A product of γ -sets which is not Menger.

A. Miller Dec 2009

Theorem. Assume CH. Then there exists γ -sets $A_0, A_1 \subseteq 2^{\omega}$ such that $A_0 \times A_1$ is not Menger.

We use perfect sets determined by Silver forcing (see Grigorieff [3]) and construct an Aronszajn-tree of such perfect sets in the style of Todorcevic (see Galvin-Miller [2]).

Define $p \in \mathbb{P}$ iff $p: D \to 2$ where $D \subseteq \omega$ is co-infinite, i.e., $\overline{D} = \omega \setminus D$ is infinite. For $p \in \mathbb{P}$ define

$$[p] = \{ x \in 2^{\omega} : p \subseteq x \}.$$

Define $p \leq q$ iff¹ $p \supseteq q$ or equivalently $[p] \subseteq [q]$.

For $n < \omega$ define $p \leq_n q$ iff $p \leq q$ and the first *n* elements of $\overline{D_p}$ are the same as the first *n* elements of $\overline{D_q}$. The fusion property is important:

Fusion Lemma. Suppose $(p_n \in \mathbb{P} : n < \omega)$ has the property that $p_{n+1} \leq_n p_n$ for every $n < \omega$. Then the fusion $q = \bigcup_{n < \omega} p_n$ is in \mathbb{P} and $q \leq_n p_n$ for every n.

Define

$$Q^0(p) = \{ x \in [p] : \forall^{\infty} n \in \overline{D_p} \ x(n) = 0 \}$$

and

$$Q^{1}(p) = \{ x \in [p] : \forall^{\infty} n \in \overline{D_{p}} \ x(n) = 1 \}.$$

Each of these are countable dense subsets of [p].

Define $q \leq_n^0 p$ iff $q \leq_n p$ and q restricted to $D_q \setminus D_p$ is identically zero.

Lemma 1 Given \mathcal{U} an ω -cover of $Q^0(p)$ and $n < \omega$ there exist $U \in \mathcal{U}$ and $q \leq_n^0 p$ such that $[q] \subseteq U$.

¹We follow the convention that $p \leq q$ means that p is stronger than q or equivalently that p extends q.

Proof

To see why this is true let F be the first n elements of $\overline{D_p}$. For each $s \in 2^F$ let $x_s \in Q^0(p)$ such that $x_s \upharpoonright F = s$ and $x_s(n) = 0$ for every $n \in \overline{D_p} \setminus F$. Take $U \in \mathcal{U}$ with $\{x_s : s \in 2^F\} \subseteq U$. Since U is open there exists $N < \omega$ with $[x_s \upharpoonright N] \subseteq U$ for all $s \in 2^F$. Define $q \leq_n^0 p$ by

$$q = p \cup \{ \langle k, 0 \rangle : k < N \text{ and } k \in (\overline{D_p} \setminus F) \}$$

QED

Lemma 2 Given $p_n \in \mathbb{P}$ and $k_n < \omega$ for n < N and an ω -cover \mathcal{U} of $\bigcup_{n < N} Q^0(p_n)$ there exists $U \in \mathcal{U}$ and $(q_n \leq_{k_n}^0 p_n : n < N)$ such that

$$\bigcup_{n < N} [q_n] \subseteq U$$

Proof

Let F_n be the first k_n elements of $\overline{D_{p_n}}$. For $s \in 2^{F_n}$ define $x_s^n \in Q^0(p_n)$ as in the proof of Lemma 1. Let $H \subseteq \bigcup_{n < N} Q^0(p_n)$ be a finite set containing all such x_s^n . Choose $U \in \mathcal{U}$ with $H \subseteq U$ and determine the q_n for n < N as in Lemma 1. QED

Remark. Note that if $q \leq_k^0 p$ then $Q^0(q) \subseteq Q^0(p)$ and hence any ω -cover of $Q^0(p)$ is still an ω -cover of $Q^0(q)$. In these two lemmas, the q we obtain are also equal mod finite to the p, which also implies this.

Lemma 3 Given $(p_n, k_n : n \in \omega)$ elements of $\mathbb{P} \times \omega$ and $(\mathcal{U}_n : n < \omega)$ which are ω -covers of $Q = \bigcup_{n < \omega} Q^0(p_n)$ there exists $(U_m \in \mathcal{U}_m : m < \omega)$ and $(q_n \leq_{k_n} p_n : n \in \omega)$ such that

$$\forall n < \omega \ \forall m \ge n \ [q_n] \subseteq U_m.$$

Proof

Construct $(q_n^m : n, m < \omega)$ and $(U_n \in \mathcal{U}_n : n < \omega)$ inductively. Given $(q_n^m : n < \omega)$ and $(U_n : n < m)$, we construct q_n^{m+1} and $U_m \in \mathcal{U}_m$ so that

1. $q_n^{m+1} = p_n$ for $n \ge m+1$,

- 2. $q_n^{m+1} \leq_{k_n+m}^0 q_n^m$ for $n \leq m$, and
- 3. $[q_n^{m+1}] \subseteq U_m$ for $n \le m$.

Then we let $q_n = \bigcup_{m>n} q_n^m$ be the fusion. We have that $q_n \leq_{k_n} q_n^n = p_n$ and $[q_n] \subseteq U_m$ whenever $m \geq n$. QED

Remark. Obviously, the analogue of this Lemma for Q^1 is also true.

Lemma 4 Suppose $(p_n, k_n : n \in \omega)$ are elements of $\mathbb{P} \times \omega$. Then there exists $(q_n \leq_{k_n} p_n : n \in \omega)$ such that for $n \neq m$, q_n and q_m are strongly disjoint, *i.e.*, there are infinitely many $k \in (D_{q_n} \cap D_{q_m})$ with $q_n(k) \neq q_m(k)$.

Proof

Given p_1, p_2 and n it is easy to find $q_1 \leq_n p_1$ and $q_2 \leq_n p_2$ which are strongly disjoint. A fusion argument produces a sequence $(q_n : n < \omega)$ where all pairs have been considered and made strongly disjoint. QED

Now we construct the Aronszajn tree of Silver conditions. Let \mathcal{U}_{α} for $\alpha < \omega_1$ list all ω sequences of countable families of open subsets of 2^{ω} . Make sure that each such sequence occurs as a \mathcal{U}_{α} for both α even and α -odd.

We can construct a tree $T \subseteq \omega^{<\omega_1}$ and $(p_s \in \mathbb{P} : s \in T)$ which has the following properties.

- 1. $T \subseteq \omega^{<\omega_1}$ is a subtree, i.e., $s \subseteq t \in T$ implies $s \in T$.
- 2. $T_{\alpha} = T \cap \omega^{\alpha}$ is countable for each $\alpha < \omega_1$.
- 3. $s \subseteq t \in T$ implies $p_t \leq p_s$.
- 4. If $s, t \in T$ are incomparable, then p_s and p_t are strongly disjoint (as in Lemma 4).
- 5. For any $\alpha < \beta < \omega_1$ and any $s \in T_{\alpha}$ and $n < \omega$ there exists $t \in T_{\beta}$ with $p_t \leq_n p_s$.
- 6. Define

$$Q^0_{\alpha} = \bigcup \{ Q^0(p_t) : t \in T_{\leq \alpha} \} \text{ and } Q^1_{\alpha} = \bigcup \{ Q^1(p_t) : t \in T_{\leq \alpha} \}.$$

(a) For α an even ordinal, if $\mathcal{U}_{\alpha} = (\mathcal{U}_{n}^{\alpha} : n < \omega)$ is a sequence of ω -covers of Q_{α}^{0} then there exists a sequence $(U_{n} \in \mathcal{U}_{n}^{\alpha} : n < \omega)$ which is a γ -cover of

$$Q^0_{\alpha} \cup \bigcup \{ [p_s] : s \in T_{\alpha+1} \}$$

- (b) For α odd, the analogous statement is true but with Q^1_{α} in place of Q^0_{α} .
- 7. Let \mathcal{D} be the family of $f \in \omega^{\omega}$ such that for some $s \in T$ the function $f : \omega \to \overline{D_{p_s}}$ is the unique order preserving bijection. Then \mathcal{D} is a dominating family, i.e., for all $g \in \omega^{\omega}$ there exists $f \in \mathcal{D}$ such that g(n) < f(n) for all $n < \omega$.

To construct T_{λ} and p_s for $s \in T_{\lambda}$ where λ is a countable limit ordinal, proceed as follows. For any $s \in T_{<\lambda}$ and $N < \omega$ choose a strictly increasing sequence λ_n cofinal in λ with $s = s_0 \in T_{\lambda_0}$. By inductive hypothesis we can find $s_n \in T_{\lambda_n}$ with $p_{s_{n+1}} \leq_{N+n} p_{s_n}$. Take p_t for $t = \bigcup_{n < \omega} s_n$ to be the fusion of this sequence. Repeat countably many times, to take care of all $s \in T_{<\lambda}$ and $N < \omega$.

At successor stages for α even, check to see if \mathcal{U}_{α} is an ω -sequence of ω -covers of Q^0_{α} . If it is not, we need never worry about it since the set we are building will contain Q^0_{α} . If it is, let $\{x_n : n < \omega\} = Q^0_{\alpha}$ and let

$$\mathcal{U}_n = \{ U \in \mathcal{U}_n^\alpha : \{ x_i : i < n \} \subseteq U \}.$$

Let $(p_n, k_n : n < \omega)$ list all elements of

$$\{p_s: s \in T_\alpha\} \times \omega$$

with infinite repetitions and apply Lemma 3 followed by Lemma 4. From the resulting sequence we may find for each $s \in T_{\alpha}$ and $n < \omega$ a distinct condition $q \leq_n p_s$ which we label $p_{s \wedge \langle n \rangle}$. Obtaining the last condition (7), is easy (in fact, it seems hard to avoid), and is left to the reader.

The γ sets are the sets:

$$A_0 = \bigcup_{s \in T} Q^0(p_s)$$
 and $A_1 = \bigcup_{s \in T} Q^1(p_s).$

For $x \in A_0$ and $y \in A_1$ we note that there are infinitely many n with $x(n) \neq y(n)$. To see this note that if $x \in Q^0(p_s)$ and $y \in Q^1(p_t)$, and s and t are incomparable, then p_s and p_t are strongly disjoint. On the other hand, if they are comparable, for example, $s \subseteq t$, then since $p_t \leq p_s$, we have that $\overline{D_{p_t}} \subseteq \overline{D_{p_s}}$. So for all but finitely many $n \in \overline{D_{p_t}}$ we will have that y(n) = 1 and x(n) = 0.

Condition (7) gives us a continuous map from $A_0 \times A_1$ onto a dominating family $\mathcal{D} \subseteq \omega^{\omega}$. Namely, if $x_0 \in Q^0(p_s)$ is identically zero on \overline{D}_{p_s} and $x_1 \in Q^1(p_s)$ identically one on \overline{D}_{p_s} , then $\overline{D}_{p_s} = \{n : x_0(n) \neq x_1(n)\}$. So the continuous map is $\phi : A_0 \times A_1 \to \omega^{\omega}$ defined by $\phi(x, y) = f$ where f is the unique order preserving map from ω to the infinite set $\{n : x(n) \neq y(n)\}$. QED

Remark. Our result also shows that assuming CH there are Borel-cover γ -sets whose product is not Menger. To see this note the following:

Lemma 5 Suppose $p \in \mathbb{P}$, $n < \omega$, and $B \subseteq 2^{\omega}$ a Borel set. Then there exists $q \leq_n p$ such that $[q] \cap B$ is clopen in [q].

Proof

Let F be the first n elements of $\overline{D_p}$ and let $\phi : \omega \to (\overline{D_p} \setminus F)$ be a bijection. For $X \subseteq \omega$ let $\psi_X : (\overline{D_p} \setminus F) \to 2$ be the restriction of the characteristic function of $\phi(X)$. For each $s \in 2^F$ define

$$C_s = \{ X \in [\omega]^{\omega} : (p \cup s \cup \psi_X) \in B \}.$$

Since these are Borel sets by the Galvin-Prikry Theorem [1] there exists $H \in [\omega]^{\omega}$ such that for each $s \in 2^{F}$ either $[H]^{\omega} \subseteq C_{s}$ or $[H]^{\omega} \cap C_{s} = \emptyset$. Let $H_{1} \subseteq H$ be infinite such that $H \setminus H_{1}$ is also infinite. Let

$$q = p \cup (\phi(H) \times \{0\}) \cup (\phi(H_1) \times \{1\}).$$

Note that $\overline{D_q} = F \cup \phi(H \setminus H_1)$. We claim that given any $x, y \in [q]$ if $x \upharpoonright F = y \upharpoonright F = s$, then $x \in B$ iff $y \in B$. Letting $H_x = \phi^{-1}(x^{-1}(1))$ we see that $H_1 \subseteq H_x \subseteq H$ and so H_x is an infinite subset of H. Similarly for H_y . By choice of H we have that $H_x \in C_s$ iff $H_y \in C_s$ and so the claim follows. QED

Modify our construction in the open cover case as follows. Let B_{β} for $\beta < \omega_1$ list all Borel sets. At the end of each stage β apply Lemma 5 accross the level to make sure that $[p_s] \cap B_{\beta}$ is relatively clopen for each $s \in T_{\beta+1}$.

Let $\mathcal{B}_{\alpha} = (\mathcal{B}_{\alpha}^{n} : n < \omega)$ for $\alpha < \omega_{1}$ all ω sequences of countable families of Borel sets. We may assume that each element of $\bigcup \mathcal{B}_{\alpha}$ has already been listed as a B_{β} for some $\beta < \alpha$.

At successor stages for α even, check to see if $\mathcal{B}_{\alpha} = (\mathcal{B}_{n}^{\alpha} : n < \omega)$ is an ω -sequence of countable Borel ω -covers of Q_{α}^{0} . If it is not, we need never worry about it since the set we are building will contain Q_{α}^{0} . If it is, let $\{x_{n} : n < \omega\} = Q_{\alpha}^{0}$ and let

$$\mathcal{B}_n = \{ U \in \mathcal{B}_n^\alpha : \{ x_i : i < n \} \subseteq U \}.$$

Since the elements of each \mathcal{B}_n are relatively open in the $[p_s]$ the rest of the argument is the same as in the open case.

References

- Galvin, Fred; Prikry, Karel; Borel sets and Ramsey's theorem. J. Symbolic Logic 38 (1973), 193–198.
- [2] Galvin, Fred; Miller, Arnold W.; γ-sets and other singular sets of real numbers. Topology Appl. 17 (1984), no. 2, 145–155.
- [3] Grigorieff, Serge; Combinatorics on ideals and forcing. Ann. Math. Logic 3 (1971), no. 4, 363–394.