

A Minimal Degree Which Collapses ω(sub)1(/sub)

Author(s): Tim Carlson, Kenneth Kunen, Arnold W. Miller

Source: The Journal of Symbolic Logic, Vol. 49, No. 1 (Mar., 1984), pp. 298-300

Published by: Association for Symbolic Logic Stable URL: http://www.jstor.org/stable/2274111

Accessed: 17/11/2009 15:35

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=asl.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Symbolic Logic.

A MINIMAL DEGREE WHICH COLLAPSES ω_1

TIM CARLSON, KENNETH KUNEN AND ARNOLD W. MILLER

Abstract. We consider a well-known partial order of Prikry for producing a collapsing function of minimal degree. Assuming MA $+ \neg CH$, every new real constructs the collapsing map.

Let $\omega_1^{<\omega}$ be the tree of finite sequences from ω_1 . Define the partial order \mathbf{P} to be the set of all nonempty subtrees T of $\omega_1^{<\omega}$ which satisfy: for all $s \in T$ there exists $t \geq s$ such that $\{\alpha: t^{\sim} \alpha \in T\}$ is uncountable. The ordering on \mathbf{P} is inclusion. This partial order was first considered by Prikry, who also showed that it gives a minimal collapsing function (see Abraham (198?)).

THEOREM. Suppose $M \models$ "ZFC + MA + \neg CH". Then for any G P-generic over M,

- (1) $M[G] \models "\omega_1^M$ is countable"; and
- (2) for every real $x \in M[G]$, $x \in M$ or $G \in M[x]$.

Note that (1) and (2) are impossible if $M \models$ "CH". This is because collapsing the continuum to ω always introduces Cohen reals, random reals, etc.

Let us give some definitions. For $p \in \mathbf{P}$ we say that $s \in p$ is a splitting node of p iff $\{\alpha: s \cap \alpha \in p\}$ is uncountable. We say that $s \in p$ is a level n node iff $\{t: t \subseteq s \text{ and } t \text{ is a splitting node of } p\}$ has size n. We say that $p \leq_n q$ iff $p \leq q$ and all level n nodes of q are still in p. The standard fusion argument shows that if $p_{n+1} \leq_n p_n$ for each $n < \omega$, then the fusion $(\bigcap_{n < \omega} p_n)$ is an element of \mathbf{P} . For any $p \in \mathbf{P}$ and $s \in p$ define $p_s = \{t \in p \mid t \subseteq s \text{ or } s \subseteq t\}$.

Now suppose $q \in \mathbf{P}$ and τ is a term such that $q \Vdash "\tau \in 2^{\omega}"$.

Lemma 1. There exist $p \le q$ and $F: p \to 2^{<\omega}$ such that

- (a) for all $n < \omega$, $F''(p \cap \omega_1^n) \subseteq 2^n$, and
- (b) for all $s \in p$, $p_s \Vdash "F(s) \subseteq \tau"$.

PROOF. This is an easy fusion argument. Given $q \in \mathbf{P}$ and $s \in q \cap \omega_1^n$ which we want to retain as a splitting node, simply extend each $q_{s \cap x}$ to decide $\tau \upharpoonright n$, then ω_1 of $q_{s \cap x}$ decide $\tau \upharpoonright n$ the same way. So build a sequence $q_{n+1} \leq_n q_n \leq q$ such that for every level n node s of q_{n+1} , $(q_{n+1})_s$ decides $\tau \upharpoonright \text{length}(s)$. The fusion of the q_n 's is p.

From now on assume that $p \Vdash "\tau \notin M"$ and p and $F: p \to 2^{<\omega}$ are from Lemma 1. Lemma 2. Suppose $p_{\alpha} \le p$ for $\alpha < \omega_1$. Then there exist $q_{\alpha} \le p_{\alpha}$ and $C_{\alpha} \subseteq 2^{\omega}$ closed

Received July 1, 1982.

for each $\alpha < \omega_1$ such that the $\{C_\alpha : \alpha < \omega_1\}$ are disjoint and for each $\alpha < \omega_1$:

$$q_{\alpha} \Vdash$$
 " $\tau \in C_{\alpha}$ ".

PROOF. Define the partial order \mathbf{Q}_{α} by $(T_1, T_2, n) \in \mathbf{Q}_{\alpha}$ iff

- (1) T_1 is a finite subtree of $p_{\alpha} \cap \omega_1^{\leq n}$ with every branch of length n;
- (2) T_2 is a finite subtree of $2^{\leq n}$ with every branch of length n; and
- (3) for all $s \in T_1, F(s) \in T_2$.

We define $(\hat{T}_1, \hat{T}_2, \hat{n}) \leq (T_1, T_2, n)$ iff

- (1) $\hat{n} \geq n$;
- (2) $\hat{T}_1 \supseteq T_1$; and
- (3) \hat{T}_2 is an end extension of T_2 (i.e. $\hat{T}_2 \cap 2^{\leq n} = T_2$).

It is easy to see that \mathbf{Q}_{α} has the countable chain condition, since if $T_2^p = T_2^q$, then p and q are compatible. Now let \mathbf{Q} be the direct sum of $\{\mathbf{Q}_{\alpha}: \alpha < \omega_1\}$. Since each \mathbf{Q}_{α} has property K (in fact is σ -centered), \mathbf{Q} has the c.c.c. A partial order has property K if every subset of cardinality ω_1 contains a subset of ω_1 pairwise compatible elements.

It is not hard to see that the product of two partial orders with property K has property K, and the direct sum of such orders has the property. Also MA $+ \neg$ CH implies that every c.c.c. order has property K.

CLAIM 1. Given $q \in \mathbf{Q}_{\alpha}$ and $r \in \mathbf{Q}_{\beta}$ there exist $\hat{q} \leq q$ and $\hat{r} \leq r$ with the same n and $T_{2}^{\hat{q}} \cap T_{2}^{\hat{r}} \cap 2^{n} = \emptyset$.

PROOF. This is where $p \Vdash "\tau \notin M"$ is used. For each $s \in T_1^q$ let $x_s: \omega \to \omega_1$ be a branch of p extending s and let $y_s: \omega \to 2$ be $\bigcup \{F(x_s \upharpoonright n): n < \omega\}$. (I.e. so $p_{x_s \upharpoonright n} \Vdash "\tau \upharpoonright n = y_s \upharpoonright n"$.) Since $p \Vdash "\tau \notin M"$, there exists for each $s \in T_1^r$ some $\widehat{s} \supseteq s$ such that $F(\widehat{s})$ is incompatible with all of the y_s 's. Now it is easy to prove Claim 1.

For any G a \mathbb{Q}_{α} filter let $q_{\alpha} = \bigcup \{T_1^p : p \in G\}$ and let $\widehat{C}_{\alpha} = \bigcup \{T_2^p : p \in G\}$.

CLAIM 2. There are ω_1 dense subsets of \mathbf{Q}_{α} such that if G is any \mathbf{Q}_{α} filter meeting them all, then $q_{\alpha} \in \mathbf{P}$.

PROOF. For any $s \in p$ and $\beta < \omega_1$ let $D^s_{\beta} = \{q \in \mathbf{Q}_{\alpha} : s \in T^q_1 \text{ and there exists } t \in T^q_1, t \supseteq s$, and range(t) contains some $\gamma > \beta$ }. It is easy to see that D^s_{β} is dense beneath the set of q such that $s \in T^q_1$. Consequently if we let

$$E_{B}^{s} = D_{B}^{s} \cup \{q: q \Vdash \text{``} s \notin T_{1}^{q}\text{''}\},$$

then E_{β}^{s} is dense in \mathbf{Q}_{α} . If G meets each E_{β}^{s} for $s \in p$ and $\beta < \omega_{1}$, then $q_{\alpha} \in \mathbf{P}$. \square Note that $q_{\alpha} \models \text{``} \forall n \ \tau \upharpoonright n \in \hat{C}_{\alpha}$ ''. The lemma follows easily from the claims and $MA + \neg CH$.

Using Lemma 2 and a fusion argument, find $q \le p$ such that for all $s \in q$ there exists $\langle C_{\alpha}^s : s \hat{\ } \alpha \in q \rangle$, a family of disjoint closed sets, such that $q_{s \hat{\ } \alpha} \models \text{``} \tau \in C_{\alpha}^s$. Thus $q \models \text{``} G \in M[\tau^G]$ " and the theorem is proved.

REMARKS. Assume that $M \models$ "MA $+ \neg$ CH" and G is Prikry collapsing generic over M. Then for $f \in M[G] \cap \omega^{\omega}$ there exists $g \in M \cap \omega^{\omega}$ such that for every $n < \omega$, f(n) < g(n). Also for every $X \in M[G] \cap [\omega]^{\omega}$ there exists $Y \in M \cap [\omega]^{\omega}$ such that $Y \subseteq X$ or $X \cap Y = \emptyset$. And every meager set (measure zero set) coded in M[G] is covered by one coded in M. All of these properties are true when G is Sacks generic over M. The proofs are similar here with the addition of a suitable forcing notion to apply Martin's axiom.

The fact that ω_1 is collapsed but every element of ω^{ω} is dominated by a ground model element of ω^{ω} implies that in the ground model the Boolean algebra associated with the Prikry collapse is (ω, ω) -weakly distributive but not (ω, ω_1) -weakly distributive. This is also true of Namba forcing (see Namba (1972)).

Of course, in our theorem we only needed that $M \models$ "MA(K)", since we only did property K forcing. If, in addition, $M \models$ "there are no Souslin trees", then for every set of ordinals $X \in M[G]$, $X \in M$ or $G \in M[X]$. Since a branch through a Souslin tree cannot be minimal, this assumption is necessary. The proof is left as an exercise for the reader.

REFERENCES

- U. ABRAHAM, Minimal model of " \aleph_1^L is countable" and definable reals, (198?) (to appear).
- K. Namba, Independence proof of (ω, ω_1) -WDL from (ω, ω) -WDL, Commentarii Mathematici Universitatis Sancti Pauli, vol. 21 (1972), fasc. 2, pp. 47–53.
- M. E. Rudin, Martin's Axiom, Handbook of mathematical logic (J. Barwise, editor), North-Holland, Amsterdam, 1977, pp. 419-502.

university of california 94720 berkeley, california 94720 university of wisconsin madison, wisconsin 53706 university of texas austin, texas 78712