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Theorem. Assume CH. Then there exists vy-sets Ay, A; C 2 such that
Ag X Ay is not Menger.

We use perfect sets determined by Silver forcing (see Grigorieff [3]) and
construct an Aronszajn-tree of such perfect sets in the style of Todorcevic
(see Galvin-Miller [2]).

Define p € P iff p : D — 2 where D C w is co-infinite, i.e., D = w \ D is
infinite. For p € P define

[p]={r €2 : pCua}.

Define p < ¢ iff' p D ¢ or equivalently [p] C [q]. o
For n < w define p <,, ¢ iff p < ¢ and the first n elements of D, are the
same as the first n elements of D,. The fusion property is important:

Fusion Lemma. Suppose (p, € P : n < w) has the property
that p,1 <, p, for every n < w. Then the fusion ¢ = (J,,_, pn is
in P and q <,, p, for every n.

Define
Q°(p) ={z € [p| :¥*ne D, z(n) =0}
and
Q'(p) ={z € [pl :¥*ne D, z(n) = 1}.

Each of these are countable dense subsets of [p].
Define ¢ <% p iff ¢ <,, p and q restricted to D, \ D, is identically zero.

Lemma 1 Given U an w-cover of Q°(p) and n < w there exist U € U and
q <° p such that [q] C U.

'We follow the convention that p < g means that p is stronger than g or equivalently
that p extends q.



Proof

To see why this is true let F' be the first n elements of ﬁp. For each s € 2F
let 7, € Q°(p) such that z,|F = s and z,(n) = 0 for every n € D, \ F. Take
U € U with {z, : s € 2F'} CU. Since U is open there exists N < w with
[zsIN] C U for all s € 2F. Define ¢ < p by

q=pU{{k,0):k<Nand ke (D,\F)}

QED

Lemma 2 Given p, € P and k, < w for n < N and an w-cover U of
U,cn Q°(pn) there exists U € U and (g, <}, pn :n < N) such that

U [qn] € U.

n<N

Proof

Let F), be the first k, elements of D, . For s € 2f define 27 € Q°(p,) as in
the proof of Lemma 1. Let H C |J,_x @°(pn) be a finite set containing all
such z7. Choose U € U with H C U and determine the g, for n < N as in
Lemma 1.

QED

Remark. Note that if ¢ <) p then Q°(¢q) C Q°(p) and hence any w-cover
of Q%(p) is still an w-cover of Q°(g). In these two lemmas, the ¢ we obtain
are also equal mod finite to the p, which also implies this.

Lemma 3 Given (pn,k, : n € w) elements of P x w and (U, : n < w)
which are w-covers of @ =, ., Q°(pn) there exists (U, € Uy, : m < w) and
(Gn <k, Dn :n € w) such that

Vn<w Ym>n [g,] C Upy.

Proof
Construct (¢ : n,m < w) and (U, € U, : n < w) inductively. Given
(¢™:n <w) and (U, : n < m), we construct ¢""*! and U, € U,, so that

m+1

1. g™ =p, forn>m+1,



2. gt <) L, for n < 'm, and

3. [¢grt) C U, for n < m.

Then we let g, = |,,-, ¢ be the fusion. We have that ¢, <, ¢ = p, and
[¢n) C U,, whenever m > n.
QED

Remark. Obviously, the analogue of this Lemma for Q' is also true.

Lemma 4 Suppose (py, kn : n € w) are elements of P xw. Then there exists
(Gn <k, Pn : N € w) such that for n # m, q, and q,, are strongly disjoint,
i.e., there are infinitely many k € (D,, N D,,.) with ¢,(k) # g (k).

Proof
Given p1, p2 and n it is easy to find ¢; <,, p; and ¢o <,, po which are strongly
disjoint. A fusion argument produces a sequence (g, : n < w) where all pairs

have been considered and made strongly disjoint.
QED

Now we construct the Aronszajn tree of Silver conditions. Let U, for
a < wy list all w sequences of countable families of open subsets of 2. Make
sure that each such sequence occurs as a U, for both o even and a-odd.

We can construct a tree 7' C w<“* and (ps € P : s € T') which has the
following properties.

1. T C w<*! is a subtree, i.e., s Ct € T implies s € T'.
2. T, =T Nw" is countable for each o < wy.
3. s Ct e T implies p; < ps.

4. If s,t € T are incomparable, then p; and p; are strongly disjoint (as in
Lemma 4).

5. For any a < 8 < w; and any s € T, and n < w there exists t € T with
4 Sn Ds-

6. Define

Q5 = J{Q(p) + t € T} and QL = J{Q'(p) : t € T<a}.



(a) For a an even ordinal, if U4, = (UY : n < w) is a sequence of
w-covers of QY then there exists a sequence (U, € U* : n < w)
which is a ~-cover of

QLU P+ s € Tusn}.

(b) For a odd, the analogous statement is true but with Q! in place
of QY.

7. Let D be the family of f € w“ such that for some s € T the function
frw— D_,,S is the unique order preserving bijection. Then D is a
dominating family, i.e., for all g € w*“ there exists f € D such that
g(n) < f(n) for all n < w.

To construct T\ and p, for s € T\ where X is a countable limit ordinal,
proceed as follows. For any s € T, and N < w choose a strictly increasing
sequence A, cofinal in A with s = sy € T),. By inductive hypothesis we can
find s, € Ty, with p,,,, <n4n Ds,. Take p, for t =, _, sn to be the fusion
of this sequence. Repeat countably many times, to take care of all s € T,
and N < w.

At successor stages for a even, check to see if U, is an w-sequence of
w-covers of Q2. If it is not, we need never worry about it since the set we
are building will contain Q2. If it is, let {z, : n < w} = Q° and let

U, ={UelU> : {z;:i<n} CU}.
Let (pn, kn : m < w) list all elements of
{ps :seTy} xw

with infinite repetitions and apply Lemma 3 followed by Lemma 4. From
the resulting sequence we may find for each s € T, and n < w a distinct
condition ¢ <,, p, which we label p,-(,y. Obtaining the last condition (7), is
easy (in fact, it seems hard to avoid), and is left to the reader.

The ~ sets are the sets:

A=JQ%M) and A =Q'w).

seT seT



For x € Ay and y € A; we note that there are infinitely many n with
z(n) # y(n). To see this note that if z € Q°(ps) and y € Q*(p), and s and
t are incomparable, then p, and p; are strongly disjoint. On the other hand,
if they are comparable, for example, s C ¢, then since p; < p,, we have that
D,, € D,.. So for all but finitely many n € D,, we will have that y(n) = 1
and z(n) = 0.

Condition (7) gives us a continuous map from Ay x A; onto a dominating
family D C w®. Namely, if x5 € Q°(p,) is identically zero on D, and x; €
Q' (ps) identically one on D,_, then D, = {n : z¢(n) # x1(n)}. So the
continuous map is ¢ : Ag X A; — w* defined by ¢(x,y) = f where f is the
unique order preserving map from w to the infinite set {n : z(n) # y(n)}.

QED

Remark. Our result also shows that assuming CH there are Borel-cover
~v-sets whose product is not Menger. To see this note the following:

Lemma 5 Supposep € P, n < w, and B C 2% a Borel set. Then there exists
q <n p such that [q| N B is clopen in [q].

Proof

Let F be the first n elements of D), and let ¢ : w — (D, \ F') be a bijection.
For X Cw let vx : (D, \ F) — 2 be the restriction of the characteristic
function of ¢(X). For each s € 2" define

Cs={X e w]” : (pUsUYx) € B}.

Since these are Borel sets by the Galvin-Prikry Theorem [1] there exists
H € [w]“ such that for each s € 27 either [H]* C C, or [H]* N C, = . Let
H; C H be infinite such that H \ H; is also infinite. Let

¢ =pU(o(H) x {0}) U (¢(H1) x {1}).

Note that D, = F U ¢(H \ H;). We claim that given any z,y € [q] if
z|F = y|F = s, then z € B iff y € B. Letting H, = ¢ *(z71(1)) we see
that H; € H, C H and so H, is an infinite subset of H. Similarly for H,,.
By choice of H we have that H, € C; iff H, € C and so the claim follows.
QED

Modify our construction in the open cover case as follows. Let Bs for
b < ws list all Borel sets. At the end of each stage 5 apply Lemma 5 accross
the level to make sure that [ps] N By is relatively clopen for each s € Tj.
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Let B, = (B! : n < w) for a < wy all w sequences of countable families
of Borel sets. We may assume that each element of | J B, has already been
listed as a Bg for some 3 < a.

At successor stages for a even, check to see if B, = (B : n < w) is an
w-sequence of countable Borel w-covers of Q°. If it is not, we need never
worry about it since the set we are building will contain Q%. If it is, let
{z,:n <w}=Q% and let

B,={UehB; : {z;:i<n} CU}

Since the elements of each B, are relatively open in the [ps] the rest of the
argument is the same as in the open case.
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