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WILLIAM G. FLEISSNER1 AND ARNOLD W. MILLER

ABSTRACT. A Q set is an uncountable set X of the real line such that every subset of
X is an F, relative to X. It is known that the existence of a Q set is independent of
and consistent with the usual axioms of set theory. We show that one cannot prove,
using the usual axioms of set theory: 1. If X is a Q set then any set of reals of
cardinality less than the cardinality of X is a Q set. 2. The union of a Q set and a
countable set is a Q set.

The existence of a Q set is a fundamental question of set theory considered by
Hausdorff [1], Sierpinski [2] and Rothberger [3] over thirty years ago, and by many
others since [4]-[7], [11]. A Q set is an uncountable subset X of the real line R such
that every subset of X is an F, relative to X. Precisely, for every 4 C X, there are
countably many closed subsets H,, n € w, of R such that U{H,: n€w} N X =
A.

The fundamental nature of the existence of Q sets is illustrated by its equivalence
with and implications with varied and apparently unrelated questions. Theorems
1-3 are a sample of the work cited above.

THEOREM 1. The following statements about a subset X of R are equivalent.

(@) X is a Q set.

(b) There is a countable family % of continuous real-valued functions defined on X
such that every real-valued function defined on X is the pointwise limit of a sequence
of functions from % .

(c) The “bubble space” constructed from X is a separable normal nonmetrizable
Moore space.

THEOREM 2. Each of the following statements implies the next.

(a) Martin’s Axiom plus the negation of the Continuum Hypothesis.

(b) There are no @ limits in the partial order (% (), C mod finite> (in the sense of
Hausdorff).

(c) Every subset of R of cardinality w, is a Q set.

(d) There is a Q set X such that for all n € w X" is homeomorphic to a Q set.

(€) There is a normal not separable Moore space in which every collection of
pointwise disjoint open sets is countable.

() 29 = 2,
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THEOREM 3. Suppose for some subset X of R of cardinality w, there is a countable
SJamily & of subsets of X such that every subset A of X can be expressed in the form
A=N{U{E:i<j<w},i<w} where each E; € & . Then (a) every subset Y of
R of cardinality w, has this property, and (b) there is a Q set.

It is tempting to conjecture that Theorem 3 can be strengthened by replacing (b)
with (b’) every subset Y of R of cardinality w, is a Q set.

Let us consider the set I of subsets X of R such that every subset 4 of X is an F,
relative to X. That is, 7 is the set of subsets of R which are either countable or Q
sets. In several senses, I/ is a family of small sets. Every member of I is first
category, measure zero, and has cardinality less then 2.

Assuming 2 < 2“1, or Martin’s Axiom, or certain modifications of Martin’s
Axiom, [ is the ideal of subsets of R of cardinality less than some cardinal. In this
paper, we answer negatively the following two questions: 1. If X € I, must every
set of smaller cardinality be in 7? 2. Must I be an ideal? Our answers will be in the
form of describing how to extend a countable transitive model of set theory to a
model in which: 1. There is a Q set of cardinality w, and a non Q set of cardinality
w, and /or 2. There is a Q set X and a countable set F such that X U Fis nota Q
set. Using standard techniques our answers can be recast as relative consistency
results or proofs of certain statements of arithmetic.

Our terminology and notation conform with current set theoretic practice. We
assume familiarity with Cohen’s method of forcing [8], and the method of iterated
forcing [9].

We begin by describing the basic step which is iterated. Let ® = {B,: n € w} be
a basis for the usual topology on R, withR € % . Let 4 ¢ X C R. We will define a
notion of forcing which makes 4 a relative F, in X. Let P(4, X) be the set of r
satisfying

1. r is finite.

2.rCcw X (B U A).

3. If {n, B), {n, x) € r (where B € % and x € A4) then x & B. (We think of
{n, B) € r assaying that B C U, and {n, a) € r as saying thata & U,.)

We say that r’ extends r if ' D r.

Let M be a countable transitive model of set theory, and let G be an M-generic
ultrafilter on P(4, X). In the extension, M[G], set for eachn € w U, = {x € X:
3reGIABEPB,<{n,B) €Er and x € B}, and set K= U {(X — U,): n € w}.
Then each U, is open relative to X, and K is an F, relative to X. We verify that
K = A, using the fact that the generic ultrafilter G meets every dense set of
P(4,X) in M. For all a € A, r € P(4, X), there are ' D r and n € w such that
{n,a) €r. Thenae X — U, Cc K.Forallx EX —A,r €eP(4,X),and n € w
there are ' D r and B € % such that {(n, B) € r' and x € B. Then for all n,
x € U,. Note that for any r,s EP(4, X) if rNn(@X B) =5 N (w X B) then
ruUs €P(4,X). It follows that P(4, X) has the countable antichain condi-
tion—any set of incompatible elements of P(4, X) is countable.

We next discuss how to iterate the basic step, described above. We will explicitly
describe how to construct an extension in which there is a Q set X and a countable
set F such that X U F is not a Q set. Afterwards, we will explain the modifications
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necessary to construct an extension in which there is a Q set of cardinality w, and a
non Q set of cardinality w,.

Let F be a countable dense subset of R, disjoint from the frontier of each
B, € B . The iterated forcing will be first to add a set Y of w, Cohen reals and then
iterate P(4, U F, Y U F) forcing, where 4,, a < w,, is chosen to list all the
subsets of Y in the extension.

One’s first attempt might be to do this iteration in exact analogy with [9] to get a
Boolean algebra B. This works, but in order to show that ¥ U F is not a Q set we
need to work with forcing conditions which display the basic steps. We will
construct a partial order P which can be embedded as a dense subset in such a B.

In our particular situation, we can and do avoid the machinery of iterated
forcing. To be more precise, we do define P by induction, but we do not use
analogues of §5 of [9] nor do we explicitly consider intermediate models.

Assume that 2t = @, in M, the ground model. A forcing condition will be a pair
{p, r> where p = {pp: B < w,) is a sequence of basic open sets from B and where
r =<r,: v < w,), with each r, in something like P(4, X) above. In the extension,
M[G], we will set {yg} = N {pg: <p,r) € G} and will set Y = {y;: B < w,}.
Thus the pg’s add the Cohen real y4, and the #’s will make Y into a Q set because
each r, will be in a partial order making a particular subset of Y a relative F,.
Because the y,’s are not in the ground model, we will not use P(4, X) as defined
above but rather a version with y, replaced by .

We begin by defining a partial order Q which will contain the desired P. Let Q
be the set of pairs { p, r> where

4.p=<{pg: B<wp,pg EDB,

5.r={r:y < wp,r, afinite subset of w X (B U @, U F),

6. { B < wy;:pg # R} U {y < w,: r, # I} is finite,

7. p forces thateach r, € P(Y U F, Y U F); explicitly:

(@) If {n, B),{n,f> € r,,wheren €Ew,BE %, f € F, thenf & B.

(b) If <n, B),{n, B> E r,wheren €Ew, BE B,y < w,, thenpy N B =(.

We say that {p’, r') extends {p, r) if py C p, for all B < «, and r, 2 r, for all
Y < w,.

We now attack the problem of listing in M all subsets of w, in the extension
M[G]. We call {g;5: i < w, B < w,;} a shadow if for each 8 < w,, {gp: i <w}isa
set of pairwise incompatible elements of Q. (Intuitively, the meaning is “g,5 forces
B € A7) Since 2°' = w,, there is {gp: i < w, B < w;, 1 < w,» which lists each
shadow w, times.

By induction on & < w, we define subsets P, of Q. P, = {{p, r> € Q: for all
Y < wy, r, =J}. Assume that P; has been defined for all § < a. If a is a limit
ordinal, let P, = U {Ps: § < a}. If a = n + 1 there are two cases. First, if {a}:
i <w, B < w}isnot asubset of P,, let P, = P,. Second, if {g}: i < w, B < w,}is
a subset of P, define P, to be those pairs (p, r) in Q such that

8.Vy>n,r, =D and {p,r) €EP, wherer, =r fory #nandr, = &.

9. If for some n < w, B < w, {n, B> € r,, then for some i < w, {p, r) extends
9ip-
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Set P =P, ; let G be M-generic over P. A standard counting argument shows
that

10. Every set of pairwise incompatible elements of P is countable.

One consequence of 10 is that M and M[G] have the same cardinals. A second
consequence is that for every subset A of w, in M[G] there is an 7 < w, such that
for each 8 < wy, {gj}: i < w} C P, and B € 4 iff for some i, g} € G. For such an
7, set for each n

U,={y€eY:Xpr)€G<nB)Er,andy € B}.

We can verify as in the basic step that {yg: B € 4} = U {Y — U,: n € w}. Thus
Yisa Q set.

We must show that Y U F is not a Q set. First we demonstrate that it will be
sufficient to establish

11. If U is an open set containing F, then Y — U is countable. For then if H is a
G; containing F, then Y — H is countable. This establishes that Y is not an F,
relative to Y U F, and hence that Y U Fis not a Q set.

Towards establishing 11, let U be an open set containing F. For each n € w, let
W, be a maximal pairwise incompatible set of conditions forcing B, C U. By 10,
1, and 6, there is a countable set J such that if anything at all is said about y, in
any element of U, W, then 8 € J-thatisif {p,r) € U ,,W, and pg # R or
there is y < w, and m < w such that {m, B> € r,, then B € J. We will show that
Y — J C U, establishing 11.

Lety, € Y, 8 & J, and (p, r) € P. Because F is an infinite dense set, there is
f € F such that f € p; and {n, ) & r, for all a and n. Extend {p, r) to {p', r')
by setting pj = pg, and ry = r, U {(n,f): (n, 8) € r,}. Because U is forced to
contain F, some extension of {p!, r'> forces f € B, C U N p, for some k € w.
Because W, is maximal, some {p?, r*y € W, is compatible with {p', r'>. We can
verify that there is in P a condition {p? r*) satisfying p3 C py N p3, 12 = ry U r2.
(We cannot say p; = pj N p; because “pj’s knowledge of y, is incomplete” and p}
must force

if (n, B) € rlu rland (n, B) € ry U rltheny, & B. (*)

If p 5 p) N p? it may happen thatpj N B, = &)

We choose B; C B, so that whenever (n, f> € r; and <{n, B} € r] then B,N B,
= . Define (p*, r*) by setting p; = B, ps = pj if B # 8, and r* = r>. We verify
that (p*, r*> € P. Everything follows from the fact that {p>, r*> € P except that
(*) above. We check this last case by noting that {n, ) & r? because y, & J, and
if (n,8) € rythen B, N B =.

Now {p* r*) extends {p, r) and {p? r?) since B; C B, C p; and p; = R since
8 & J.So {p*, r*> forces y, € U, verifying 11.

To construct a model in which there is a Q set of cardinality w, and a non Q set
of cardinality w,, we start with a model M in which 2% = w,, 2“2 = w,. Choose a set
X € M of cardinality w,. The extension is to first add a set ¥ of w, Cohen reals
and then to iterate P(A4,, X) forcing, where 4,, a < w,, lists all subsets of X in the
extension. Then in the extension X will be a Q set of cardinality w,. That Y is not a
Q set in this extension follows from the fact that if U is a dense open set, then
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Y — U is countable. This fact is verified in the same manner as 11 was. This
verification is simpler because we can choose p3 = pg N pj-

For concreteness, we have constructed the extension using specific cardinals. Of
course similar extensions may be constructed with w,, say, in place of w,. Further,
the two extensions discussed in this paper can be combined. Some other applica-
tions of our technique are to show that (d) of Theorem 2 does not imply (c), and
combined with the techniques of [13] we can show that it is consistent that there is
a concentrated space of Baire order w, (see [12]).

The following question remains open (see Rudin [10]): Is the product of two Q
sets a Q set? (Since this paper was written, the first author has used the techniques
of this paper to answer “not necessarily”.)

We would like to thank Professor K. Kunen for helpful discussions.
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