Projective subsets of separable metric spaces¹

Arnold W. $Miller^2$

Abstract

In this paper we will consider two possible definitions of projective subsets of a separable metric space X. A set $A \subseteq X$ is $\Sigma_1^1(X)$ iff there exists a complete separable metric space Y and Borel set $B \subseteq X \times Y$ such that $A = \{x \in X : \exists y \in Y (x, y) \in B\}$. Except for the fact that X may not be completely metrizable, this is the classical definition of analytic set and hence has many equivalent definitions, for example, A is $\Sigma_1^1(X)$ iff A is relatively analytic in X, i.e. A is the restriction to X of an analytic set in the completion of X. Another definition of projective we denote by Σ_1^X or abstract projective subset of X. A set $A \subseteq X$ is Σ_1^X iff there exists an $n \in \omega$ and a Borel set $B \subseteq X \times X^n$ such that $A = \{x \in X : \exists y \in X^n (x, y) \in B\}$. These sets can be far more pathological. While the family of sets $\Sigma_1^1(X)$ is closed under countable intersections and countable unions, there is a consistent example of a separable metric space X where Σ_1^X is not closed under countable intersections or countable unions. This takes place in the Cohen real model. Assuming CH there exists a separable metric space X such that every $\Sigma_1^{\overline{1}}(X)$ set is Borel in X but there exists a $\Sigma_1^1(X^2)$ set which is not Borel in X^2 . The space X^2 has Borel subsets of arbitrarily large rank while X has bounded Borel rank. This space is a Luzin set and the technique used here is Steel forcing with tagged trees. We give examples of spaces X illustrating the relationship between $\Sigma_1^1(X)$ and Σ_1^X and give some consistent examples partially answering an abstract projective hierarchy problem of Ulam.

¹in Annals of Pure and Applied Logic, 50(1990), 53-69.

²Partially supported by NSF grant 8801139

1 Equivalent definitions

For general background about analytic sets the reader should consult Kuratowski [4], Rogers [10], or Moschovakis [8]. One notation we will use thruout is

$$proj_X(B) = \{x \in X : \exists y \in Y \ (x, y) \in B\}$$

i.e. the projection of $B \subseteq X \times Y$ onto X. We begin by considering the notion of $\Sigma_1^1(X)$. This notion corresponds to any of the following equivalent definitions.

Theorem 1.1 For X a separable metric space and $A \subseteq X$ the following are all equivalent and denoted $\Sigma_1^1(X)$:

- 1. there exists a complete separable metric space Y and a Borel $B \subseteq X \times Y$ such that $A = proj_X(B) = \{x \in X : \exists y \in Y (x, y) \in B\}$
- 2. (relatively analytic) if \hat{X} is the completion of X, then there exists $\hat{A} \subseteq \hat{X}$ a $\Sigma_1^1(\hat{X})$ set such that $A = \hat{A} \cap X$
- 3. (Souslin in X) there exists $\langle A_s : s \in \omega^{<\omega} \rangle$ where each $A_s \subseteq X$ is closed in X and $A = \bigcup_{f \in \omega^{\omega}} \cap_{n \in \omega} A_{f \mid n}$
- 4. there exists $\langle A_s : s \in \omega^{<\omega} \rangle$ where each $A_s \subseteq X$ is Borel in X and $A = \bigcup_{f \in \omega^{\omega}} \cap_{n \in \omega} A_{f \uparrow n}$
- 5. there exists a closed set $C \subseteq X \times \omega^{\omega}$ such that $A = proj_X(C)$
- 6. there exists a complete separable metric space Y and a closed set $C \subseteq X \times Y$ such that $A = proj_X(C)$
- 7. (truth tables) there exists $T \subseteq P(\omega)$ which is Σ_1^1 and $\langle U_n : n \in \omega \rangle$ each $U_n \subseteq X$ Borel in X and $A = \{x \in X : \{n \in \omega : x \in U_n\} \in T\}$

proof:

 $(3) \to (4), (5) \to (6), (6) \to (1)$ trivial.

 $(2) \rightarrow (3)$ Note that by the classical theory of analytic sets in complete metric spaces

$$\hat{A} = \bigcup_{f \in \omega^{\omega}} \cap_{n \in \omega} A_{f \upharpoonright n}$$

where each $A_{f \upharpoonright n} \subseteq Y$ is closed in Y. Hence

$$A = \bigcup_{f \in \omega^{\omega}} \cap_{n \in \omega} (A_{f \restriction n} \cap X)$$

 $(3) \rightarrow (5)$ Let

$$A = \bigcup_{f \in \omega^{\omega}} \cap_{n \in \omega} A_{f \restriction n}$$

where each $A_{f \mid n}$ is closed in X. Define $C \subseteq X \times \omega^{\omega}$ by

$$C = \bigcap_{n \in \omega} (\bigcup_{s \in \omega^n} [s] \times A_s)$$

Then C is closed in $X \times \omega^{\omega}$ and A is the projection onto X of C.

 $(4) \rightarrow (1)$ same proof as $(3) \rightarrow (5)$.

 $(1) \rightarrow (2)$ Let $B \subseteq X \times Y$ be Borel. and let $\hat{B} \subseteq \hat{X} \times Y$ be Borel such that $\hat{B} \cap (X \times Y) = B$. Now if $\hat{A} = proj_{\hat{X}}(\hat{B})$ then \hat{A} is $\Sigma_1^1(\hat{X})$, and $A = \hat{A} \cap X$. (4) \rightarrow (7) Let

$$T = \{ Q \subseteq \omega^{<\omega} : \exists f \in \omega^{\omega} \forall n \in \omega \ f \restriction n \in Q \}$$

so $T \subseteq P(\omega^{<\omega})$, then

$$x \in \bigcup_{f \in \omega^{\omega}} \cap_{n \in \omega} A_{f \restriction n} \text{ iff } \{s \in \omega^{<\omega} : x \in A_s\} \in T$$

 $(7) \to (1)$ Let $D \subseteq P(\omega) \times \omega^{\omega}$ be Borel such that

$$T = \{ y \in P(\omega) : \exists z \in \omega^{\omega} \ (y, z) \in D \}$$

Then

$$Q = \{(x, y, z) : (y, z) \in D \text{ and } \forall n (n \in y \text{ iff } x \in U_n)\}$$

is Borel in $X \times \omega^{\omega} \times P(\omega)$ and

$$x \in A$$
 iff $\{n \in \omega : x \in U_n\} \in T$ iff $\exists y \exists z \ (x, y, z) \in Q$

This completes the proof.

From a more abstract point of view, for example see Ulam [20], suppose we started with arbitrary countable field of subsets of a set X. We could then form the σ -algebra of subsets of X that they generated and similarly the σ -algebra of subsets of $X \times X$ generated by products of our original family and so on for all finite products X^n . Then closing under projection would give the abstract projective sets. Using the idea of Szpilrajn's characteristic function of a sequence of sets ([19]) this is basically equivalent to the following notion of Σ_1^X subset of X.

Theorem 1.2 For X a separable metric space and $A \subseteq X$ the following are all equivalent and denoted Σ_1^X :

- 1. there exists $n \in \omega$ and a Borel set $B \subseteq X \times X^n$ such that $A = \{x \in X : \exists y \in X^n (x, y) \in B\}$
- 2. there exists $n \in \omega$ and a Borel set $B \subseteq X \times X^n$ and a continuous function $f : B \mapsto X$ such that f''B = A.
- 3. there exists $n \in \omega$ and a Borel set $B \subseteq X \times X^n$ and a Borel function $f: B \mapsto X$ such that f''B = A.

proof:

 $(1) \rightarrow (2)$ since projection is continuous, $(2) \rightarrow (3)$ is trivial, and $(3) \rightarrow (1)$ because the graph of f is a Borel subset of $X^n \times X$ and f''B is the projection onto X of the graph of f.

Unlike $\Sigma_1^1(X)$, any of which can be obtained by projecting a closed subset of $X \times \omega^{\omega}$, Σ_1^X may require projecting arbitrarily high ranking Borel subsets of $X \times X^n$. The example of Miller [5] (Theorem 43 p.259) shows this. This X has the property that there exists a $\Pi_{\alpha+1}^0$ Borel subset of X which is not the projection of any $\Sigma_{\alpha+1}^0$ set. The argument is similar to that of the last example of Section 2.

Note that it would be a mistake to consider a notion of projective which would allow arbitrary separable metric spaces Y in Theorem 1.1(6), because then every subset of X would be projective. To see this note that if $A \subseteq X$ is arbitrary, then $D = \{(x, y) \in X \times A : x = y\}$ is closed in $X \times A$ and A is the projection of D onto X.

2 Relationship between $\Sigma_1^1(X)$ and Σ_1^X

Let Borel(X) be the family of Borel subsets of X. Clearly, we always have $Borel(X) \subseteq \Sigma_1^1(X) \cap \Sigma_1^X$. In this section we give some (consistent) examples of separable metric spaces illustrating some of the possible relationships between these three families.

Example: Borel $(X) \subsetneq \Sigma_1^1(X) = \Sigma_1^X$.

If X is an uncountable complete separable metric space, such as ω^{ω} , then $\Sigma_1^1(X) = \Sigma_1^X$ and Borel(X) is a proper subset of $\Sigma_1^1(X)$, i.e. Borel(X) $\subsetneq \Sigma_1^1(X)$.

Example: Borel $(X) \subsetneq \Sigma_1^1(X) \subsetneq \Sigma_1^X$.

For $A \subseteq \omega^{\omega}$ and $n \in \omega$ let

$$(n)A = \{ y \in \omega^{\omega} : y(0) = n \text{ and } \exists x \in A \forall m \ x(m) = y(m+1) \}$$

Let $A \subset \omega^{\omega}$ be a set which is not $\Sigma_1^1(\omega^{\omega})$. Then $X = (0)A \cup (1)\omega^{\omega}$. To see that this works note that $\operatorname{Borel}(X) \subsetneq \Sigma_1^1(X)$ because ω^{ω} is a clopen subspace of X. Also because X includes ω^{ω} we have $\Sigma_1^1(X) \subseteq \Sigma_1^X$ (see Theorem 1.1). Also by Theorem 1.1 for every set of the form $(0)B \cup (1)C$ which is $\Sigma_1^1(X)$ we have that C is $\Sigma_1^1(\omega^{\omega})$. However (1)A is Σ_1^X , since it's the projection of

$$D = \{(x, y) \in X^2 : x(0) = 0, y(0) = 1, \text{ and } \forall n > 0 \ x(n) = y(n)\}$$

Consequently $\Sigma_1^1(X) \subsetneq \Sigma_1^X$.

The remaining examples are all consistent examples. The first two use Luzin sets (see Section 4).

Example: (CH) Borel $(X) = \Sigma_1^1(X) \subsetneq \Sigma_1^X$

Let $Y \subset \omega^{\omega}$ be a Luzin set, so by Theorem 4.1 section 4 Borel $(Y) = \Sigma_1^1(Y)$. Let $A \subset Y$ be a set which is not $\Sigma_1^1(Y)$, and let $X = (0)Y \cup (1)A$. Since X is a Luzin set Borel $(X) = \Sigma_1^1(X)$. On the other hand (0)A is Σ_1^X , so $\Sigma_1^1(X) \subsetneq \Sigma_1^X$.

Example: If X is a generic Luzin set, then $Borel(X) = \Sigma_1^1(X) = \Sigma_1^X$.

If X is countable or every subset of X is Borel in X (for example a Q-set), then we have $Borel(X) = \Sigma_1^1(X) = \Sigma_1^X$. To get an X of cardinality the

continuum we can use a generic Luzin set. By a generic Luzin set we mean that $X \subset \omega^{\omega}$ is produced by forcing with the partial order \mathbb{P} of finite partial functions from $\omega_1 \times \omega$ into ω over some model of ZFC M. Then the \mathbb{P} -generic object is essentially a function $G : \omega_1 \times \omega \mapsto \omega$ and we let $X = \{x_\alpha : \alpha < \omega_1\}$ where $x_\alpha(n) = G(\alpha, n)$.

We need only show $\operatorname{Borel}(X) = \Sigma_1^X$, since by Theorem 4.1 section 4, we already have that $\Sigma_1^1(X) = \operatorname{Borel}(X)$. We do the argument just for the projection of Borel subsets of $X \times X$, since the argument for $X \times X^n$ is similar. Let $B \subseteq \omega^{\omega} \times \omega^{\omega}$ be a Borel set. By the countable chain condition there exists a countable set $Q \in M$ such that B has a Borel code in $M[G \upharpoonright (Q \times \omega)]$. Let $D = \{(x, x) : x \in \omega^{\omega}\}$ and let $Y = \{x_{\alpha} : \alpha \in Q\}$ then

$$proj(B \cap (X \times X)) = proj(B \cap (Y \times X))$$
$$\cup proj(B \cap (X \times Y))$$
$$\cup proj(B \cap D \cap X)$$
$$\cup proj(B \cap (X - Y)^2 - D)$$

where projection is taken onto the first coordinate. Since Y is countable and $proj(B \cap (Y \times X)) \subseteq Y$ it is Borel. Since cross sections of Borel sets are Borel and $proj(B \cap (X \times Y))$ is a countable union of cross sections, it is Borel. If we let $C = \{x : (x, x) \in B\}$, then C is Borel and $C \cap X = proj(B \cap D \cap X)$.

So it suffices to see that $proj(B \cap (X - Y)^2 - D)$ is in Borel(X). Without loss of generality we may assume that $Y = \emptyset$ and that $B \subseteq (\omega^{\omega} \times \omega^{\omega}) - D$ is coded in the ground model M (otherwise we could work over a new ground model M[Y]).

Let $\mathbb{Q} = \omega^{<\omega}$ the partial order for forcing a single Cohen real and let $[p] = \{x \in \omega^{\omega} : p \subseteq x\}$ for $p \in \mathbb{Q}$. For any two distinct $x, y \in X$ we have $x \in proj(B \cap X)$ iff there exists $y \in X$ distinct from x such that $(x,y) \in B$. But since (x,y) is $\mathbb{Q} \times \mathbb{Q}$ generic over the ground model, we have that $(x,y) \in B$ iff there exists $p,q \in \mathbb{Q}$ with $p \subset x$ and $q \subset y$ such that $(p,q) \models (x,y) \in B$. But since B is a Borel set coded in the ground model $(p,q) \models (x,y) \in B$ iff $([p] \times [q]) \cap B$ is comeager in $[p] \times [q]$, (see Solovay [13]). Note that X is dense, so that it is easy to check now that $x \in proj(B \cap X)$ iff $x \in X$ and $\exists p, q \in \mathbb{Q}$ $x \in [p]$ and $([p] \times [q]) \cap B$ is comeager in $[p] \times [q]$. Hence the projection of $B \cap X$ is in Borel(X).

This example can also be obtained under CH using a proof similar to that of Theorem 4.2.

Example: (the set from Miller [6]) $\Sigma_1^X \subsetneq \Sigma_1^1(X)$.

In Miller [6] (Theorem 4 p. 177) a forcing construction is given for a set $X^* \subset \omega^{\omega}$ with the property that every subset of X^* is $\Sigma_1^1(X^*)$, but not every subset of X^* is in Borel(X^*). From here on we will refer to X for the X^* of [6]. The argument given in [6] that not every subset of X is Borel(X) generalizes to show that the first generic Souslin set (i.e. $A \in \Sigma_1^1(X)$) is not the projection of a Borel subset of $X \times X^n$ for any $n \in \omega$. See the last paragraph of section 3 [6]. Suppose there exists $p \in \mathbb{Q}_{\omega_2}$ and $\tau \in 2^{\omega}$ such that

$$p \models ``\forall x \in X (x \in A \text{ iff } \exists \vec{y} \in X^n (x, \vec{y}) \in B_\tau)''$$
(1)

where $B_{\tau} \subseteq X \times X^n$ is Σ_{β}^0 set with code τ . Using the countable chain condition of $p \in \mathbb{Q}_{\omega_2}$ it is easy to obtain a countable $K \subset \omega_2$ with $0 \in K$, and an α with $0 < \beta < \alpha < \omega_1$, such that K and α also satisfies $|p|(K, \alpha) = 0$, $|\tau|(K, \alpha) = 0$, and

$$\forall \delta \in K \; \forall \gamma < \alpha \; \{ q \in \mathbb{Q}_{\delta} : |q|(K, \alpha) = 0 \} \text{ decides } "\gamma \in Z_{\delta} "$$

Hence by Lemma 5 [6] $||(K, \alpha)|$ is a rank function with p in its domain (see [6] definition (11) p.172). Now we use the argument of the last paragraph on p.174 [6]. Let $\gamma > \alpha + \omega$ be arbitrary and extend p to p_1 by adding to p(0), $p_{\gamma}(\emptyset) = 1$, which means that

$$p_1 \models "x_{\gamma} \in A"$$

Since p_1 extends p by line (1)

$$p_1 \models ``\exists \vec{y} \in X^n (x_\gamma, \vec{y}) \in B_\tau$$
"

So find $\vec{y} \in X^n$ and p_2 extending p_1 so that

$$p_2 \models "(x_{\gamma}, \vec{y}) \in B_{\tau}$$
"

Now since (x_{γ}, \vec{y}) is in the ground model we can think of this as a Σ_{β}^{0} statement about τ , consequently by Lemma 2 [6] p.173, there exists a $q \in \mathbb{Q}_{\omega_{2}}$ with $|q|(K, \alpha) < \beta$ which is compatible with p_{2} such that

$$q \models "(x_{\gamma}, \vec{y}) \in B_{\tau}$$
"

But now extend q to q_1 by adding to q(0) that $q_{\gamma}(\emptyset) = 0$ (this is possible because $|q|(K, \alpha) < \beta$) but then

 $q_1 \models "x_\gamma \notin A \text{ and } \exists \vec{y} \in X^n \ (x_\gamma, \vec{y}) \in B_\tau$

contradicting line (1) and the fact that q_1 extends p.

Problem: Give examples of X such that $Borel(X) = \Sigma_1^X \subsetneq \Sigma_1^1(X)$ and $Borel(X) \subsetneq \Sigma_1^X \subsetneq \Sigma_1^1(X)$.

3 Closure under unions and intersections

Our first two results are simple observations.

Theorem 3.1 For any separable metric space X the family of sets $\Sigma_1^1(X)$ is closed under countable unions and intersections.

proof:

This is immediate from Theorem 1.1(2) since in complete metric spaces Σ_1^1 sets are closed under countable intersection and union.

Theorem 3.2 For any separable metric space X the family of subsets of X, Σ_1^X , is closed under finite unions and intersections.

proof:

Let $A_i = proj_X(B_i)$ where $B_i \subseteq X \times X^{n_i}$ is Borel for i = 0 or 1. By replacing B_i with $B_i \times X^{k_i}$ for a suitable k_i we may assume without loss of generality that $n_0 = n_1$. Then

$$A_0 \cup A_1 = proj(B_0 \cup B_1)$$

For intersection let $\hat{B}_0 = B_0 \times X^{n_1}$ and

$$\hat{B}_1 = \{ (x, y, z) \in X \times X^{n_0} \times X^{n_1} : (x, z) \in B_0 \}$$

Then

$$A_0 \cap A_1 = proj_X(\hat{B_0} \cap \hat{B_1})$$

The remainder of this section is devoted to proving the following theorem.

Theorem 3.3 It is relatively consistent with ZFC that there exists a separable metric space X such that Σ_1^X is closed under neither countable unions nor countable intersections.

proof:

Fix $Y \subseteq \omega^{\omega}$ a set in the ground model of cardinality ω_1 and consider the following forcing notions: \mathbb{Q} is the partial order of finite partial functions from Y to 2 and \mathbb{P} is the direct sum of countably many copies of \mathbb{Q} , $\Sigma_{n\in\omega}\mathbb{Q}$. Of course both \mathbb{P} and \mathbb{Q} are isomorphic to the usual way of adding ω_1 Cohen reals. We view forcing with \mathbb{P} as equivalent to adding a sequence $\langle A_n : n \in \omega \rangle$ of generic subsets of Y, i.e. if G is a \mathbb{P} -generic filter, then for each $n \in \omega$ let $A_n = \{x \in Y : \exists p \in G \ p_n(x) = 1\}$. For $n \in \omega$ and $A \subseteq \omega^{\omega}$ recall that

$$(n)A = \{x \in \omega^{\omega} : x(0) = n \text{ and } \exists y \in A \ \forall m \in \omega \ x(m+1) = y(m)\}$$

The space X is defined by

$$X = \bigcup_{n \in \omega} (2n)Y \cup \bigcup_{n \in \omega} (2n+1)A_n$$

i.e. countably many copies of Y and one of each A_n .

Lemma 3.4 For each $n, m \in \omega$ the set $(2m)A_n$ is Σ_1^X .

proof:

Let $D_{nm} \subset X \times X$ be the appropriate diagonal, namely,

$$D_{nm} = \{(x, y) \in X \times X : x(0) = 2m, y(0) = 2n + 1, \forall k > 0 \ x(k) = y(k)\}$$

Then D_{nm} is closed and $proj(D_{nm}) = (2m)A_n$.

For $k < \omega$ let $B_k = (2k)(\bigcap_{n < k} A_n)$. So B_k is Σ_1^X by Theorem 3.2. Also let $B_k^* = B_k \cup \bigcup \{(2n)Y : n < \omega, n \neq k\}$, then B_k^* is Σ_1^X , since $\bigcup \{(2n)Y : n < \omega, n \neq k\}$ is clopen in X and hence Σ_1^X . So to prove the theorem it suffices to show R is not Σ_1^X where R is defined by:

$$R = \bigcup_{k \in \omega} B_k = \bigcap_{k \in \omega} B_k^*$$

Now since each B_k is a clopen subset of R it suffices to prove:

Lemma 3.5 B_{k+1} is not the projection of a Borel subset of $X \times X^k$.

proof:

Suppose for contradiction that

$$B_{k+1} = (2k)(A_0 \cap \ldots \cap A_k) = proj(B)$$

where $B \subseteq X \times X^k$ is Borel. Decompose B as the countable union of Borel sets:

$$B = \bigcup_{n_1, \dots, n_k \in \omega} C_{n_1, \dots, n_k}$$

where each $C_{n_1,\ldots,n_k} \subseteq (2k)Y \times (n_1)Z_1 \times \cdots \times (n_k)Z_k$ is Borel and each Z_i is either Y or some A_j depending whether n_i is even or odd. By an easy density argument we can see that B_{k+1} must be uncountable. Hence to prove the lemma it suffices to see:

Claim: Each $proj(C_{n_1,...,n_k})$ is countable.

To see this note that since there are only k Z's but k + 1 many A_j 's in the definition of B_{k+1} there must be some $j \leq k$ which does not appear as a Z_i , however $proj(C_{n_1,\ldots,n_k}) \subseteq (2k)A_j$. By the countable chain condition there exists a countable $K \subset X$ such that the Borel code for C_{n_1,\ldots,n_k} and hence C_{n_1,\ldots,n_k} itself is an element of $N = M[\langle A_j \upharpoonright K \rangle \langle A_i : i < \omega, i \neq j \rangle]$ where M is the ground model. It follows that $proj(C_{n_1,\ldots,n_k})$ is also in N. However $A_j \upharpoonright (Y - K)$ is generic over N, so if $proj(C_{n_1,\ldots,n_k}) \cap (2k)(Y - K)$ is infinite then $proj(C_{n_1,\ldots,n_k}) - (2k)A_j \neq \emptyset$, which would contradict the fact that $proj(C_{n_1,\ldots,n_k}) \subseteq (2k)A_j$. This proves the Claim, Lemma, and Theorem 3.3.

This proof also shows that it is possible that $n - \Sigma_1^X \neq (n+1) - \Sigma_1^X$ for all $n \in \omega$ where $n - \Sigma_1^X$ is the family of projections of Borel subsets of $X \times X^n$. Note also that for fixed n the family of $n - \Sigma_1^X$ sets is closed under countable union but not finite intersection. It is also true in this example that there exists a countable intersection of $1 - \Sigma_1^X$ sets which is not Σ_1^X , namely if $E_{kn} = (2n)A_k \cup \bigcup \{(2m)Y : m < \omega, m \neq n\}$ (each of which is $1 - \Sigma_1^X$), then $R = \bigcap_{n \in \omega} \bigcap_{k < n} E_{kn}$.

Problem: Can we have an example where Σ_1^X is closed under countable union but not countable intersection? Can we have an example where Σ_1^X is closed under countable intersection but not countable union?

4 **Properties of Products**

A separable metric space X is Luzin iff it is uncountable and every meager subset of X is countable. A set is nowhere dense iff its closure has empty interior and meager iff it is the countable union of nowhere dense sets. The following theorem is well known.

Theorem 4.1 If X is Luzin, then every $\Sigma_1^1(X)$ set is Borel in X.

proof:

In an arbitrary topological space the Souslin operation preserves the property of Baire (see Kuratowski [4]). Hence for any $A \in \Sigma_1^1(X)$ (by Theorem 1.1(3)) there exists open U and meager M such that $A = (U - M) \cup (M - U)$. But since meager sets are countable, clearly A is Borel. \Box

Theorem 4.2 Assume the continuum hypothesis. Then there exists a Luzin space X such that every $\Sigma_1^1(X^2)$ is Borel in X^2 .

proof:

This is true of any sufficiently generic Luzin set. Suppose that $M_{\alpha} \leq (HC, \in)$ for $\alpha < \omega_1$ is an increasing sequence of countable elementary substructures whose union is all of HC, the hereditarily countable sets, and $M_{\alpha} \in M_{\alpha+1}$ for each α . For each $\alpha < \omega_1$ let $x_{\alpha} \in (2^{\omega} \cap M_{\alpha+1})$ be a Cohen generic real over M_{α} . Then $X = \{x_{\alpha} : \alpha < \omega_1\}$ has the required property. Suppose $A \subseteq 2^{\omega} \times 2^{\omega}$ is $\Sigma_1^1(2^{\omega} \times 2^{\omega})$, then since it has the property of Baire, there exists a open U and meager M such that $A = (U - M) \cup (M - U)$. Let F be a meager Borel set with $M \subseteq F$. Suppose that F is coded in M_{α} , then for every $\beta \neq \gamma > \alpha$ we have that $(x_{\beta}, x_{\gamma}) \notin F$. To see this suppose that $\alpha < \beta < \gamma$ and note that since F is meager, for comeagerly many x, $F_x = \{y : (x, y) \in F\}$ is meager (by the Kuratowski-Ulam Theorem see Oxtoby [9]). Consequently $F_{x_{\beta}}$ which is coded in M_{γ} is meager and therefore $x_{\gamma} \notin F_{x_{\beta}}$. Hence

$$A \cap \{(x_{\beta}, x_{\gamma}) : \beta \neq \gamma > \alpha\} = U \cap \{(x_{\beta}, x_{\gamma}) : \beta \neq \gamma > \alpha\}$$

Also letting $D = \{(x, x) : x \in X\}$, then since D is homeomorphic to X we have that $A \cap D$ is Borel in X. Finally for all $\beta \leq \alpha$ let $A_{\beta} = \{(x_{\beta}, x_{\gamma}) : \gamma < \beta \}$

 $\omega_1 \} \cap A$ and $A^{\beta} = \{(x_{\gamma}, x_{\beta}) : \gamma < \omega_1 \} \cap A$. Each of these is Borel in X^2 , and so A is Borel in X^2 .

This result also holds for generic Luzin sets.

Theorem 4.3 Assume the continuum hypothesis. Then there exists a Luzin space X such that not every $\Sigma_1^1(X^2)$ is Borel in X^2 .

proof:

It suffices to construct $X, Y \subseteq 2^{\omega}$ Luzin sets such that there exists $A \subseteq X \times Y$ which is $\Sigma_1^1(X \times Y)$ but not (relatively) Borel in $X \times Y$. For $x, y \in 2^{\omega}$ let x + y be pointwise addition modulo 2, i.e. $(x + y)(n) = x(n) + y(n) \mod 2$. Let

 $A = \{(x, y) : x + y \text{ is the characteristic function of a nonwellfounded set } \}$

More precisely let $\#: \omega^{<\omega} \mapsto \omega$ be a fixed bijection, then

$$(x,y) \in A \text{ iff } \exists f \in \omega^{\omega} \ \forall n \in \omega \ (x+y)(\#f \restriction n) = 1$$

Clearly A is $\Sigma_1^1(2^{\omega} \times 2^{\omega})$. Lemma 4.4 will finish the proof of the theorem. Let M_{α} be as in the proof of Theorem 4.2 and let $\langle B_{\alpha} : \alpha < \omega_1 \rangle$ list all Borel subsets of $2^{\omega} \times 2^{\omega}$ with B_{α} coded in M_{α} . Using Lemma 4.4 construct $X = \{x_{\alpha} : \alpha < \omega_1\}$ and $Y = \{y_{\alpha} : \alpha < \omega_1\}$ such that x_{α} and y_{α} are Cohen generic over M_{α} and $(x_{\alpha}, y_{\alpha}) \in (A - B_{\alpha}) \cup (B_{\alpha} - A)$. Then X and Y are Luzin sets, but $A \cap (X \times Y)$ is not Borel in $X \times Y$.

Lemma 4.4 Suppose that M is a countable transitive model of ZFC-Power Set and $B \subseteq 2^{\omega} \times 2^{\omega}$ is a Borel set coded in M, then there exists $x, y \in 2^{\omega}$ Cohen generic over M such that $(x, y) \in (A - B) \cup (B - A)$.

proof:

To prove this we use Steel forcing [14] as explained in Harrington [3]. Let \mathbb{Q} be Steel forcing with tagged trees, hence

 $\mathbb{Q} = \{ \langle t, h \rangle : t \subseteq \omega^{<\omega} \text{ finite subtree, } h : t \mapsto \omega_1 \cup \{\infty\} \text{ a rank function} \}$

where rank function means that $h(\emptyset) = \infty$ and $s \subsetneq r \in t \to h(s) < h(r)$ ($\alpha < \infty < \infty$ for $\alpha < \omega_1$). If G is Q-generic over a model M, then G is essentially

equal to (T, H) where $T \subseteq \omega^{<\omega}$ is a tree and $H : T \mapsto \omega_1 \cup \{\infty\}$ is a rank function. It has the property that if $H(s) = \infty$, then T_s is nonwellfounded $(T_s = \{t \in \omega^{<\omega} : s \ t \in T\})$; and otherwise if $H(s) \in \omega_1$, then T_s is wellfounded. Let $x \in 2^{\omega}$ be Cohen generic real over M and let G = (T, H)be \mathbb{Q} -generic over M[x]. Let $z \in 2^{\omega}$ be the characteristic function of some $T_{\langle n \rangle} \subseteq \omega^{<\omega}$ and let y = x + z.

Claim: y is a Cohen real over M. proof:

Let $\mathbb{P} = 2^{<\omega}$ be Cohen real forcing, then iterated forcing is the same as product forcing: $\mathbb{P} \times \mathbb{Q}$ since conditions are finite. So x is \mathbb{P} -generic over M[G]and since $z \in M[G]$ and y = x + z we have that y is \mathbb{P} -generic over M[G] and hence over M.

Let $\langle n \rangle$ be such that $H(\langle n \rangle) = \infty$ so that $T_{\langle n \rangle}$ is not wellfounded. Case 1. $\langle x, y \rangle \notin B$

Since x + y = z codes a nonwellfounded tree we're done, since $\langle x, y \rangle \in A - B$.

Case 2. $\langle x, y \rangle \in B$

In this case we use the main property of Steel forcing. Let $p \in G$ be a condition such that $p \models \langle x, y \rangle \in B$. The statement " $\langle x, y \rangle \in B$ " is a Borel proposition with code in M[x] about the real z since y = x + z. Therefore " $\langle x, y \rangle \in B$ " is equivalent to a propositional sentence in $L_{\omega_1\omega}$ built up from the atomic propositions " $s \in \hat{T}$ " where $s \in \omega^{<\omega}$ and \hat{T} is a name in the ground model for the generic object T. This propositional sentence is in M[x] and has rank less than $\omega_1^{M[x]}$. Say it has rank γ . Then working in M[x] we can find a condition $\overline{p} \in \mathbb{Q}$ such that $p(\gamma) = \overline{p}(\gamma)$ (see Harrington [3]) with the property $\overline{h}(\langle n \rangle) \in \omega_1$. By the retagging lemma $\overline{p} \models \langle x, y \rangle \in B$. Hence if we take \overline{G} to be \mathbb{Q} -generic over M[x] with $\overline{p} \in \overline{G}$, then $\langle x, y \rangle \in B - A$. This proves the lemma and hence the theorem.

This result can also be proved for Sierpiński sets. Steel forcing has also been used effectively in Stern [15] [18] [17] [16] and Friedman [2]. This proof is a slight generalization of a classical construction due to Sierpiński [12] of a Luzin set X such that X^2 can be mapped continuously onto 2^{ω} . In fact we show that this set could have been used to prove Theorem 4.3.

I. Reclaw has pointed out the following result.

Theorem 4.5 (Reclaw) For any separable metric space X if X has bounded Borel order, then X cannot be mapped continuously onto the real line.

proof:

Theorem 12 of Bing, Bledsoe, and Mauldin [1] says that if G is a countable family of subsets of the real line closed under complementation and whose σ -algebra contains all Borel subsets of the real line, then the σ -algebra generated by G contains ω_1 distinct levels. Now suppose $f : X \mapsto \mathbb{R}$ is continuous, onto, and one-to-one. Let G smallest family of sets closed under complements and containing a basis for \mathbb{R} and the image under f of a basis for X. The hierarchy generated by G must have ω_1 levels and therefore the same is true for the Borel hierarchy of X.

Thus Reclaw answers a question of Miller [7] negatively, since it is impossible to map a σ - set continuously onto the reals. The following is proved similarly to Theorem 12 of Bing et al [1].

Theorem 4.6 Suppose G is a countable family of subsets of ω^{ω} closed under complementation and such that the σ -algebra generated by G, which we denote B(G), contains all Borel subsets of ω^{ω} . Then there exists a set $X \subset \omega^{\omega}$ which is not in B(G) but is obtained by applying the Souslin operation to sets in B(G), i.e. there exists $B_s \in B(G)$ for $s \in \omega^{<\omega}$ such that $X = \bigcup_{f \in \omega^{\omega}} \bigcap_{n \in \omega} B_{f \uparrow n}$

proof:

Denote by S(G) the family of sets obtained by applying the Souslin operation to sets in G. The idea of the proof is to obtain a universal set for S(G). Namely there exists a map $U : \omega^{\omega} \mapsto S(G)$ which is onto and has the property that the diagonal $D = \{x : x \in U(x)\}$ is in S(G). This will conclude the proof since D cannot be in B(G), else for some $x \in \omega^{\omega}$ we would have $U(x) = \omega^{\omega} - D$ and hence for this x we would have $x \in U(x)$ iff $x \notin U(x)$.

Let $G = \{G_n : n \in \omega\}$ and let $\# : \omega^{<\omega} \mapsto \omega$ be our fixed bijection. For any $x \in \omega^{\omega}$ let $A_s^x = G_{x(\#s)}$ and let $U(x) = \bigcup_{f \in \omega^{\omega}} \bigcap_{n < \omega} A_{f \mid n}^x$. We need to see that the diagonal D is in S(G). For fixed $s \in \omega^{<\omega}$ let $B_s = \{x : x \in G_{x(\#s)}\}$. It is easy to see that

$$D = \{x : x \in U(x)\} = \bigcup_{f \in \omega^{\omega}} \cap_{n \in \omega} B_{f \restriction n}$$

Now $B_s = \bigcup_{n < \omega} \{x \in \omega^{\omega} : x(\#s) = n \text{ and } x \in G_n\}$ since we are assuming every clopen subset of ω^{ω} is in B(G) we have that each B_s is in B(G). Since G is closed under complementation we know that B(G) is the smallest family of sets containing G and closed under countable unions and countable intersections. Two classical results of Sierpiński are that S(S(G)) = S(G)and S(G) is closed under countable union and countable intersection (for a proof see Rogers and Jayne [11]). So $B(G) \subseteq S(G)$ and $D \in S(G)$. \Box

Note that since every uncountable complete separable metric space contains a homeomorphic Borel copy of ω^{ω} this result also holds for every uncountable complete separable metric space. Just as in Recław's result we have the following corollary.

Corollary 4.7 For any separable metric space X if X can be mapped continuously onto ω^{ω} , then $\Sigma_1^1(X) - Borel(X)$ is nonempty.

Problem: (Mauldin) Is it consistent to have a separable metric space X with bounded Borel order but not every $\Sigma_1^1(X)$ subset is Borel in X?

In Theorem 4.3 the Borel order of X^2 is ω_1 .

5 The hierarchy of projective sets

For X a separable metric space we make the following definitions.

- Define $\Sigma_0^X = \Pi_0^X = \bigcup_{n \in \omega} \text{Borel}(X^n)$ (the set of all Borel subsets of finite products of X).
- Define $A \subseteq X^m$ to be \prod_{n+1}^X iff $X^m A$ is \sum_{n+1}^X .
- Define $A \subseteq X^m$ to be \sum_{n+1}^X iff there exists a $k \in \omega$ and $B \subseteq X^m \times X^k$ in \prod_n^X such that $A = proj_{X^m}(B) = \{x \in X^m : \exists y \in X^k \ (x, y) \in B\}.$
- Define $\Delta_n^X = \Sigma_n^X \cap \Pi_n^X$.

Theorem 5.1 $\Delta_n^X \subseteq \Sigma_n^X \subseteq \Delta_{n+1}^X$ and $\Delta_n^X \subseteq \Pi_n^X \subseteq \Delta_{n+1}^X$.

proof: Left to the reader. □

Theorem 5.2 Δ_n^X , Σ_n^X , and Π_n^X are closed under finite unions and intersections.

proof:

Similar to the proof of Theorem 3.2.

Define the projective subsets of X to be the $\bigcup_{n \in \omega} \Sigma_n^X$ and define the projective order of X to be the least $n < \omega$ such that every projective subset of X is Σ_n^X .

Problem: (Ulam [20]) For what n does there exist a space of projective order n.

Obviously a countable space has projective order 0 and a complete uncountable space has infinite projective order.

Problem: Is it consistent with ZFC that every uncountable space has infinite projective order? In fact, I do not know if it is consistent with ZFC that every uncountable space has projective order greater than 0.

Theorem 5.3 In the Cohen real model there exist subsets of ω^{ω} which have projective order 1 and 2.

proof:

Let $X \subset \omega^{\omega}$ be a batch of ω_1 Cohen reals and let $A \subset X$ be a Cohen generic subset with finite conditions. Let $Y = (0)X \cup (1)A$ and let $Z = (0)X \cup (1)A \cup (2)(X - A)$. We will show that the projective order of Y is 2 and the projective order of Z is 1. We begin with the proof for Y.

An A-cylinder is one of the sets A_{in} where $1 \leq i \leq n < \omega$ and $A_{in} = Y^{i-1} \times (0)A \times Y^{n-i}$. Let Σ be the smallest family of sets containing Borel (Y^n) for all n and all A-cylinders and closed under finite union and finite intersection. Our main lemma is that $\Sigma = \Sigma_1^Y$ (Lemma 5.7). The next three lemmas will be used to prove the main lemma.

Lemma 5.4 Suppose $C \in \Sigma$ where $C \subseteq Y^n \times Y$ and there exists $i, 1 \leq i \leq n$, such that for all $(\langle y_1, \ldots, y_n \rangle, y) \in C$ we have $y_i = y$, then $proj_{Y^n}(C) \in \Sigma$.

proof:

Define $p: Y^n \mapsto Y^n \times Y$ by $p(\vec{y}) = (\vec{y}, y)$ where $y = y_i$. Then p is continuous, hence for any B Borel we have $p^{-1}(B)$ is Borel. Also for A-cylinders:

$$p^{-1}(Y^n \times (0)A) = Y^{i-1} \times (0)A \times Y^{n-i}$$

and for j < n:

$$p^{-1}(Y^j \times (0)A \times Y^{n-j}) = Y^j \times (0)A \times Y^{n-j-1}$$

Hence p^{-1} of elements of Σ are elements of Σ . But note that $proj_{Y^n}(C) = p^{-1}(C)$.

For $y \in \omega^{\omega}$ with y(0) = 0 or 1 define $\tilde{y} \in \omega^{\omega}$ by $\tilde{y}(0) = 1 - y(0)$ and for all m > 0, $\tilde{y}(m) = y(m)$.

Lemma 5.5 Suppose $C \in \Sigma$ where $C \subseteq Y^n \times Y$ and there exists $i, 1 \leq i \leq n$, such that for all $(\langle y_1, \ldots, y_n \rangle, y) \in C$ we have $y = \tilde{y}_i$, then $proj_{Y^n}(C) \in \Sigma$.

proof:

Define $q: Y^n \mapsto Y^n \times \omega^{\omega}$ by $q(\vec{y}) = (\vec{y}, y)$ where $y = \tilde{y}_i$. Note that $proj_{Y^n}(C) = q^{-1}(C)$, so it is enough to check that preimages of Borel sets and A-cylinders are elements of Σ . Let $B \subseteq Y^n \times Y$ be Borel and let $\hat{B} \subseteq Y^n \times \omega^{\omega}$ be Borel such that $B = \hat{B} \cap (Y^n \times Y)$, then

$$q^{-1}(B) = q^{-1}(\hat{B}) \cap (Y^{i-1} \times [(0)A \cup (1)A] \times Y^{n-i})$$

This set is the intersection of a Borel set with the union of an A-cylindar and a clopen set, hence it is in Σ . Now we consider the preimages of A-cylindars, $q^{-1}(A_{jn+1})$. Suppose $1 \leq j < n+1$, then

$$q^{-1}(Y^{j-1} \times (0)A \times Y^{n+1-j}) = \{ \langle y_1, \dots, y_n \rangle : y_j \in (0)A \text{ and } y_i \in (0)A \cup (1)A \}$$

which is the union of a clopen set and an A-cylindar. In case j = n + 1:

$$q^{-1}(Y^n \times (0)A) = Y^{i-1} \times (1)A \times Y^{n-1}$$

which is a clopen set. So in each case the preimage is in Σ and the lemma is proved.

Lemma 5.6 Suppose $1 \le j_1 < j_2 < \cdots < j_k \le n+1$ (k may be zero) and $C \subseteq Y^{n+1}$ is given by

$$C = A_{j_1n+1} \cap A_{j_2n+1} \cap \dots \cap A_{j_kn+1} \cap B$$

- B ⊆ Yⁿ⁺¹ is the intersection with Yⁿ⁺¹ of a Borel subset of (ω^ω)ⁿ⁺¹ coded in V[X ↾ Γ, A ↾ Γ] where Γ is a countable set indexed in the ground model V,
- there exists $s \in 2^{n+1}$ such that $C \subset s(0)\omega^{\omega} \cup \ldots \cup s(n)\omega^{\omega}$,
- there exists an equivalence relation \approx on $\{0, 1, ..., n\}$ with the property that for all $\langle y_0, ..., y_n \rangle \in C$ and i, j < n + 1

$$i \approx j \; iff \; \forall m > 0 \; y_i(m) = y_j(m)$$

and for all $i \neq n$, $i \not\approx n$,

• there exists $t \in (\Gamma \cup \{*\})^{n+1}$ such that t(n) = * and for all i < n+1 $t(i) \in \Gamma$ implies $y_i = s(i)^{*}t(i)$ and t(i) = * implies $y_i \notin (s(i))\Gamma$.

Then $proj_{Y^n}(C) \in \Sigma$.

proof:

Define $Q \subseteq (\omega^{\omega})^{n+1}$ to be the G_{δ} set determined by the above conditions, namely $\vec{y} \in Q$ iff for all i, j < n + 1 $y_i(0) = s(i), i \approx j$ iff $\forall m > 0$ $y_i(m) = y_j(m)$, $t(i) \in \Gamma$ implies $y_i = s(i)^{\dagger}t(i)$, and t(i) = * implies $y_i \notin (s(i))\Gamma$. Let $\mathbb{P} \subseteq (\omega^{<\omega})^{n+1}$ be the subpartial order defined by

$$\vec{p} \in \mathbb{P} \text{ iff } \exists \vec{y} \in Q \ \forall i < n+1 \ p_i \subseteq y_i$$

And for $\vec{p} \in \mathbb{P}$ define

$$[\vec{p}] = \{ \vec{y} \in Q : \forall i < n+1 \ p_i \subseteq y_i \}$$

The set of $[\vec{p}]$ form a basis for Q.

Consider $V[X \upharpoonright \Gamma, A \upharpoonright \Gamma]$ to be the ground model. Any $\vec{y} \in Q$ determines the filter $\{\vec{p} : \forall i < n + 1 \ p_i \subseteq y_i\}$ on \mathbb{P} . We claim that every $\vec{y} \in Y^{n+1} \cap Q$ is \mathbb{P} -generic over $V[X \upharpoonright \Gamma, A \upharpoonright \Gamma]$. To see this note that \mathbb{P} is defined in $V[X \upharpoonright \Gamma, A \upharpoonright \Gamma]$ and the rest of X and A are generic over $V[X \upharpoonright \Gamma, A \upharpoonright \Gamma]$. Since

$$C = A_{j_1n+1} \cap \dots \cap A_{j_kn+1} \cap B \subseteq Y^{n+1} \cap Q$$

where $B \subseteq Y^{n+1}$ is Borel and coded in the ground model $V[X \upharpoonright \Gamma, A \upharpoonright \Gamma]$, by genericity we have:

$$\forall \vec{y} \in C \exists \vec{p} \in \mathbb{P} \ \vec{y} \in [\vec{p}] \text{ and } [\vec{p}] \cap Y^{n+1} \cap Q \subseteq B$$

Let $B = Y^{n+1} \cap \hat{B}$ where $\hat{B} \subseteq Q$ is an (absolute) Borel subset of the complete metric space Q. Since Borel sets have the property of Baire, there exists an open set $U \subseteq Q$ and a meager (in Q) Borel set $F \subset Q$ such that U and Fare coded in the ground model $V[X \upharpoonright \Gamma, A \upharpoonright \Gamma]$ and $(\hat{B} - U) \cup (U - \hat{B}) \subseteq F$. Consequently we have that $B = Y^{n+1} \cap U$. For $\vec{p} \in \mathbb{P}$ define $[\vec{p} \upharpoonright n] \subseteq Y^n$ by $\vec{y} \in [\vec{p} \upharpoonright n]$ iff $\forall i, j < n, p_i \subseteq y_i, y_i(0) = s(i), (i \approx j \text{ iff } \forall m > 0 \ y_i(m) = y_j(m)), t(i) \in \Gamma \to y_i = s(i) \uparrow t(i), \text{ and } t(i) = * \to y_i \notin (s(i))\Gamma).$

Claim: If $j_k < n$, then

$$proj_{Y^n}(C) = A_{j_1n} \cap \ldots \cap A_{j_kn} \cap \left(\bigcup_{[\vec{p}] \subseteq U} [\vec{p} \upharpoonright n] \cap Y^n\right)$$

else if $j_k = n$, then

$$proj_{Y^n}(C) = A_{j_1n} \cap \ldots \cap A_{j_{k-1}n} \cap \left(\bigcup_{[\vec{p}] \subseteq U} [\vec{p} \upharpoonright n] \cap Y^n\right)$$

proof:

 \subseteq This is clear since $B = Y^{n+1} \cap U$.

⊇ Suppose $\vec{y} = \langle y_0, \ldots, y_{n-1} \rangle \in [\vec{p} \upharpoonright n]$ where $[\vec{p}] \subseteq U$. We need to show that $\exists y_n \in Y$ such that $(\vec{y}, y_n) \in C$. Now $A_{j_k n+1}$ may or may not be A_{nn+1} which would require $y_n \in (0)A$. But note that t(n) = * so $y_n \notin (s(n))\Gamma$ and $\forall i < n$ we have $i \not\approx n$ so for all m > 0 $y_i(m) \neq y_n(m)$. Since A is generically chosen we can always find such a y_n .

This concludes the proof of the Claim and since the right hand sides are clearly in Σ the Lemma is proved.

Finally, we are ready to prove the main lemma:

Lemma 5.7 $\Sigma_1^Y = \Sigma$, *i.e.* the smallest family of sets containing $Borel(Y^n)$ for all n and all A-cylinders and closed under finite union and intersection.

proof:

Recall that A-cylinders are sets of form $A_{in} = Y^{i-1} \times (0)A \times Y^{n-i}$ Each A-cylinder is in Σ_1^Y since $A_{in} = proj_{Y^n}(D_{in+1})$ where

$$D_{in+1} = \{ (\vec{y}, y) \in Y^{n+1} : y_i(0) = 0, y(0) = 1, \text{ and } \forall m > 0 \ y(m) = y_i(m) \}$$

Hence $\Sigma \subseteq \Sigma_1^Y$ since each Borel set in Y and each A-cylinder is in Σ_1^Y and Σ_1^Y is closed under finite unions and intersections (Theorem 5.2).

To show that $\Sigma_1^Y \subseteq \Sigma$ it is enough to show that Σ is closed under projection, i.e. if $C \in \Sigma$ and $C \subseteq Y^n \times Y$, then $proj_{Y^n}(C) \subseteq Y^n$ is in Σ . To this end for i < n let $C_i = \{\vec{y} \in C : \forall m > 0 \ y_i(m) = y_n(m)\}$ and define $C_n = C - \bigcup_{i < n} C_i$. Note that each C_i for $i \leq n$ is a Borel set intersected with C. Since $proj_{Y^n}(C) = \bigcup_{i \leq n} proj_{Y^n}(C_i)$ it is enough to see each $proj_{Y^n}(C_i)$ is in Σ . The case C_i for i < n is handled by Lemma 5.4 and 5.5.

So without loss of generality assume $C = C_n$, i.e.

$$\forall \vec{y} \in C \; \forall i < n \; \exists m > 0 \; y_i(m) \neq y_n(m) \tag{2}$$

By normal form every set in Σ which is contained in Y^{n+1} is a finite union of sets of the form: $A_{j_1n+1} \cap \cdots \cap A_{j_kn+1} \cap B$ where B is Borel. So we can assume

$$C = A_{j_1n+1} \cap \dots \cap A_{j_kn+1} \cap B \tag{3}$$

where $B \subseteq Y^{n+1}$ is the intersection with Y^{n+1} of a Borel subset of $(\omega^{\omega})^{n+1}$ coded in $V[X \upharpoonright \Gamma, A \upharpoonright \Gamma]$ where Γ is a countable set indexed in the model V. Although we will cut B down some more it will only be by intersecting it with Borel sets coded in the ground model $V[X \upharpoonright \Gamma, A \upharpoonright \Gamma]$. Working in this model we can write B as a union of Borel sets B_k for $k < \omega$ such that for each B_k :

$$\exists s \in 2^{n+1} \quad B_k \subset s(0)\omega^{\omega} \cup \ldots \cup s(n)\omega^{\omega} \tag{4}$$

and there exists $t \in (\Gamma \cup \{*\})^{n+1}$ such that $\forall \vec{y} \in B_k \ \forall i < n+1$

$$t(i) \in \Gamma \quad \to \quad y_i = s(i)^{*} t(i) \tag{5}$$

and

$$t(i) = * \quad \to \quad y_i \notin (s(i))\Gamma \tag{6}$$

and an equivalence relation \approx on $\{0, 1, \ldots, n\}$ such that $\forall \vec{y} \in B_k \forall j, i < n+1$

$$j \approx i \text{ iff } \forall m > 0 \ y_i(m) = y_j(m) \tag{7}$$

Fix B_k and the t and \approx given by lines (6) and (7). And let $C_k = C \cap B_k$. We claim there exists a Borel set H_k such that

$$proj_{Y^n}(C_k) = A_{j_1n} \cap \dots \cap A_{j_{k^*n}} \cap H_k$$

where $k^* = n - 1$ if k = n and otherwise $k^* = k$. The reason is that if $t(n) \in \Gamma$, then $proj_{Y^n}(C_k)$ is the t(n) cross section of C_k . Otherwise use lines (2) thru (7) to apply Lemma 5.6. Hence

$$proj_{Y^n}(C) = proj_{Y^n}\left(\bigcup_{k<\omega}C_k\right) = \bigcup_{k<\omega}proj_{Y^n}(C_k)$$
$$= \bigcup_{k<\omega}(A_{j_1n}\cap\cdots\cap A_{j_k*_n}\cap H_k) = A_{j_1n}\cap\cdots\cap A_{j_k*_n}\cap \bigcup_{k<\omega}H_k$$

Since this set is in Σ we are done. \Box

Now we prove the Theorem.

We claim the the projective order of Y is 2 where $Y = (0)X \cup (1)A$. By the Lemma 5.7 we see that (0)A is not Π_1^Y , hence the projective order of Y is at least 2. Let Δ be the smallest family containing all Borel subsets of Y^n for all n and all A cylinders $(Y^i \times (0)A \times Y^j)$, and (X - A) cylinders $(Y^i \times (0)(X - A) \times Y^j)$, and closed under finite union and intersection. Note that Δ is closed under complementation and $\Delta \subseteq \Delta_2^Y$.

Lemma 5.8 Δ is closed under projection.

proof:

Similar to Lemma 5.7.

Hence Δ is the set of all projective subsets of Y and the projective order of Y is 2.

Next we see that $Z = (0)X \cup (1)A \cup (2)(X - A)$ has projective order 1. Let Δ_0 be defined similarly to Δ but for Z, i.e. let Δ_0 be the smallest family containing all Borel subsets of Z^n for all n and all A-cylinders $(Z^i \times (0)A \times Z^j)$, and (X-A)-cylinders $(Z^i \times (0)(X-A) \times Z^j)$, and closed under finite union and intersection. Note that Δ_0 is closed under complementation and $\Delta_0 \subseteq \Delta_1^Z$.

Lemma 5.9 Δ_0 is closed under projection.

proof:

Similar to Lemma 5.7.

An easy density argument shows that (0)A is not Borel in Z hence the projective order of Z is exactly 1. This ends the proof of Theorem 5.3.

References

- R.H.Bing, W.W.Bledsoe, and R.D.Mauldin, Sets generated by rectangles, Pacific Journal of Mathematics, 51(1974), 27-36.
- [2] Sy Friedman, Steel Forcing and Barwise compactness, Annals of Mathematical Logic, 22(1982), 31-46.
- [3] Leo Harrington, Analytic determinacy and 0[#], Journal of Symbolic Logic, 43(1978), 685-693.
- [4] K. Kuratowski, **Topology**, vol 1, Academic Press, 1966.
- [5] Arnold W. Miller, On the length of Borel hierarchies, Annals of Mathematical Logic, 16(1979), 233-267.
- [6] Arnold W. Miller, Generic Souslin sets, Pacific Journal of Mathematics, 97(1981), 171-181.
- [7] Arnold W. Miller, Special subsets of the real line, in Handbook of Set Theoretic Topology, ed. by K.Kunen and J.Vaughan, North-Holland, 1984, 201-234.
- [8] Yiannis Moschovakis, **Descriptive Set Theory**, North-Holland, 1980.
- [9] J.C.Oxtoby, Measure and category, Springer-Verlag, 1971.
- [10] C.A.Rogers et al, editors, Analytic Sets, Academic Press, 1980.
- [11] C.A.Rogers and J.E.Jayne, K-analytic sets, in Analytic Sets, ed. by C. A. Rogers et al, Academic Press, (1980), 2-175.

- [12] W.Sierpiński, Sur les produit combinatoire de deux ensembles jouissant de la propriété C, Fundamenta Mathematicae, 24(1935), 48-50.
- [13] Robert M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Annals of Mathematics, 92(1970), 1-56.
- [14] John R. Steel, Forcing with tagged trees, Annals of Mathematical Logic, 15(1978), 55-74.
- [15] Jacques Stern, Evaluation du rang de Borel de certains ensembles, C.R. Acad. Sc. Paris, 286(1978), 855-857.
- [16] Jacques Stern, Effective partitions of the real line into Borel sets of bounded rank, Annals of Mathematical Logic, 18(1980), 29-60.
- [17] Jacques Stern, Analytic equivalence relations and coanalytic games, Patras Logic Symposium, North-Holland (1982), Amsterdam, 239-259.
- [18] Jacques Stern, On the notion of rank in the theory of Borel sets, unpublished.
- [19] E. Szpilrajn, The characteristic function of a sequence of sets and some of its applications, Fundamenta Mathematicae, 31(1938), 207-223.
- [20] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.

University of Wisconsin Department of Mathematics 480 Lincoln Drive Madison, WI 53706 miller@.math.wisc.edu