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Results in this note were obtained in 1994 and reported on at a meeting
on Real Analysis in Lodz, Poland, July 1994.

Let w® be the Baire space, infinite sequences of natural numbers with the
product topology. In this topology a set K C w* is compact iff there exists
a finite branching tree T' C w<* such that

K=[T="{zcw :Vncw z[necT}

Theorem 1 If there exists a countable standard model of ZFC, then there
exists M, a countable standard model of ZFC, N D M, a generic extension
of M, and T € N a finite branching subtree of w<“ with the properties that

(a) Vfe[TI]NN g€ Mnw ¥°n f(n) < g(n) and
(b) Vge MNw* If € [TINN IF*n g(n) < f(n).

I don’t know how to do this over an arbitrary ground model M, for
example a model of V = L.
I don’t know if we can have (a) and the stronger condition:

(b)) Vge MNw®3f € [TINN VY*n g(n) < f(n).

This Theorem is related to Michael’s problem [4] of whether there must
be a Lindelof space X such that X x w® is not Lindelof and M.E.Rudin’s
characterization of that problem [5]. See also Alster [1] and Lawrence [3].

Proof of the Theorem.

Let P be the natural forcing for producing a finite splitting tree using
finite conditions. Namely, p € P iff p C w<¥ is a finite subtree and p < ¢ iff
p 2 ¢ is an end extension of ¢. End extension means if s € p\q then s D ¢
for some t € ¢ which is terminal in ¢, i.e., has no extensions in ¢q. This order
is countable and hence forcing equivalent to adding a single Cohen real. The
union of P-generic filter is a tree T" C w<* which determines a compact set

K Cw* by K =[T].



Given X C w® define Hx to be a version of Hechler forcing restricted to
X:
Hy ={(s,F) : s€w~“ and F € [X]*¥}

and (s, F) < (t,H)iff F 2 H, s 2Dt and
VieH Vn [t|<n<]|s| = f(n) <s(n)].
Forcing with this determines a g € w“ such that
VieX Ve f(n) < g(n),

For V' a countable transitive model of set theory let K = [T] be P-generic
over V and g, Hx,-generic over V[K](gs : f < ) where X, = H, U K,;

Hy=w’NV{gs:f<a) and K,=KNV[K|(gs : B < a).
We use finite supports and so this is a ccc.
Our models are M = V[(go : o <wi)] and N = M[K].

Condition (a): In N, K = Uy« K, and g, eventually dominates each
element of K.

Condition (b): It suffices to show that for all v < wy there exists f € [T
such that 3%°n g.(n) < f(n). This is sufficient because {g, : o < w;}isa
dominating family in M.

Claim. For any o < wy and s € T there exists ¢ O s with ¢ € T" such that
t(n) > go(n) for some n with |s| <n < |t|.

Assuming the Claim it is easy to produce f € [T] which is infinitely often
larger than g,. The rest of the proof is to prove the Claim.

We now describe the posets.
1. For each o < w; define P,:

(a) (p, (85, K, Hy)ica) € Py iff
(b) p € P and
(¢) s; = K; = H; = () for all but finitely many i,
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(d) s; € w<¥, K; is finite set of P;-names for elements of w* and for
all 7 € K;
(p, (85, K, Hj)j<i) b7 € [T]

(e) H; is a finite set of H;-names for elements of w®.

(f) Let N = max{s(n) :s € pandn < s|} and let f € w* be
the constant function N. Then f € H; for every i < a with K;
nonempty.

2. Hy ={(p,(s;, H;, K;) i< a) €Py : p=0and Vi< a K;=0}
3. 7 is Hy-name for an element of w* iff 7 C H; x {(n,m) : n,m < w} and

1 IFp,¥n Im (n,m) € 7.

4. Define the ordering on Py by: (p/, (s}, K7, Hj)i<a) < (p, (5i, Ki, Hi)ica)
iff

(a) p' < pand for each i < «
(b) H; C H and K; C K|
(c) VT e HHUK; VYn |s;] <n<|s| —

(p, (55, K, Hj)j<i) IFp,s' (n) > 7(n).

There are two possible orderings on H,. They only differ on the forcing
relation in the conclusion of clause 4c, i.e., use Iy, instead of IFp,. It will be
necessary to show that these are in fact the same. It is the reason behind the
innocuous condition 1f. We will need to drop p but retain some information
about p in the H;’s.

Note that any condition not satisfying condition 1f can be extended to
one that does simply by putting the required f into H;. Define

H+:{ H%u{f} if K; #0

i H; otherwise

Then (p, (si, Ki, H )ica) < (p, (8i, Kiy Hi)i<o). So conditions satisfying (1a-
1f) are dense in those satisfying (la-1le).



Lemma 2 (a) Suppose that 7 C H, x {{(n,m) : n,m < w} and 0(z) is a
Borel predicate with parameters from V. For any (p, (si, Ki, H;)i<a) € Pq

(0, (55,0, Hy)ica) Ve, 0(7) iff (p, (56, Kiy Hy)ica) IFp,0(T).

(b) Every D C H,, in V which is dense in H, is predense in P,.
(c) For every G which is P,-generic over V if G' = G N H,, then G’ is
H,,-generic over V.

Proof
This is by induction on o. Hy = {0} is the trivial partial order and so 7
evaluates to a ground model real. Hence the trivial condition in Py = P {0}
decides 0(7). Suppose that the Lemma is true for all i < a. This implies
that the forcing in clause 4c coincides for the posets H; and P;. Also the
forcing in the notion of H;-name (3) for an element of w®.

Proof of (b). Suppose D C H, is dense in H,. We claim that it is
predense in P,. Given an arbitrary (p, (s;, K;, H;)i<a-

Let (0, (s5,0, H)ica) < (0, (si,0, H;)i<o) be any element of D. We need

to show that for some p* < p that
(era (8;7 K’ia H£>i<a S (p7 (Sia Ki7 H;r)i<a

The only problem is clause 4c¢ for the case that 7 € K;.

To choose p* let ny = max{|s}| : i < a} and let p™ be obtained by adding
ny + 1 or more zeros to each terminal node of p. Note that the f € H; given
by clause 1f dominates all s € p*. For any i < « and 7 € K; since f € H;
we know that for any n with |s;| < n < [s}| that si(n) > f(n) > r(n) for
any r € pt and since 7 [ n + 1 is forced to be in p*™ (since it is forced that
7 € [T]), we have verified clause 4c.

Proof of (c). Since the suborder is the same, condition (b) implies that if
G P,-generic over V', then G N H,, is H,-generic over V.

Proof of (a). Suppose that (0(s;, 0, H;)i<a) IFu,0(7). Then given any G
P,-generic over V with (p, (s;, K;, H;)i<a) € G we have that

(®7 (Sia 07 Hi)i<a) eqd —def GnN Ha.

By the definition of forcing we have that V[G'] | (7). But ¢ = 7¢
and by Borel absoluteness V[G] = 0(7¢). Consequently by the definition of
forcing

(p. (85, Ky, Hy)ico) IFp, 0(7)
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On the other hand, if it is not the case that (0, (s;,0, H;)i<qa) IFu,0(7),
then there exists (0, (s}, 0, H))i<a) < (0, (54,0, H;)i<o) such that

(0)7 (52‘7 0, H{)Ka) ”_Ha_\e(T)
as we saw in the proof of (b) we may construct p* < p such that
(p+7 (8;7 Kia Hz{)i<a) < (pa (81'7 Ki7 Hi)i<a)

<p+> (52‘7 K, Hz{)i<a) H_Pa_\e(,r)

and therefor it is not the case that (p, (s;, Ky, H;)i<a) IFp,0(T).
QED

Our next lemma finds a node ¢ in T below s which has nothing to do with
the currently mentioned elements of K. This will allow us to extend ¢ without
having to worry about extensions of the s; dominating these elements of K.

Lemma 3 For any B, (p, (s;, Ki, H;)i<g) € Pg and s € p there ezists
(pl> (S;> Kz{’ Hz()i<ﬁ) < (p> (Si> K;, Hi)i</3)

and t € p" with s C t with the property that for every j < B and every T € K;
that

(0, (s, K, Hy)ics) Pt £ T

Proof

The proof is by induction on 8. For 8 limit it is trivial. For the successor
case 5 + 1 suppose we are given (p, (s;, K;, H;)i<p) and s € p. Let n = |Kpg|.
Extend p so as to have at least n + 1 nodes ty,%s,...,%,11 below s and
having the same length, say |t;| = k& > |s|. Extend (p, (s;, Ki, Hi)i<g) to
(p, (8, K;, I{Ii)i<5) which decides 7 | k for each 7 € K. Some # = t; is not
ruled out. Apply the induction hypothesis to (p, (S, K;, I:Ii)K/g) and 1.

QED

We are now ready to prove the Claim. Let Ty, ={t € T : s C t} and
suppose for contradiction that for some (p, (s;, K;, H;)i<a) € Pot1 with s € p
that

(p, (85, Kiy Hy)i<a) IFVE € Ts ¥ (|s| <n < |t] — t(n) < ga(n)).



Without loss by Lemma 3 we may assume that there exists ¢ € p a terminal
node of p extending s with the property that all 7 € |J,., K; are being
forced incompatible with t. Extend t by concatenating zeros to it so that
[t| = np > |s4|. By Lemma 2 we can find

(wa (327 @7 Hz()i<o¢) S (wa (Si7 wv Hi)i<a)
and N < w such that for each 7 € H, and for each n with [s,| < n < ng
(0, (s, 0, H))i<a) IFu,7(n) < N.

In addition we may assume that N > s(n) for all s € p and n < |s|. Now
we define p* as follows. We extend ¢ by adding N + 1 to it’s end, i.e., ¢’ Dt
with #'(ng) = N + 1. For all other terminal nodes of p we extend by adding
zeros until they are longer than any of the lengths of the s,. We define s/,
to be the extension of s, of length ny + 1 gotten by adding the constant
sequence N.

Then

(p", (s, Kiy H)i<a) < (p, (84, Kiy Hy)i<a)

because none of the elements of any K; go thru the node ¢ and all the other
nodes are extended by zeros. But this is a contradiction, t'(ng) = N + 1 and
this condition forces that g,(ng) = N since s/ (ng) = N.

This proves the Claim and therefore Theorem 1.
QED

By general forcing facts N is a ccc generic extension of M. In fact, N
is a generic extension of M using a ccc suborder of P, , see Solovay [6] p.22
definition of . For a proof using complete Boolean algebras see Grigorieff
[2]. However this factor forcing cannot be countable in M even though K is
added by a poset countable in V.

Proposition 4 Suppose M is a countable transitive model of ZFC, G P-
generic over M where M |= P is countable. Then M and N = M|G)| fail to
satisfy Theorem 1.

Proof
Suppose not. In N let T C w<“ be a finitely branching tree satisfying:

(a) Vfe[T]NN Jge MNw* V°n f(n) < g(n) and
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(b) Vge MNw* 3f € [T]NN F*ng(n) < f(n).
Define
B={seT : dgeMnuw* Vfelly] f<" g}

to be the M-bounded nodes of T'. Without loss of generality we may assume
that B is empty. To see this replace T" by Ty = T\B. This will be an
M-unbounded tree for which the corresponding By is empty. This is true

because given any H C M Nw* such that N = H is countable, there exists
g€ MNw® with h <* g forall h € H.

Working in M suppose for some py and name T
po IFT C w<¥ is finitely branching tree and B = 0.
We will prove that (a) fails. Suppose p < py and p IFs € T', then let
Tp)={tew : sCtand g <p ¢qlFt e T}.

Note that T'(p) is a subtree of w*. Clearly it cannot be finite branching
because then s is M-bounded. Hence for some k the set {t(k) : t € T'(p)}
is infinite. Using this observation we can build a name 7 for an element of
[T which is infinitely often larger than any ground model real, so (a) fails.
Construct (p, ts) for s € w<* such that

1. py = po and ty, = ().

2. pg for i < w is a maximal antichain beneath p,.

3. ps Ity €T.

4. tg Dty and for some k the set {t4(k) : i < w} is infinite.

5. For any q € P with ¢ < py there exists s such that p, <gq.

For any generic filter G containing py there will be a unique f € w®
Pfin € G for all n. Let 7 be a name for U, «,t¢,. We claim

po lFT € [T] and Vg € M 3*° k g(k) < (k).
Suppose for contradiction that ¢ < pg and g € M satisfy
qIFVEk 1(k) < g(k).

Then some for some s we have p, < q. By condition 4 we may find k and ¢
so that tg(k) > g(k). But then pg; IF7(k) > g(k) which is a contradiction.
QED
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