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Abstract

In this paper we will consider two possible de�nitions of projective

subsets of a separable metric space X. A set A � X is �

1

1

(X)

i� there exists a complete separable metric space Y and Borel

set B � X � Y such that A = fx 2 X : 9y 2 Y (x; y) 2 Bg.

Except for the fact that X may not be completely metrizable,

this is the classical de�nition of analytic set and hence has many

equivalent de�nitions, for example, A is �

1

1

(X) i� A is relatively

analytic in X, i.e. A is the restriction to X of an analytic set in

the completion of X. Another de�nition of projective we denote

by �

X

1

or abstract projective subset of X. A set A � X is �

X

1

i� there exists an n 2 ! and a Borel set B � X � X

n

such

that A = fx 2 X : 9y 2 X

n

(x; y) 2 Bg. These sets can be

far more pathological. While the family of sets �

1

1

(X) is closed

under countable intersections and countable unions, there is a

consistent example of a separable metric space X where �

X

1

is not

closed under countable intersections or countable unions. This

takes place in the Cohen real model. Assuming CH there exists

a separable metric space X such that every �

1

1

(X) set is Borel

in X but there exists a �

1

1

(X

2

) set which is not Borel in X

2

.

The space X

2

has Borel subsets of arbitrarily large rank while

X has bounded Borel rank. This space is a Luzin set and the

technique used here is Steel forcing with tagged trees. We give

examples of spaces X illustrating the relationship between �

1

1

(X)

and �

X

1

and give some consistent examples partially answering an

abstract projective hierarchy problem of Ulam.
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1 Equivalent de�nitions

For general background about analytic sets the reader should consult Kura-

towski [4], Rogers [10], or Moschovakis [8]. One notation we will use thruout

is

proj

X

(B) = fx 2 X : 9y 2 Y (x; y) 2 Bg

i.e. the projection of B � X � Y onto X. We begin by considering the

notion of �

1

1

(X). This notion corresponds to any of the following equivalent

de�nitions.

Theorem 1.1 For X a separable metric space and A � X the following are

all equivalent and denoted �

1

1

(X):

1. there exists a complete separable metric space Y and a Borel B � X�Y

such that A = proj

X

(B) = fx 2 X : 9y 2 Y (x; y) 2 Bg

2. (relatively analytic) if

^

X is the completion of X, then there exists

^

A �

^

X a �

1

1

(

^

X) set such that A =

^

A \X

3. (Souslin in X) there exists hA

s

: s 2 !

<!

i where each A

s

� X is closed

in X and A =

S

f2!

!
\

n2!

A

f�n

4. there exists hA

s

: s 2 !

<!

i where each A

s

� X is Borel in X and

A =

S

f2!

!
\

n2!

A

f�n

5. there exists a closed set C � X � !

!

such that A = proj

X

(C)

6. there exists a complete separable metric space Y and a closed set C �

X � Y such that A = proj

X

(C)

7. (truth tables) there exists T � P (!) which is �

1

1

and hU

n

: n 2 !i each

U

n

� X Borel in X and A = fx 2 X : fn 2 ! : x 2 U

n

g 2 Tg

proof:

(3) ! (4), (5) ! (6), (6) ! (1) trivial.

(2) ! (3) Note that by the classical theory of analytic sets in complete

metric spaces

^

A =

[

f2!

!

\

n2!

A

f�n
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where each A

f�n

� Y is closed in Y . Hence

A =

[

f2!

!

\

n2!

(A

f�n

\X)

(3) ! (5) Let

A =

[

f2!

!

\

n2!

A

f�n

where each A

f�n

is closed in X. De�ne C � X � !

!

by

C =

\

n2!

([

s2!

n

[s]�A

s

)

Then C is closed in X � !

!

and A is the projection onto X of C.

(4) ! (1) same proof as (3) ! (5).

(1) ! (2) Let B � X�Y be Borel. and let

^

B �

^

X�Y be Borel such that

^

B \ (X � Y ) = B. Now if

^

A = proj

^

X

(

^

B) then

^

A is �

1

1

(

^

X), and A =

^

A \X.

(4) ! (7) Let

T = fQ � !

<!

: 9f 2 !

!

8n 2 ! f � n 2 Qg

so T � P (!

<!

), then

x 2

[

f2!

!

\

n2!

A

f�n

i� fs 2 !

<!

: x 2 A

s

g 2 T

(7) ! (1) Let D � P (!) � !

!

be Borel such that

T = fy 2 P (!) : 9z 2 !

!

(y; z) 2 Dg

Then

Q = f(x; y; z) : (y; z) 2 D and 8n(n 2 y i� x 2 U

n

)g

is Borel in X � !

!

� P (!) and

x 2 A i� fn 2 ! : x 2 U

n

g 2 T i� 9y9z (x; y; z) 2 Q

This completes the proof.

2

From a more abstract point of view, for example see Ulam [20], suppose

we started with arbitrary countable �eld of subsets of a set X. We could then
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form the ��algebra of subsets of X that they generated and similarly the

��algebra of subsets of X �X generated by products of our original family

and so on for all �nite products X

n

. Then closing under projection would

give the abstract projective sets. Using the idea of Szpilrajn's characteristic

function of a sequence of sets ([19]) this is basically equivalent to the following

notion of �

X

1

subset of X.

Theorem 1.2 For X a separable metric space and A � X the following are

all equivalent and denoted �

X

1

:

1. there exists n 2 ! and a Borel set B � X �X

n

such that A = fx 2

X : 9y 2 X

n

(x; y) 2 Bg

2. there exists n 2 ! and a Borel set B � X � X

n

and a continuous

function f : B 7! X such that f

00

B = A.

3. there exists n 2 ! and a Borel set B � X �X

n

and a Borel function

f : B 7! X such that f

00

B = A.

proof:

(1) ! (2) since projection is continuous, (2) ! (3) is trivial, and (3) !

(1) because the graph of f is a Borel subset of X

n

� X and f

00

B is the

projection onto X of the graph of f .

2

Unlike �

1

1

(X), any of which can be obtained by projecting a closed subset

of X �!

!

, �

X

1

may require projecting arbitrarily high ranking Borel subsets

of X �X

n

. The example of Miller [5] (Theorem 43 p.259) shows this. This

X has the property that there exists a �

0

�+1

Borel subset of X which is not

the projection of any �

0

�+1

set. The argument is similar to that of the last

example of Section 2.

Note that it would be a mistake to consider a notion of projective which

would allow arbitrary separable metric spaces Y in Theorem 1.1(6), because

then every subset of X would be projective. To see this note that if A � X

is arbitrary, then D = f(x; y) 2 X �A : x = yg is closed in X �A and A is

the projection of D onto X.
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2 Relationship between �

1

1

(X) and �

X

1

Let Borel(X) be the family of Borel subsets of X. Clearly, we always have

Borel(X) � �

1

1

(X)\�

X

1

. In this section we give some (consistent) examples of

separable metric spaces illustrating some of the possible relationships between

these three families.

Example: Borel(X) $ �

1

1

(X) = �

X

1

.

If X is an uncountable complete separable metric space, such as !

!

, then

�

1

1

(X) = �

X

1

and Borel(X) is a proper subset of �

1

1

(X), i.e. Borel(X) $

�

1

1

(X).

Example: Borel(X) $ �

1

1

(X) $ �

X

1

.

For A � !

!

and n 2 ! let

(n)A = fy 2 !

!

: y(0) = n and 9x 2 A8m x(m) = y(m+ 1)g

Let A � !

!

be a set which is not �

1

1

(!

!

). Then X = (0)A [ (1)!

!

. To see

that this works note that Borel(X) $ �

1

1

(X) because !

!

is a clopen subspace

of X. Also because X includes !

!

we have �

1

1

(X) � �

X

1

(see Theorem 1.1).

Also by Theorem 1.1 for every set of the form (0)B [ (1)C which is �

1

1

(X)

we have that C is �

1

1

(!

!

). However (1)A is �

X

1

, since it's the projection of

D = f(x; y) 2 X

2

: x(0) = 0; y(0) = 1; and 8n > 0 x(n) = y(n)g

Consequently �

1

1

(X) $ �

X

1

.

The remaining examples are all consistent examples. The �rst two use

Luzin sets (see Section 4).

Example: (CH) Borel(X) = �

1

1

(X) $ �

X

1

Let Y � !

!

be a Luzin set, so by Theorem 4.1 section 4 Borel(Y ) =

�

1

1

(Y ). Let A � Y be a set which is not �

1

1

(Y ), and let X = (0)Y [ (1)A.

Since X is a Luzin set Borel(X) = �

1

1

(X). On the other hand (0)A is �

X

1

,

so �

1

1

(X) $ �

X

1

.

Example: If X is a generic Luzin set, then Borel(X) = �

1

1

(X) = �

X

1

.

If X is countable or every subset of X is Borel in X (for example a Q-

set), then we have Borel(X) = �

1

1

(X) = �

X

1

. To get an X of cardinality the
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continuum we can use a generic Luzin set. By a generic Luzin set we mean

that X � !

!

is produced by forcing with the partial order Pof �nite partial

functions from !

1

�! into ! over some model of ZFC M . Then the P-generic

object is essentially a function G : !

1

�! 7! ! and we let X = fx

�

: � < !

1

g

where x

�

(n) = G(�; n).

We need only show Borel(X) = �

X

1

, since by Theorem 4.1 section 4,

we already have that �

1

1

(X) = Borel(X). We do the argument just for the

projection of Borel subsets of X�X, since the argument for X�X

n

is similar.

Let B � !

!

� !

!

be a Borel set. By the countable chain condition there

exists a countable set Q 2M such that B has a Borel code in M [G � (Q�!)].

Let D = f(x; x) : x 2 !

!

g and let Y = fx

�

: � 2 Qg then

proj(B \ (X �X)) = proj(B \ (Y �X))

[ proj(B \ (X � Y ))

[ proj(B \D \X)

[ proj(B \ (X � Y )

2

�D)

where projection is taken onto the �rst coordinate. Since Y is countable and

proj(B\(Y �X)) � Y it is Borel. Since cross sections of Borel sets are Borel

and proj(B \ (X � Y )) is a countable union of cross sections, it is Borel. If

we let C = fx : (x; x) 2 Bg, then C is Borel and C \X = proj(B \D \X).

So it su�ces to see that proj(B \ (X �Y )

2

�D) is in Borel(X). Without

loss of generality we may assume that Y = ; and that B � (!

!

�!

!

)�D is

coded in the ground model M (otherwise we could work over a new ground

model M [Y ]).

Let Q = !

<!

the partial order for forcing a single Cohen real and let

[p] = fx 2 !

!

: p � xg for p 2 Q. For any two distinct x; y 2 X we

have x 2 proj(B \ X) i� there exists y 2 X distinct from x such that

(x; y) 2 B. But since (x; y) is Q�Q generic over the ground model, we have

that (x; y) 2 B i� there exists p; q 2 Q with p � x and q � y such that

(p; q) j` (x; y) 2 B. But since B is a Borel set coded in the ground model

(p; q) j` (x; y) 2 B i� ([p]� [q])\B is comeager in [p]� [q], (see Solovay [13]).

Note that X is dense, so that it is easy to check now that x 2 proj(B \X)

i� x 2 X and 9p; q 2 Q x 2 [p] and ([p] � [q]) \ B is comeager in [p] � [q].

Hence the projection of B \X is in Borel(X).

This example can also be obtained under CH using a proof similar to that

of Theorem 4.2.
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Example: (the set from Miller [6]) �

X

1

$ �

1

1

(X).

In Miller [6] (Theorem 4 p. 177) a forcing construction is given for a set

X

�

� !

!

with the property that every subset of X

�

is �

1

1

(X

�

), but not every

subset of X

�

is in Borel(X

�

). From here on we will refer to X for the X

�

of [6]. The argument given in [6] that not every subset of X is Borel(X)

generalizes to show that the �rst generic Souslin set (i.e. A 2 �

1

1

(X)) is

not the projection of a Borel subset of X �X

n

for any n 2 !. See the last

paragraph of section 3 [6]. Suppose there exists p 2 Q

!

2

and � 2 2

!

such

that

p j` \8x 2 X(x 2 A i� 9~y 2 X

n

(x; ~y) 2 B

�

)" (1)

where B

�

� X � X

n

is �

0

�

set with code � . Using the countable chain

condition of p 2 Q

!

2

it is easy to obtain a countable K � !

2

with 0 2 K, and

an � with 0 < � < � < !

1

, such that K and � also satis�es jpj(K;�) = 0,

j� j(K;�) = 0, and

8� 2 K 8 < � fq 2 Q

�

: jqj(K;�) = 0g decides \ 2 Z

�

"

Hence by Lemma 5 [6] j j(K;�) is a rank function with p in its domain (see

[6] de�nition (11) p.172). Now we use the argument of the last paragraph on

p.174 [6]. Let  > � + ! be arbitrary and extend p to p

1

by adding to p(0),

p



(;) = 1, which means that

p

1

j` \x



2 A"

Since p

1

extends p by line (1)

p

1

j` \9~y 2 X

n

(x



; ~y) 2 B

�

"

So �nd ~y 2 X

n

and p

2

extending p

1

so that

p

2

j` \(x



; ~y) 2 B

�

"

Now since (x



; ~y) is in the ground model we can think of this as a �

0

�

state-

ment about � , consequently by Lemma 2 [6] p.173, there exists a q 2 Q

!

2

with jqj(K;�) < � which is compatible with p

2

such that

q j` \(x



; ~y) 2 B

�

"

7



But now extend q to q

1

by adding to q(0) that q



(;) = 0 (this is possible

because jqj(K;�) < �) but then

q

1

j` \x



=2 A and 9~y 2 X

n

(x



; ~y) 2 B

�

"

contradicting line (1) and the fact that q

1

extends p.

Problem: Give examples of X such that Borel(X) = �

X

1

$ �

1

1

(X) and

Borel(X) $ �

X

1

$ �

1

1

(X).

3 Closure under unions and intersections

Our �rst two results are simple observations.

Theorem 3.1 For any separable metric space X the family of sets �

1

1

(X) is

closed under countable unions and intersections.

proof:

This is immediate from Theorem 1.1(2) since in complete metric spaces

�

1

1

sets are closed under countable intersection and union.

2

Theorem 3.2 For any separable metric space X the family of subsets of X,

�

X

1

, is closed under �nite unions and intersections.

proof:

Let A

i

= proj

X

(B

i

) where B

i

� X � X

n

i

is Borel for i = 0 or 1. By

replacing B

i

with B

i

�X

k

i

for a suitable k

i

we may assume without loss of

generality that n

0

= n

1

. Then

A

0

[ A

1

= proj(B

0

[B

1

)

For intersection let

^

B

0

= B

0

�X

n

1

and

^

B

1

= f(x; y; z) 2 X �X

n

0

�X

n

1

: (x; z) 2 B

0

g

Then

A

0

\A

1

= proj

X

(

^

B

0

\

^

B

1

)

2

The remainder of this section is devoted to proving the following theorem.
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Theorem 3.3 It is relatively consistent with ZFC that there exists a sepa-

rable metric space X such that �

X

1

is closed under neither countable unions

nor countable intersections.

proof:

Fix Y � !

!

a set in the ground model of cardinality !

1

and consider

the following forcing notions: Q is the partial order of �nite partial functions

from Y to 2 and P is the direct sum of countably many copies of Q, �

n2!

Q.

Of course both Pand Q are isomorphic to the usual way of adding !

1

Cohen

reals. We view forcing with Pas equivalent to adding a sequence hA

n

: n 2 !i

of generic subsets of Y , i.e. if G is a P-generic �lter, then for each n 2 ! let

A

n

= fx 2 Y : 9p 2 G p

n

(x) = 1g. For n 2 ! and A � !

!

recall that

(n)A = fx 2 !

!

: x(0) = n and 9y 2 A 8m 2 ! x(m+ 1) = y(m)g

The space X is de�ned by

X =

[

n2!

(2n)Y [

[

n2!

(2n + 1)A

n

i.e. countably many copies of Y and one of each A

n

.

Lemma 3.4 For each n;m 2 ! the set (2m)A

n

is �

X

1

.

proof:

Let D

nm

� X �X be the appropriate diagonal, namely,

D

nm

= f(x; y) 2 X �X : x(0) = 2m; y(0) = 2n + 1;8k > 0 x(k) = y(k)g

Then D

nm

is closed and proj(D

nm

) = (2m)A

n

.

2

For k < ! let B

k

= (2k)(

T

n<k

A

n

). So B

k

is �

X

1

by Theorem 3.2. Also

let B

�

k

= B

k

[

S

f(2n)Y : n < !; n 6= kg, then B

�

k

is �

X

1

, since

S

f(2n)Y : n <

!; n 6= kg is clopen in X and hence �

X

1

. So to prove the theorem it su�ces

to show R is not �

X

1

where R is de�ned by:

R =

[

k2!

B

k

=

\

k2!

B

�

k

Now since each B

k

is a clopen subset of R it su�ces to prove:
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Lemma 3.5 B

k+1

is not the projection of a Borel subset of X �X

k

.

proof:

Suppose for contradiction that

B

k+1

= (2k)(A

0

\ : : : \A

k

) = proj(B)

where B � X �X

k

is Borel. Decompose B as the countable union of Borel

sets:

B =

[

n

1

;:::;n

k

2!

C

n

1

;:::;n

k

where each C

n

1

;:::;n

k

� (2k)Y � (n

1

)Z

1

� � � � � (n

k

)Z

k

is Borel and each Z

i

is

either Y or some A

j

depending whether n

i

is even or odd. By an easy density

argument we can see that B

k+1

must be uncountable. Hence to prove the

lemma it su�ces to see:

Claim: Each proj(C

n

1

;:::;n

k

) is countable.

To see this note that since there are only k Z's but k + 1 many A

j

's in

the de�nition of B

k+1

there must be some j � k which does not appear as

a Z

i

, however proj(C

n

1

;:::;n

k

) � (2k)A

j

. By the countable chain condition

there exists a countable K � X such that the Borel code for C

n

1

;:::;n

k

and

hence C

n

1

;:::;n

k

itself is an element of N = M [hA

j

� KihA

i

: i < !; i 6= ji]

where M is the ground model. It follows that proj(C

n

1

;:::;n

k

) is also in N .

However A

j

� (Y �K) is generic over N , so if proj(C

n

1

;:::;n

k

) \ (2k)(Y �K)

is in�nite then proj(C

n

1

;:::;n

k

)� (2k)A

j

6= ;, which would contradict the fact

that proj(C

n

1

;:::;n

k

) � (2k)A

j

. This proves the Claim, Lemma, and Theorem

3.3.

2

This proof also shows that it is possible that n��

X

1

6= (n+1)��

X

1

for all

n 2 ! where n��

X

1

is the family of projections of Borel subsets of X �X

n

.

Note also that for �xed n the family of n��

X

1

sets is closed under countable

union but not �nite intersection. It is also true in this example that there

exists a countable intersection of 1 � �

X

1

sets which is not �

X

1

, namely if

E

kn

= (2n)A

k

[

S

f(2m)Y : m < !;m 6= ng (each of which is 1� �

X

1

), then

R = \

n2!

\

k<n

E

kn

.

Problem: Can we have an example where �

X

1

is closed under countable

union but not countable intersection? Can we have an example where �

X

1

is

closed under countable intersection but not countable union?

10



4 Properties of Products

A separable metric space X is Luzin i� it is uncountable and every meager

subset of X is countable. A set is nowhere dense i� its closure has empty

interior and meager i� it is the countable union of nowhere dense sets. The

following theorem is well known.

Theorem 4.1 If X is Luzin, then every �

1

1

(X) set is Borel in X.

proof:

In an arbitrary topological space the Souslin operation preserves the prop-

erty of Baire (see Kuratowski [4]). Hence for any A 2 �

1

1

(X) (by Theo-

rem 1.1(3)) there exists open U and meager M such that A = (U �M) [

(M � U). But since meager sets are countable, clearly A is Borel.

2

Theorem 4.2 Assume the continuum hypothesis. Then there exists a Luzin

space X such that every �

1

1

(X

2

) is Borel in X

2

.

proof:

This is true of any su�ciently generic Luzin set. Suppose that M

�

�

(HC;2) for � < !

1

is an increasing sequence of countable elementary sub-

structures whose union is all of HC, the hereditarily countable sets, and

M

�

2 M

�+1

for each �. For each � < !

1

let x

�

2 (2

!

\M

�+1

) be a Cohen

generic real over M

�

. Then X = fx

�

: � < !

1

g has the required property.

Suppose A � 2

!

� 2

!

is �

1

1

(2

!

� 2

!

), then since it has the property of Baire,

there exists a open U and meager M such that A = (U �M) [ (M � U).

Let F be a meager Borel set with M � F . Suppose that F is coded in M

�

,

then for every � 6=  > � we have that (x

�

; x



) =2 F . To see this suppose

that � < � <  and note that since F is meager, for comeagerly many x,

F

x

= fy : (x; y) 2 Fg is meager (by the Kuratowski-Ulam Theorem see Ox-

toby [9]). Consequently F

x

�

which is coded in M



is meager and therefore

x



=2 F

x

�

. Hence

A \ f(x

�

; x



) : � 6=  > �g = U \ f(x

�

; x



) : � 6=  > �g

Also letting D = f(x; x) : x 2 Xg, then since D is homeomorphic to X we

have that A\D is Borel in X. Finally for all � � � let A

�

= f(x

�

; x



) :  <

11



!

1

g \A and A

�

= f(x



; x

�

) :  < !

1

g\A. Each of these is Borel in X

2

, and

so A is Borel in X

2

.

2

This result also holds for generic Luzin sets.

Theorem 4.3 Assume the continuum hypothesis. Then there exists a Luzin

space X such that not every �

1

1

(X

2

) is Borel in X

2

.

proof:

It su�ces to construct X;Y � 2

!

Luzin sets such that there exists A �

X�Y which is �

1

1

(X � Y ) but not (relatively) Borel in X�Y . For x; y 2 2

!

let x+y be pointwise addition modulo 2, i.e. (x+y)(n) = x(n)+y(n) mod 2.

Let

A = f(x; y) : x + y is the characteristic function of a nonwellfounded set g

More precisely let # : !

<!

7! ! be a �xed bijection, then

(x; y) 2 A i� 9f 2 !

!

8n 2 ! (x+ y)(#f � n) = 1

Clearly A is �

1

1

(2

!

� 2

!

). Lemma 4.4 will �nish the proof of the theorem.

Let M

�

be as in the proof of Theorem 4.2 and let hB

�

: � < !

1

i list all

Borel subsets of 2

!

� 2

!

with B

�

coded in M

�

. Using Lemma 4.4 construct

X = fx

�

: � < !

1

g and Y = fy

�

: � < !

1

g such that x

�

and y

�

are Cohen

generic over M

�

and (x

�

; y

�

) 2 (A � B

�

) [ (B

�

� A). Then X and Y are

Luzin sets, but A \ (X � Y ) is not Borel in X � Y .

Lemma 4.4 Suppose that M is a countable transitive model of ZFC-Power

Set and B � 2

!

� 2

!

is a Borel set coded in M , then there exists x; y 2 2

!

Cohen generic over M such that (x; y) 2 (A�B) [ (B �A).

proof:

To prove this we use Steel forcing [14] as explained in Harrington [3]. Let

Q be Steel forcing with tagged trees, hence

Q= fht; hi : t � !

<!

�nite subtree, h : t 7! !

1

[ f1g a rank functiong

where rank function means that h(;) = 1 and s $ r 2 t! h(s) < h(r) (� <

1 <1 for � < !

1

). If G is Q-generic over a model M , then G is essentially

12



equal to (T;H) where T � !

<!

is a tree and H : T 7! !

1

[ f1g is a rank

function. It has the property that if H(s) = 1, then T

s

is nonwellfounded

(T

s

= ft 2 !

<!

: s ^ t 2 Tg); and otherwise if H(s) 2 !

1

, then T

s

is

wellfounded. Let x 2 2

!

be Cohen generic real over M and let G = (T;H)

be Q-generic over M [x]. Let z 2 2

!

be the characteristic function of some

T

hni

� !

<!

and let y = x + z.

Claim: y is a Cohen real over M .

proof:

Let P= 2

<!

be Cohen real forcing, then iterated forcing is the same as

product forcing: P�Q since conditions are �nite. So x is P-generic over M [G]

and since z 2M [G] and y = x+ z we have that y is P-generic over M [G] and

hence over M .

2

Let hni be such that H(hni) = 1 so that T

hni

is not wellfounded.

Case 1. hx; yi =2 B

Since x + y = z codes a nonwellfounded tree we're done, since hx; yi 2

A�B.

Case 2. hx; yi 2 B

In this case we use the main property of Steel forcing. Let p 2 G be a

condition such that p j` hx; yi 2 B. The statement \hx; yi 2 B" is a Borel

proposition with code in M [x] about the real z since y = x + z. Therefore

\hx; yi 2 B"is equivalent to a propositional sentence in L

!

1

!

built up from

the atomic propositions \s 2

^

T" where s 2 !

<!

and

^

T is a name in the

ground model for the generic object T . This propositional sentence is in

M [x] and has rank less than !

M [x]

1

. Say it has rank . Then working in M [x]

we can �nd a condition p 2 Q such that p() = p() (see Harrington [3]) with

the property h(hni) 2 !

1

. By the retagging lemma p j` hx; yi 2 B. Hence if

we take G to be Q-generic over M [x] with p 2 G, then hx; yi 2 B �A. This

proves the lemma and hence the theorem.

2

This result can also be proved for Sierpi�nski sets. Steel forcing has also

been used e�ectively in Stern [15] [18] [17] [16] and Friedman [2]. This proof

is a slight generalization of a classical construction due to Sierpi�nski [12] of

a Luzin set X such that X

2

can be mapped continuously onto 2

!

. In fact we

show that this set could have been used to prove Theorem 4.3.

I. Rec law has pointed out the following result.

13



Theorem 4.5 (Rec law) For any separable metric space X if X has bounded

Borel order, then X cannot be mapped continuously onto the real line.

proof:

Theorem 12 of Bing, Bledsoe, and Mauldin [1] says that if G is a countable

family of subsets of the real line closed under complementation and whose

��algebra contains all Borel subsets of the real line, then the ��algebra

generated by G contains !

1

distinct levels. Now suppose f : X 7! R is

continuous, onto, and one-to-one. Let G smallest family of sets closed under

complements and containing a basis for R and the image under f of a basis

for X. The hierarchy generated by G must have !

1

levels and therefore the

same is true for the Borel hierarchy of X.

2

Thus Rec law answers a question of Miller [7] negatively, since it is impos-

sible to map a �� set continuously onto the reals. The following is proved

similarly to Theorem 12 of Bing et al [1].

Theorem 4.6 Suppose G is a countable family of subsets of !

!

closed un-

der complementation and such that the ��algebra generated by G, which

we denote B(G), contains all Borel subsets of !

!

. Then there exists a set

X � !

!

which is not in B(G) but is obtained by applying the Souslin oper-

ation to sets in B(G), i.e. there exists B

s

2 B(G) for s 2 !

<!

such that

X =

S

f2!

!
\

n2!

B

f�n

proof:

Denote by S(G) the family of sets obtained by applying the Souslin op-

eration to sets in G. The idea of the proof is to obtain a universal set for

S(G). Namely there exists a map U : !

!

7! S(G) which is onto and has

the property that the diagonal D = fx : x 2 U(x)g is in S(G). This will

conclude the proof since D cannot be in B(G), else for some x 2 !

!

we

would have U(x) = !

!

�D and hence for this x we would have x 2 U(x) i�

x =2 U(x).

Let G = fG

n

: n 2 !g and let # : !

<!

7! ! be our �xed bijection. For

any x 2 !

!

let A

x

s

= G

x(#s)

and let U(x) =

S

f2!

!
\

n<!

A

x

f�n

We need to see

that the diagonal D is in S(G). For �xed s 2 !

<!

let B

s

= fx : x 2 G

x(#s)

g.

It is easy to see that

D = fx : x 2 U(x)g =

[

f2!

!

\

n2!

B

f�n

14



Now B

s

=

S

n<!

fx 2 !

!

: x(#s) = n and x 2 G

n

g since we are assuming

every clopen subset of !

!

is in B(G) we have that each B

s

is in B(G).

Since G is closed under complementation we know that B(G) is the smallest

family of sets containing G and closed under countable unions and countable

intersections. Two classical results of Sierpi�nski are that S(S(G)) = S(G)

and S(G) is closed under countable union and countable intersection (for a

proof see Rogers and Jayne [11]). So B(G) � S(G) and D 2 S(G).

2

Note that since every uncountable complete separable metric space con-

tains a homeomorphic Borel copy of !

!

this result also holds for every un-

countable complete separable metric space. Just as in Rec law's result we

have the following corollary.

Corollary 4.7 For any separable metric space X if X can be mapped con-

tinuously onto !

!

, then �

1

1

(X)� Borel(X) is nonempty.

Problem: (Mauldin) Is it consistent to have a separable metric space X

with bounded Borel order but not every �

1

1

(X) subset is Borel in X?

In Theorem 4.3 the Borel order of X

2

is !

1

.

5 The hierarchy of projective sets

For X a separable metric space we make the following de�nitions.

� De�ne �

X

0

= �

X

0

=

S

n2!

Borel(X

n

) (the set of all Borel subsets of

�nite products of X).

� De�ne A � X

m

to be �

X

n+1

i� X

m

�A is �

X

n+1

.

� De�ne A � X

m

to be �

X

n+1

i� there exists a k 2 ! and B � X

m

�X

k

in �

X

n

such that A = proj

X

m

(B) = fx 2 X

m

: 9y 2 X

k

(x; y) 2 Bg.

� De�ne �

X

n

= �

X

n

\�

X

n

.

Theorem 5.1 �

X

n

� �

X

n

� �

X

n+1

and �

X

n

� �

X

n

� �

X

n+1

.
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proof:

Left to the reader.

2

Theorem 5.2 �

X

n

, �

X

n

, and �

X

n

are closed under �nite unions and inter-

sections.

proof:

Similar to the proof of Theorem 3.2.

2

De�ne the projective subsets of X to be the

S

n2!

�

X

n

and de�ne the

projective order of X to be the least n < ! such that every projective subset

of X is �

X

n

.

Problem: (Ulam [20]) For what n does there exist a space of projective

order n.

Obviously a countable space has projective order 0 and a complete un-

countable space has in�nite projective order.

Problem: Is it consistent with ZFC that every uncountable space has in�nite

projective order? In fact, I do not know if it is consistent with ZFC that every

uncountable space has projective order greater than 0.

Theorem 5.3 In the Cohen real model there exist subsets of !

!

which have

projective order 1 and 2.

proof:

Let X � !

!

be a batch of !

1

Cohen reals and let A � X be a Cohen

generic subset with �nite conditions. Let Y = (0)X [ (1)A and let Z =

(0)X [ (1)A [ (2)(X �A). We will show that the projective order of Y is 2

and the projective order of Z is 1. We begin with the proof for Y .

An A-cylinder is one of the sets A

in

where 1 � i � n < ! and A

in

=

Y

i�1

�(0)A�Y

n�i

. Let � be the smallest family of sets containing Borel(Y

n

)

for all n and all A-cylinders and closed under �nite union and �nite intersec-

tion. Our main lemma is that � = �

Y

1

(Lemma 5.7). The next three lemmas

will be used to prove the main lemma.
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Lemma 5.4 Suppose C 2 � where C � Y

n

�Y and there exists i, 1 � i � n,

such that for all (hy

1

; : : : ; y

n

i; y) 2 C we have y

i

= y, then proj

Y

n

(C) 2 �.

proof:

De�ne p : Y

n

7! Y

n

� Y by p(~y) = (~y; y) where y = y

i

. Then p is

continuous, hence for any B Borel we have p

�1

(B) is Borel. Also for A-

cylinders:

p

�1

(Y

n

� (0)A) = Y

i�1

� (0)A� Y

n�i

and for j < n:

p

�1

(Y

j

� (0)A� Y

n�j

) = Y

j

� (0)A� Y

n�j�1

Hence p

�1

of elements of � are elements of �. But note that proj

Y

n

(C) =

p

�1

(C).

2

For y 2 !

!

with y(0) = 0 or 1 de�ne ~y 2 !

!

by ~y(0) = 1 � y(0) and for

all m > 0, ~y(m) = y(m).

Lemma 5.5 Suppose C 2 � where C � Y

n

�Y and there exists i, 1 � i � n,

such that for all (hy

1

; : : : ; y

n

i; y) 2 C we have y = ~y

i

, then proj

Y

n

(C) 2 �.

proof:

De�ne q : Y

n

7! Y

n

� !

!

by q(~y) = (~y; y) where y = ~y

i

. Note that

proj

Y

n

(C) = q

�1

(C), so it is enough to check that preimages of Borel sets

and A-cylinders are elements of �. Let B � Y

n

� Y be Borel and let

^

B � Y

n

� !

!

be Borel such that B =

^

B \ (Y

n

� Y ), then

q

�1

(B) = q

�1

(

^

B) \ (Y

i�1

� [(0)A [ (1)A]� Y

n�i

)

This set is the intersection of a Borel set with the union of an A�cylindar and

a clopen set, hence it is in �. Now we consider the preimages of A�cylindars,

q

�1

(A

jn+1

). Suppose 1 � j < n + 1, then

q

�1

(Y

j�1

� (0)A�Y

n+1�j

) = fhy

1

; : : : ; y

n

i : y

j

2 (0)A and y

i

2 (0)A[ (1)Ag

which is the union of a clopen set and an A�cylindar. In case j = n + 1:

q

�1

(Y

n

� (0)A) = Y

i�1

� (1)A� Y

n�i

which is a clopen set. So in each case the preimage is in � and the lemma is

proved.

2
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Lemma 5.6 Suppose 1 � j

1

< j

2

< � � � < j

k

� n + 1 (k may be zero) and

C � Y

n+1

is given by

C = A

j

1

n+1

\A

j

2

n+1

\ � � � \ A

j

k

n+1

\B

� B � Y

n+1

is the intersection with Y

n+1

of a Borel subset of (!

!

)

n+1

coded in V [X � �; A � �] where � is a countable set indexed in the

ground model V ,

� there exists s 2 2

n+1

such that C � s(0)!

!

[ : : : [ s(n)!

!

,

� there exists an equivalence relation � on f0; 1; : : : ; ng with the property

that for all hy

0

; : : : ; y

n

i 2 C and i; j < n + 1

i � j i� 8m> 0 y

i

(m) = y

j

(m)

and for all i 6= n, i 6� n,

� there exists t 2 (� [ f�g)

n+1

such that t(n) = � and for all i < n + 1

t(i) 2 � implies y

i

= s(i)^t(i) and t(i) = � implies y

i

=2 (s(i))�.

Then proj

Y

n

(C) 2 �.

proof:

De�ne Q � (!

!

)

n+1

to be the G

�

set determined by the above conditions,

namely ~y 2 Q i� for all i; j < n + 1 y

i

(0) = s(i), i � j i� 8m > 0 y

i

(m) =

y

j

(m)), t(i) 2 � implies y

i

= s(i)^t(i), and t(i) = � implies y

i

=2 (s(i))�.

Let P� (!

<!

)

n+1

be the subpartial order de�ned by

~p 2 P i� 9~y 2 Q 8i < n + 1 p

i

� y

i

And for ~p 2 Pde�ne

[~p] = f~y 2 Q : 8i < n + 1 p

i

� y

i

g

The set of [~p] form a basis for Q.

Consider V [X � �; A � �] to be the ground model. Any ~y 2 Q determines

the �lter f~p : 8i < n + 1 p

i

� y

i

g on P. We claim that every ~y 2 Y

n+1

\ Q

is P-generic over V [X � �; A � �]. To see this note that P is de�ned in

V [X � �; A � �] and the rest of X and A are generic over V [X � �; A � �].
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Since

C = A

j

1

n+1

\ � � � \A

j

k

n+1

\B � Y

n+1

\Q

where B � Y

n+1

is Borel and coded in the ground model V [X � �; A � �], by

genericity we have:

8~y 2 C9~p 2 P ~y 2 [~p] and [~p] \ Y

n+1

\Q � B

Let B = Y

n+1

\

^

B where

^

B � Q is an (absolute) Borel subset of the complete

metric space Q. Since Borel sets have the property of Baire, there exists an

open set U � Q and a meager (in Q) Borel set F � Q such that U and F

are coded in the ground model V [X � �; A � �] and (

^

B � U) [ (U �

^

B) � F .

Consequently we have that B = Y

n+1

\ U . For ~p 2 P de�ne [~p � n] � Y

n

by ~y 2 [~p � n] i� 8i; j < n, p

i

� y

i

, y

i

(0) = s(i), (i � j i� 8m > 0 y

i

(m) =

y

j

(m)), t(i) 2 � ! y

i

= s(i)^t(i), and t(i) = � ! y

i

=2 (s(i))�).

Claim: If j

k

< n, then

proj

Y

n

(C) = A

j

1

n

\ : : : \A

j

k

n

\ (

[

[~p]�U

[~p � n] \ Y

n

)

else if j

k

= n, then

proj

Y

n
(C) = A

j

1

n

\ : : : \A

j

k�1

n

\ (

[

[~p]�U

[~p � n] \ Y

n

)

proof:

� This is clear since B = Y

n+1

\ U .

� Suppose ~y = hy

0

; : : : ; y

n�1

i 2 [~p � n] where [~p] � U . We need to show

that 9y

n

2 Y such that (~y; y

n

) 2 C. Now A

j

k

n+1

may or may not be A

nn+1

which would require y

n

2 (0)A. But note that t(n) = � so y

n

=2 (s(n))� and

8i < n we have i 6� n so for all m > 0 y

i

(m) 6= y

n

(m). Since A is generically

chosen we can always �nd such a y

n

.

This concludes the proof of the Claim and since the right hand sides are

clearly in � the Lemma is proved.

2

Finally, we are ready to prove the main lemma:

Lemma 5.7 �

Y

1

= �, i.e. the smallest family of sets containing Borel(Y

n

)

for all n and all A-cylinders and closed under �nite union and intersection.
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proof:

Recall that A-cylinders are sets of form A

in

= Y

i�1

� (0)A � Y

n�i

Each

A-cylinder is in �

Y

1

since A

in

= proj

Y

n

(D

in+1

) where

D

in+1

= f(~y; y) 2 Y

n+1

: y

i

(0) = 0; y(0) = 1; and 8m > 0 y(m) = y

i

(m)g

Hence � � �

Y

1

since each Borel set in Y and each A-cylinder is in �

Y

1

and

�

Y

1

is closed under �nite unions and intersections (Theorem 5.2).

To show that �

Y

1

� � it is enough to show that � is closed under pro-

jection, i.e. if C 2 � and C � Y

n

� Y , then proj

Y

n

(C) � Y

n

is in �. To

this end for i < n let C

i

= f~y 2 C : 8m > 0 y

i

(m) = y

n

(m)g and de�ne

C

n

= C�

S

i<n

C

i

. Note that each C

i

for i � n is a Borel set intersected with

C. Since proj

Y

n

(C) =

S

i�n

proj

Y

n

(C

i

) it is enough to see each proj

Y

n

(C

i

) is

in �. The case C

i

for i < n is handled by Lemma 5.4 and 5.5.

So without loss of generality assume C = C

n

, i.e.

8~y 2 C 8i < n 9m > 0 y

i

(m) 6= y

n

(m) (2)

By normal form every set in � which is contained in Y

n+1

is a �nite union

of sets of the form: A

j

1

n+1

\ � � � \ A

j

k

n+1

\ B where B is Borel. So we can

assume

C = A

j

1

n+1

\ � � � \ A

j

k

n+1

\B (3)

where B � Y

n+1

is the intersection with Y

n+1

of a Borel subset of (!

!

)

n+1

coded in V [X � �; A � �] where � is a countable set indexed in the model

V . Although we will cut B down some more it will only be by intersecting

it with Borel sets coded in the ground model V [X � �; A � �]. Working in

this model we can write B as a union of Borel sets B

k

for k < ! such that

for each B

k

:

9s 2 2

n+1

B

k

� s(0)!

!

[ : : : [ s(n)!

!

(4)

and there exists t 2 (� [ f�g)

n+1

such that 8~y 2 B

k

8i < n + 1

t(i) 2 � ! y

i

= s(i)^t(i) (5)

and

t(i) = � ! y

i

=2 (s(i))� (6)

and an equivalence relation � on f0; 1; : : : ; ng such that 8~y 2 B

k

8j; i < n+1

j � i i� 8m> 0 y

i

(m) = y

j

(m) (7)
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Fix B

k

and the t and � given by lines (6) and (7). And let C

k

= C \ B

k

.

We claim there exists a Borel set H

k

such that

proj

Y

n

(C

k

) = A

j

1

n

\ � � � \A

j

k

�

n

\H

k

where k

�

= n � 1 if k = n and otherwise k

�

= k. The reason is that if

t(n) 2 �, then proj

Y

n

(C

k

) is the t(n) cross section of C

k

. Otherwise use lines

(2) thru (7) to apply Lemma 5.6. Hence

proj

Y

n

(C) = proj

Y

n

0

@

[

k<!

C

k

1

A

=

[

k<!

proj

Y

n

(C

k

)

=

[

k<!

(A

j

1

n

\ � � � \A

j

k

�

n

\H

k

) = A

j

1

n

\ � � � \ A

j

k

�

n

\

[

k<!

H

k

Since this set is in � we are done.

2

Now we prove the Theorem.

We claim the the projective order of Y is 2 where Y = (0)X [ (1)A. By

the Lemma 5.7 we see that (0)A is not �

Y

1

, hence the projective order of Y

is at least 2. Let � be the smallest family containing all Borel subsets of

Y

n

for all n and all A cylinders (Y

i

� (0)A � Y

j

), and (X � A) cylinders

(Y

i

� (0)(X �A)�Y

j

), and closed under �nite union and intersection. Note

that � is closed under complementation and � � �

Y

2

.

Lemma 5.8 � is closed under projection.

proof:

Similar to Lemma 5.7.

2

Hence � is the set of all projective subsets of Y and the projective order

of Y is 2.

Next we see that Z = (0)X [ (1)A [ (2)(X � A) has projective order 1.

Let �

0

be de�ned similarly to � but for Z, i.e. let �

0

be the smallest family

containing all Borel subsets of Z

n

for all n and allA-cylinders (Z

i

�(0)A�Z

j

),

and (X�A)-cylinders (Z

i

�(0)(X�A)�Z

j

), and closed under �nite union and

intersection. Note that �

0

is closed under complementation and �

0

� �

Z

1

.

Lemma 5.9 �

0

is closed under projection.

21



proof:

Similar to Lemma 5.7.

2

An easy density argument shows that (0)A is not Borel in Z hence the

projective order of Z is exactly 1. This ends the proof of Theorem 5.3.

2
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