REMARK. A similar proof would show the following. Identify P{w) with
2 under the usual topology. Suppose that U 1is a P-point and F S U is
dense-in-itself. Then there exist X € U and % C F dense-in-itself such that
for all Y ¢ f, X CY. 1In fact, if we keep in mind the last remark of section
two, it is really the same proposition. This proposition gives an alternative
proof of a theorem of Kanamori (1978) that for any P-point U 1if we are given
AOL e U for a< Wy s then there exists an for n<w and X e U such that

X c AOL for each n < w. This is true because any uncountable subset of 2
n
must contain a subset dense-in-itself.

For G P-generic over M and U an ultrafilter in M define
*
U ={A E(b::a BeU BEA]. Then Proposition 4.1 simply says that if P is
rational perfect set forcing and U is a P-point in M, then U% is an ultra-

filter in M[G]. 1In fact, it is a P-point in M[G].

4.2. PROPOSITION. If U 1is a P-point in M and G is PP-generic over M
(where P is rational perfect set forcing), then Ux=={A c m::a BeU BCA} is
a P-point in M[G].

Proof. Suppose p |F"(An: n < w)] 1is a partition of w and for all n,
*
An ¢ U". We will find q < p and X e U such that for all n
q H-"An N X is finite"
Build a fusion sequence Pyt < P where the first n splitting levels of
Py (i.e. the splitting levels naturally isomorphism to wgb) are still splitting

levels of »p Using Proposition 4.1 find XS e U and p, so that for

nt+l ’
every s on the nth gplitting level of P

" m . = "
Pa,s IF X, N (AguA U UA) =9

Now let q= N p be the fusion and find X ¢ U such that X < X for each
n - s
s e split(q). (O

REMARKS . These results are analogous to a theorem of Baumgartner and Laver
(1979) that under perfect set forcing selective ultrafilters generate selective
ultrafilters in the extension. A. Blass pointed out to me that the same 1is
true for P-polnts by using the above arguments and viewing rational perfect set

forcing as "a kind of" subset of perfect set forcing. One big difference is
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that while Baumgartner and Laver showed that their result continues to hold
when perfect set forcing is iterated, I don't know whether P-points conrtinue
to generate P-points when either perfect set forcing or rational perfect set
forcing is iterated. I would conjecture that they do.

Does there always exist an ultrafilter in the ground model which witnesses
the non existence of an independent set by generating an ultrafilter in the ex-
tension? The answer is no. This follows from the next preoposition which is
implicit in Ketonen (1976),and a theorem of Shelah (1982) that it is consistent

that there are no P-points.

4.3. PROPOSITION. (Ketonmen) Suppose U 1s an ultrafilter in the ground
model M, f e o’ is a weak dominating real (i.e. for all ge o’ M there are
*
infinitely many n such that g(n) < f£(n)), and U the filter generated by

U in M{G] 1is an ultrafilter. Then U is a P-point in M.

Proof. Suppose {Xn: ne w) e M is a partition of w such that X, ¢ U
for all n. In M[G] let
A= U & Ni@)
ho iV
Since U* is an ultrafilter there exists X e U such that either X C A or
XNA=0. In the former case we have found X ¢ U meeting each Xn in a
finite set. The latter case cannot happen because f 1is a weak dominating

real. Since X and {Xn: new are in M we could define g ¢ o in M by
*
g (n) = least m me (X ﬂXn)

o %
and g(n)=g (m) where m 1is least element if the domain of g is greater
*
than or equal to n. Clearly gc dominates f on its domain and assuming

that f 1is strictly increasing g dominates f everywhere. []

REMARK. Clearly this proposition shows that Iin the rational perfect set
forcing extension the only ultrafilters which remain ultrafilters are the
P-points. This is not true for Sacks forcing. Suppose G is Sacks generic
over M and U and V are ultrafilters in M such that U* and V* (the
filters generated by U and V) are ultrafilters in M[G]. Then U @ V generates
an ultrafilter in M[G]. Recall that U X V 1is the ultrafilter on wxw de-
fined by A e U® V 1ff {n|{m: (n,m) ¢ A} € V} € U. It is neither a P-point

nor a Q-point.

§5. Q~POINTS AND THE BOREL CONJECTURE. An ultrafilter U on « 1is a Q-point
1ff for any partition {Xn: newl] of w iInto finite sets there exists an
X € U such that for each n<w [anWX[ < 1. 1If Laver or Mathias forcing is
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iterated, there are no Q-points (see Miller (1980)). This is also true when
rational perfect set forcing is iterated. The next proposition shows what can

be shown with respect to the simple extension.

5.1. PROPOSITION. Suppose G 1is P-generic over M where P 1is rational
perfect set forcing. Then no non principal ultrafilter in M extends to a Q-

point in M[G].

Proof. We can assume without loss of generality that the generic real
few’ which generates G 1s strictly increasing. Consilder the partition of
w into finite sets Xn==[f(n),f(n+1)). The proposition will follow easily

from the following claim.

5.1.1. CLATM. Suppose p |[F"v¥n [an7Y| < 1". Then there exists Y., Y

0’ "1°’

P Py such that YOﬂYl is finite and for each 1i=0,1, p; <P and
" 1"
Pi H‘ Y < Y]'_ .

Proof.
Step 1. By an easy fusion argument construct q < p such that for every
+1
s eq 1if s e wn then qg decides Y Ns(n).
Step 2. Refine q to a < q which has the property that for each

~ +
s € split(q) (say s e wn 1) wither there exists a_ew such that for all

n e Xq
s

Il

Griny FY N IE@A-D), £@) = (a )"

or any m ¢ w for all but finitely many n e Xg

~

" - - "
qSA<n> F"Y n [£(n-1),m) 9
Step 3. Using a finite pruning argument obtain the required po, Py < a
and Y and Y., . At stage n suppose we have determined finitely many

0 1
splitting nodes for each of Py and Py pg and p?, and finite subsets of

w, Yg and Y? . Suppose we want to find another splitting node beneath a

splitting node s of pg . First pick any m ¢ Xg greater than max(Y?).

Then choose t e split(q) such that ¢t > s™(m). If at IF"Y Nmax (range(t)) = F"
ntl _ _n ntl _n ntl_ n n+l _

then let YO -—YOlJFlJ[at]. Now let Y1 =Yy, P =Py and Py =

pSlJ{t]. This proves the claim. To prove the proposition proceed as follows.
%
Suppose U 1s an ultrafilter in M and U is a term for any ultrafilter in
*
M[G] which extends U. Suppose for contradiction that p |F"Y ¢ U and
" - . . .
V11|anWY| < 1". Using the claim obtain Pgs Py YO, Y1 . Since YOOY1 is
finite either Y0 é U or Yl ¢ U. Suppose YO ¢ U. Then
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Y AYe g
Po =0
a contradiction.

The above argument is essentially the same as for Laver forcing. Unlike
Laver or Mathias forcing, the Borel conjecture falls in the rational perfect set
forcing model. Recall that a set of reals X 1is concentrated iff X 1is un-
countable and there exists a countable set c¢f reals Q such that for any open

set U2 Q X\U 1is countable. A concentrated set has strong measure zero.

5.2. PROPOSITION. Suppese M }= CH and P 1is rational perfect set

foreing. Then there exist X € M such that for all G P-~generic over M
M[G] f="X is concentrated"

Proof. Identify 2 and P) and let Q < 2® be the set of sequences
which are eventually 0. Working in M we will build a set X-= {AOL: a < (1)1}

€ P(w) such that X is concentrated on Q and remains so in M[G].

5.2.1. CLATM. Suppose k <w and p |F"Q SUopen,,'

k

Then there exists

q<p and k > k such that for every t e 2

a I ,,[tAOIE-k] < o
where

[£°05) = (x ¢ 2% x o=t A x(1)=0 for k < 1 < k)

5.2.2. CLAIM. Suppose A e [w]® and p [F"a C_IUOPen". Then there exists
q<p and B e [A]® such that for all ¢ B
q H_NC e "
Proof. Construct twlcz sequ—enc{is-kkn < kn+1 € A and p > 44 > 4y > Gy v s
so that 9 s Frwe e 2 n-1 [t*o * n-].] c U, where Sy is the nth

3
n
splitting node of 4, and q, retains the first n-1 splitting nodes of
Now let q= N 4 and let B= [kn: n < o). Suppose for contradiction

5 O
there exists €< B and r < q

a1

r |F'c ¢ u”

Then we can find some n < ® such that C\kn C B and the nth  gplitting
node s, of q is still in r. But we know that if t=CI‘kn, then
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k -k
brreto ™y

s
n
k

and C e [t70

-k
+ R
i+l n], a contradiction.

Now we prove Propositiom 5.2. Let {(pa, Ua): aﬁ<w1} be such that for

every p e P and term U if

P ;1r HQ E Uopen”

then there exists o < wy such that P, < p and pq}]F”U==Ua”. Using Claim

Claim 5.2.2 construct X:={X&: a < wl] © P@) so that o < B Implies
XO E? X and for each o < wy there exists q < p such that for all

g

C X

ct+l

lﬂ*

q H_HC e U(.L"

It is easy to see that X remains concentrated on Q in M[G].

REMARK. It is not true that every meager set in M[G] 1is covered by a
meager set coded in M. This follows from the fact that there is a weak dom-
inating real (see Miller (1983), wD = C(ec)). It is not hard to show however
that the ground model reals do not have first category.

Proposition 5.2 is also true when rational perfect set forcing is iterated

with countable support.
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