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A MINIMAL DEGREE WHICH COLLAPSES1 

TIM CARLSON, KENNETH KUNEN AND ARNOLD W. MILLER 

Abstract. We consider a well-known partial order of Prikry for producing a collapsing 
function of minimal degree. Assuming MA + m CH, every new real constructs the collapsing 
map. 

Let wo" ' be the tree of finite sequences from wo1. Define the partial order P to be 
the set of all nonempty subtrees T of wj)" which satisfy: for all s E T there exists 
t ? s such that {l:ta E T} is uncountable. The ordering on P is inclusion. This 
partial order was first considered by Prikry, who also showed that it gives a minimal 
collapsing function (see Abraham (198?)). 

THEOREM. Suppose M # "ZFC + MA + m CH". Then for any G P-generic over 
M, 

(1) M[G] # "ay)m is countable"; and 
(2) for every real x E M[G], x c M or G E M[x]. 
Note that (1) and (2) are impossible if M # "CH". This is because collapsing the 

continuum to w) always introduces Cohen reals, random reals, etc. 
Let us give some definitions. For p E P we say that s E p is a splitting node of p iff 

{a: s eot E p} is uncountable. We say that s E p is a level n node iff {t: t c s and t is a 
splitting node of p} has size n. We say that p <n q iff p < q and all level n nodes of q 
are still in p. The standard fusion argument shows that if PnI +1 <n Pn for each n < co, 
then the fusion (Qnn<.Pn) is an element of P. For any p E P and s E p define P, = 
{t E p I t c s or s c t}. 

Now suppose q E P and z is a term such that q -"z E 2". 
LEMMA 1. There exist p < q and F:p -+ 2<' such that 
(a) for all n < co, F"(p r wn) c 2n, and 
(b) for all s E p Ps Ik ["F(s) c ag. 
PROOF. This is an easy fusion argument. Given q E P and s E q rn no which we 

want to retain as a splitting node, simply extend each q, , to decide z p n, then w)1 of 
qs a decide z n the same way. So build a sequence qn + 1 <n qn < q such that for every 
level n node s of qn + 1, (qn + )s decides z P length(s). The fusion of the qn's is p. LI 

From now on assume that p Ik "z ? M" and p and F: p -+ 2<' are from Lemma 1. 
LEMMA 2. Suppose Pa < p for a < wo1. Then there exist qa < Pa and C_ c 2' closed 
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for each a < wo1 such that the {Ca : < w) 1} are disjoint and for each a < co1: 

qI [i -E Ce . 

PROOF. Define the partial order Qa by (T1, T2, n) E Qa iff 
(1) T1 is a finite subtree of Pa r) c with every branch of length n; 
(2) T2 is a finite subtree of 2n r- with every branch of length n; and 
(3) for all s E T1, F(s) E T2. 

We define (T1, T2,ii) < (T1, T2,n) iff 
(1) ii > n; 
(2) T1-T1; and 
(3) T2 is an end extension of T2 (i.e. T2 2 n = T2). 
It is easy to see that Qa has the countable chain condition, since if TP = Tq, then p 

and q are compatible. Now let Q be the direct sum of {Q; OC < w)1 }. Since each Qa 
has property K (in fact is a-centered), Q has the c.c.c. A partial order has property K 
if every subset of cardinality w1 contains a subset of w1 pairwise compatible 
elements. 

It is not hard to see that the product of two partial orders with property K has 
property K, and the direct sum of such orders has the property. Also MA + m CH 
implies that every c.c.c. order has property K. 

CLAIM 1. Given q E Qa and r E Q1l there exist q4 < q and P < r with the same n and 
Tq n T2 n 2 n =0. 

PROOF. This is where p 1-"z ? M" is used. For each s E Tq let x,:w -+ W1 be a 
branch of p extending s and let y,: () -+ 2 be U {F(x, P n): n < w}. (I.e. so Pxrn H 
"z r n = y, P n".) Since p IL "z 0 M", there exists for each s e Tr some s^s such that 
F(s^) is incompatible with all of the y 's. Now it is easy to prove Claim 1. LI 

For any G a Qa filter let qa = U{T1 p e G} and let Ca = U{T2 p e G} 
CLAIM 2. There are wo1 dense subsets of Q, such that if G is any Q, filter meeting 

them all, then qa e P. 
PROOF. For any s e p and ,B < w1 let Ds = {q e Qa:s e Tq and there exists t e Tq, 

t - s, and range(t) contains some y > ,B}. It is easy to see that Ds is dense beneath the 
set of q such that s e Ti . Consequently if we let 

Es = D u {q: q I 6s 0 Tq }, 

then Es is dense in Qa. If G meets each Es for s e p and ,B < w(1, then qa e P. Lii 
Note that qIL V"n -r n e Ca . The lemma follows easily from the claims and 

MA + -nCH. C 
Using Lemma 2 and a fusion argument, find q < p such that for all s e q there 

exists <C': :s-oc e q>, a family of disjoint closed sets, such that q^-, [-"r e Cs". Thus 
q [-"G e M[rG]" and the theorem is proved. LI 

REMARKS. Assume that M #= "MA + - CH" and G is Prikry collapsing generic 
over M. Then for f e M [G] n WoW there exists g e M n woP such that for every 
n < wo, f(n) < g(n). Also for every X e M[G] r- [o] there exists Y e M r- [wI]c 
such that Y c X or X n Y = 0. And every meager set (measure zero set) coded in 
M[G] is covered by one coded in M. All of these properties are true when G is Sacks 
generic over M. The proofs are similar here with the addition of a suitable forcing 
notion to apply Martin's axiom. 
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The fact that wo1 is collapsed but every element of war is dominated by a ground 
model element of car implies that in the ground model the Boolean algebra 
associated with the Prikry collapse is (w), o))-weakly distributive but not (w), c)1)- 
weakly distributive. This is also true of Namba forcing (see Namba (1972)). 

Of course, in our theorem we only needed that M # "MA(K)", since we only did 
property K forcing. If, in addition, M # "there are no Souslin trees", then for every 
set of ordinals X E M[G], X E M or G E M[X]. Since a branch through a Souslin 
tree cannot be minimal, this assumption is necessary. The proof is left as an exercise 
for the reader. 
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