Compact subsets of the Baire space

Arnold W. Miller Nov 2012

Results in this note were obtained in 1994 and reported on at a meeting on Real Analysis in Lodz, Poland, July 1994.

Let ω^{ω} be the Baire space, infinite sequences of natural numbers with the product topology. In this topology a set $K \subseteq \omega^{\omega}$ is compact iff there exists a finite branching tree $T \subseteq \omega^{<\omega}$ such that

$$K = [T] =^{def} \{ x \in \omega^{\omega} : \forall n \in \omega \ x \upharpoonright n \in T \}.$$

Theorem 1 If there exists a countable standard model of ZFC, then there exists M, a countable standard model of ZFC, $N \supseteq M$, a generic extension of M, and $T \in N$ a finite branching subtree of $\omega^{<\omega}$ with the properties that

- (a) $\forall f \in [T] \cap N \ \exists g \in M \cap \omega^{\omega} \ \forall^{\infty} n \ f(n) < g(n) \ and$
- (b) $\forall g \in M \cap \omega^{\omega} \ \exists f \in [T] \cap N \ \exists^{\infty} n \ g(n) < f(n).$

I don't know how to do this over an arbitrary ground model M, for example a model of V = L.

I don't know if we can have (a) and the stronger condition:

$$(b)' \ \forall g \in M \cap \omega^{\omega} \ \exists f \in [T] \cap N \ \forall^{\infty} n \ g(n) < f(n).$$

This Theorem is related to Michael's problem [4] of whether there must be a Lindelöf space X such that $X \times \omega^{\omega}$ is not Lindelöf and M.E.Rudin's characterization of that problem [5]. See also Alster [1] and Lawrence [3].

Proof of the Theorem.

Let \mathbb{P} be the natural forcing for producing a finite splitting tree using finite conditions. Namely, $p \in \mathbb{P}$ iff $p \subseteq \omega^{<\omega}$ is a finite subtree and $p \leq q$ iff $p \supseteq q$ is an end extension of q. End extension means if $s \in p \setminus q$ then $s \supseteq t$ for some $t \in q$ which is terminal in q, i.e., has no extensions in q. This order is countable and hence forcing equivalent to adding a single Cohen real. The union of \mathbb{P} -generic filter is a tree $T \subseteq \omega^{<\omega}$ which determines a compact set $K \subseteq \omega^{\omega}$ by K = [T]. Given $X \subseteq \omega^{\omega}$ define \mathbb{H}_X to be a version of Hechler forcing restricted to X:

$$\mathbb{H}_X = \{ (s, F) : s \in \omega^{<\omega} \text{ and } F \in [X]^{<\omega} \}$$

and $(s, F) \leq (t, H)$ iff $F \supseteq H, s \supseteq t$, and

$$\forall f \in H \ \forall n \ [\ |t| \leq n < |s| \ \rightarrow \ f(n) \leq s(n) \].$$

Forcing with this determines a $g \in \omega^{\omega}$ such that

$$\forall f \in X \ \forall^{\infty} n \ f(n) \le g(n).$$

For V a countable transitive model of set theory let K = [T] be \mathbb{P} -generic over V and $g_{\alpha} \mathbb{H}_{X_{\alpha}}$ -generic over $V[K]\langle g_{\beta} : \beta < \alpha \rangle$ where $X_{\alpha} = H_{\alpha} \cup K_{\alpha}$;

$$H_{\alpha} = \omega^{\omega} \cap V\langle g_{\beta} : \beta < \alpha \rangle$$
 and $K_{\alpha} = K \cap V[K]\langle g_{\beta} : \beta < \alpha \rangle$.

We use finite supports and so this is a ccc.

Our models are $M = V[\langle g_{\alpha} : \alpha < \omega_1 \rangle]$ and N = M[K].

Condition (a): In N, $K = \bigcup_{\alpha < \omega_1} K_{\alpha}$ and g_{α} eventually dominates each element of K_{α} .

Condition (b): It suffices to show that for all $\alpha < \omega_1$ there exists $f \in [T]$ such that $\exists^{\infty} n \ g_{\alpha}(n) < f(n)$. This is sufficient because $\{g_{\alpha} : \alpha < \omega_1\}$ is a dominating family in M.

Claim. For any $\alpha < \omega_1$ and $s \in T$ there exists $t \supseteq s$ with $t \in T$ such that $t(n) > g_{\alpha}(n)$ for some n with |s| < n < |t|.

Assuming the Claim it is easy to produce $f \in [T]$ which is infinitely often larger than g_{α} . The rest of the proof is to prove the Claim.

We now describe the posets.

- 1. For each $\alpha \leq \omega_1$ define \mathbb{P}_{α} :
 - (a) $(p, (s_i, K_i, H_i)_{i < \alpha}) \in \mathbb{P}_{\alpha}$ iff
 - (b) $p \in \mathbb{P}$ and
 - (c) $s_i = K_i = H_i = \emptyset$ for all but finitely many i,

(d) $s_i \in \omega^{<\omega}$, K_i is finite set of \mathbb{P}_i -names for elements of ω^{ω} and for all $\tau \in K_i$

$$(p, (s_j, K_j, H_j)_{j < i}) \Vdash_{\mathbb{P}_i} \tau \in [T]$$

- (e) H_i is a finite set of \mathbb{H}_i -names for elements of ω^{ω} .
- (f) Let $N = max\{s(n) : s \in p \text{ and } n < s\}$ and let $f \in \omega^{\omega}$ be the constant function N. Then $\check{f} \in H_i$ for every $i < \alpha$ with K_i nonempty.
- 2. $\mathbb{H}_{\alpha} = \{ (p, (s_i, H_i, K_i) : i < \alpha) \in \mathbb{P}_{\alpha} : p = \emptyset \text{ and } \forall i < \alpha \ K_i = \emptyset \}$
- 3. τ is \mathbb{H}_i -name for an element of ω^{ω} iff $\tau \subseteq \mathbb{H}_i \times \{\langle n, m \rangle : n, m < \omega\}$ and

$$1 \Vdash_{\mathbb{P}_i} \forall n \exists ! m \langle n, m \rangle \in \tau.$$

- 4. Define the ordering on \mathbb{P}_{α} by: $(p', (s'_i, K'_i, H'_i)_{i < \alpha}) \leq (p, (s_i, K_i, H_i)_{i < \alpha})$ iff
 - (a) $p' \leq p$ and for each $i < \alpha$
 - (b) $H_i \subseteq H'_i$ and $K_i \subseteq K'_i$

(c) $\forall \tau \in H_i \cup K_i \ \forall n \ |s_i| \le n < |s'_i| \rightarrow$

$$(p, (s_j, K_j, H_j)_{j < i}) \Vdash_{\mathbb{P}_i} s'(n) \ge \tau(n).$$

There are two possible orderings on \mathbb{H}_{α} . They only differ on the forcing relation in the conclusion of clause 4c, i.e., use $\Vdash_{\mathbb{H}_i}$ instead of $\Vdash_{\mathbb{P}_i}$. It will be necessary to show that these are in fact the same. It is the reason behind the innocuous condition 1f. We will need to drop p but retain some information about p in the H_i 's.

Note that any condition not satisfying condition 1f can be extended to one that does simply by putting the required \check{f} into H_i . Define

$$H_i^+ = \begin{cases} H_i \cup \{\check{f}\} & \text{if } K_i \neq \emptyset \\ H_i & \text{otherwise} \end{cases}$$

Then $(p, (s_i, K_i, H_i^+)_{i < \alpha}) \leq (p, (s_i, K_i, H_i)_{i < \alpha})$. So conditions satisfying (1a-1f) are dense in those satisfying (1a-1e).

Lemma 2 (a) Suppose that $\tau \subseteq \mathbb{H}_{\alpha} \times \{\langle n, m \rangle : n, m < \omega\}$ and $\theta(x)$ is a Borel predicate with parameters from V. For any $(p, (s_i, K_i, H_i)_{i < \alpha}) \in \mathbb{P}_{\alpha}$

 $(\emptyset, (s_i, \emptyset, H_i)_{i < \alpha}) \Vdash_{\mathbb{H}_{\alpha}} \theta(\tau) \text{ iff } (p, (s_i, K_i, H_i)_{i < \alpha}) \Vdash_{\mathbb{P}_{\alpha}} \theta(\tau).$

(b) Every $D \subseteq \mathbb{H}_{\alpha}$ in V which is dense in \mathbb{H}_{α} is predense in \mathbb{P}_{α} . (c) For every G which is \mathbb{P}_{α} -generic over V if $G' = G \cap \mathbb{H}_{\alpha}$, then G' is \mathbb{H}_{α} -generic over V.

Proof

This is by induction on α . $\mathbb{H}_0 = \{\emptyset\}$ is the trivial partial order and so τ evaluates to a ground model real. Hence the trivial condition in $\mathbb{P}_0 = \mathbb{P} * \{\emptyset\}$ decides $\theta(\tau)$. Suppose that the Lemma is true for all $i < \alpha$. This implies that the forcing in clause 4c coincides for the posets \mathbb{H}_i and \mathbb{P}_i . Also the forcing in the notion of \mathbb{H}_i -name (3) for an element of ω^{ω} .

Proof of (b). Suppose $D \subseteq \mathbb{H}_{\alpha}$ is dense in \mathbb{H}_{α} . We claim that it is predense in \mathbb{P}_{α} . Given an arbitrary $(p, (s_i, K_i, H_i)_{i < \alpha})$.

Let $(\emptyset, (s'_i, \emptyset, H'_i)_{i < \alpha}) \leq (\emptyset, (s_i, \emptyset, H_i)_{i < \alpha})$ be any element of D. We need to show that for some $p^+ \leq p$ that

$$(p^+, (s'_i, K_i, H'_i)_{i < \alpha} \le (p, (s_i, K_i, H^+_i)_{i < \alpha})$$

The only problem is clause 4c for the case that $\tau \in K_i$.

To choose p^+ let $n_1 = \max\{|s'_i| : i < \alpha\}$ and let p^+ be obtained by adding $n_1 + 1$ or more zeros to each terminal node of p. Note that the $f \in H_i$ given by clause 1f dominates all $s \in p^+$. For any $i < \alpha$ and $\tau \in K_i$ since $f \in H_i$ we know that for any n with $|s_i| \leq n < |s'_i|$ that $s'_i(n) \geq f(n) \geq r(n)$ for any $r \in p^+$ and since $\tau \upharpoonright n + 1$ is forced to be in p^+ (since it is forced that $\tau \in [T]$), we have verified clause 4c.

Proof of (c). Since the suborder is the same, condition (b) implies that if $G \mathbb{P}_{\alpha}$ -generic over V, then $G \cap \mathbb{H}_{\alpha}$ is \mathbb{H}_{α} -generic over V.

Proof of (a). Suppose that $(\emptyset(s_i, \emptyset, H_i)_{i < \alpha}) \Vdash_{\mathbb{H}_{\alpha}} \theta(\tau)$. Then given any G \mathbb{P}_{α} -generic over V with $(p, (s_i, K_i, H_i)_{i < \alpha}) \in G$ we have that

$$(\emptyset, (s_i, \emptyset, H_i)_{i < \alpha}) \in G' =^{def} G \cap \mathbb{H}_{\alpha}.$$

By the definition of forcing we have that $V[G'] \models \theta(\tau^{G'})$. But $\tau^{G'} = \tau^{G}$ and by Borel absoluteness $V[G] \models \theta(\tau^{G})$. Consequently by the definition of forcing

$$(p, (s_i, K_i, H_i)_{i < \alpha}) \Vdash_{\mathbb{P}_{\alpha}} \theta(\tau)$$

On the other hand, if it is not the case that $(\emptyset, (s_i, \emptyset, H_i)_{i < \alpha}) \Vdash_{\mathbb{H}_{\alpha}} \theta(\tau)$, then there exists $(\emptyset, (s'_i, \emptyset, H'_i)_{i < \alpha}) \leq (\emptyset, (s_i, \emptyset, H_i)_{i < \alpha})$ such that

$$(\emptyset, (s'_i, \emptyset, H'_i)_{i < \alpha}) \Vdash_{\mathbb{H}_{\alpha}} \neg \theta(\tau)$$

as we saw in the proof of (b) we may construct $p^+ \leq p$ such that

$$(p^+, (s'_i, K_i, H'_i)_{i < \alpha}) \le (p, (s_i, K_i, H_i)_{i < \alpha})$$
$$(p^+, (s'_i, K_i, H'_i)_{i < \alpha}) \Vdash_{\mathbb{P}_\alpha} \neg \theta(\tau)$$

and therefor it is not the case that $(p, (s_i, K_i, H_i)_{i < \alpha}) \Vdash_{\mathbb{P}_{\alpha}} \theta(\tau)$. QED

Our next lemma finds a node t in T below s which has nothing to do with the currently mentioned elements of K. This will allow us to extend t without having to worry about extensions of the s_i dominating these elements of K.

Lemma 3 For any β , $(p, (s_i, K_i, H_i)_{i < \beta}) \in \mathbb{P}_{\beta}$ and $s \in p$ there exists

 $(p', (s'_i, K'_i, H'_i)_{i < \beta}) \le (p, (s_i, K_i, H_i)_{i < \beta})$

and $t \in p'$ with $s \subseteq t$ with the property that for every $j < \beta$ and every $\tau \in K'_j$ that

$$(p', (s'_i, K'_i, H'_i)_{i < j}) \Vdash t \not\subseteq \tau$$

Proof

The proof is by induction on β . For β limit it is trivial. For the successor case $\beta + 1$ suppose we are given $(p, (s_i, K_i, H_i)_{i \leq \beta})$ and $s \in p$. Let $n = |K_\beta|$. Extend p so as to have at least n + 1 nodes $t_1, t_2, \ldots, t_{n+1}$ below s and having the same length, say $|t_i| = k > |s|$. Extend $(p, (s_i, K_i, H_i)_{i < \beta})$ to $(\hat{p}, (\hat{s}_i, \hat{K}_i, \hat{H}_i)_{i < \beta})$ which decides $\tau \upharpoonright k$ for each $\tau \in K_\beta$. Some $\hat{t} = t_i$ is not ruled out. Apply the induction hypothesis to $(\hat{p}, (\hat{s}_i, \hat{K}_i, \hat{H}_i)_{i < \beta})$ and \hat{t} . QED

We are now ready to prove the Claim. Let $T_s = \{t \in T : s \subseteq t\}$ and suppose for contradiction that for some $(p, (s_i, K_i, H_i)_{i \leq \alpha}) \in \mathbb{P}_{\alpha+1}$ with $s \in p$ that

$$(p, (s_i, K_i, H_i)_{i \le \alpha}) \Vdash \forall t \in T_s \ \forall n \ (|s| < n < |t| \rightarrow t(n) < g_\alpha(n)).$$

Without loss by Lemma 3 we may assume that there exists $t \in p$ a terminal node of p extending s with the property that all $\tau \in \bigcup_{i \leq \alpha} K_i$ are being forced incompatible with t. Extend t by concatenating zeros to it so that $|t| = n_0 > |s_{\alpha}|$. By Lemma 2 we can find

$$(\emptyset, (s'_i, \emptyset, H'_i)_{i < \alpha}) \le (\emptyset, (s_i, \emptyset, H_i)_{i < \alpha})$$

and $N < \omega$ such that for each $\tau \in H_{\alpha}$ and for each n with $|s_{\alpha}| \leq n \leq n_0$

$$(\emptyset, (s'_i, \emptyset, H'_i)_{i < \alpha}) \Vdash_{\mathbb{H}_{\alpha}} \tau(n) < N.$$

In addition we may assume that N > s(n) for all $s \in p$ and n < |s|. Now we define p^+ as follows. We extend t by adding N + 1 to it's end, i.e., $t' \supseteq t$ with $t'(n_0) = N + 1$. For all other terminal nodes of p we extend by adding zeros until they are longer than any of the lengths of the s'_i . We define s'_{α} to be the extension of s_{α} of length $n_0 + 1$ gotten by adding the constant sequence N.

Then

$$(p^+, (s'_i, K_i, H'_i)_{i \le \alpha}) \le (p, (s_i, K_i, H_i)_{i \le \alpha})$$

because none of the elements of any K_i go thru the node t and all the other nodes are extended by zeros. But this is a contradiction, $t'(n_0) = N + 1$ and this condition forces that $g_{\alpha}(n_0) = N$ since $s'_{\alpha}(n_0) = N$.

This proves the Claim and therefore Theorem 1. QED

By general forcing facts N is a ccc generic extension of M. In fact, N is a generic extension of M using a ccc suborder of \mathbb{P}_{ω_1} , see Solovay [6] p.22 definition of Σ . For a proof using complete Boolean algebras see Grigorieff [2]. However this factor forcing cannot be countable in M even though K is added by a poset countable in V.

Proposition 4 Suppose M is a countable transitive model of ZFC, $G \mathbb{P}$ -generic over M where $M \models \mathbb{P}$ is countable. Then M and N = M[G] fail to satisfy Theorem 1.

Proof

Suppose not. In N let $T \subseteq \omega^{<\omega}$ be a finitely branching tree satisfying:

(a) $\forall f \in [T] \cap N \ \exists g \in M \cap \omega^{\omega} \ \forall^{\infty} n \ f(n) < g(n)$ and

(b) $\forall g \in M \cap \omega^{\omega} \ \exists f \in [T] \cap N \ \exists^{\infty} n \ g(n) < f(n).$

Define

$$B = \{ s \in T : \exists g \in M \cap \omega^{\omega} \ \forall f \in [T_s] \ f \leq^* g \}$$

to be the *M*-bounded nodes of *T*. Without loss of generality we may assume that *B* is empty. To see this replace *T* by $T_0 = T \setminus B$. This will be an *M*-unbounded tree for which the corresponding B_0 is empty. This is true because given any $H \subseteq M \cap \omega^{\omega}$ such that $N \models H$ is countable, there exists $g \in M \cap \omega^{\omega}$ with $h \leq g$ for all $h \in H$.

Working in M suppose for some p_0 and name T

 $p_0 \Vdash T \subseteq \omega^{<\omega}$ is finitely branching tree and $B = \emptyset$.

We will prove that (a) fails. Suppose $p \leq p_0$ and $p \Vdash s \in T$, then let

 $T(p) = \{ t \in \omega^{<\omega} : s \subseteq t \text{ and } \exists q \le p \ q \Vdash t \in T \}.$

Note that T(p) is a subtree of ω^{ω} . Clearly it cannot be finite branching because then s is M-bounded. Hence for some k the set $\{t(k) : t \in T(p)\}$ is infinite. Using this observation we can build a name τ for an element of [T] which is infinitely often larger than any ground model real, so (a) fails. Construct (p_t, t_s) for $s \in \omega^{<\omega}$ such that

- 1. $p_{\langle\rangle} = p_0$ and $t_{\langle\rangle} = \langle\rangle$.
- 2. p_{si} for $i < \omega$ is a maximal antichain beneath p_s .
- 3. $p_s \Vdash t_s \in T$.
- 4. $t_{si} \supseteq t_s$ and for some k the set $\{t_{si}(k) : i < \omega\}$ is infinite.
- 5. For any $q \in \mathbb{P}$ with $q \leq p_0$ there exists s such that $p_s \leq q$.

For any generic filter G containing p_0 there will be a unique $f \in \omega^{\omega}$ $p_{f \mid n} \in G$ for all n. Let τ be a name for $\bigcup_{n < \omega} t_{f \mid n}$. We claim

$$p_0 \Vdash \tau \in [T] \text{ and } \forall g \in M \exists^{\infty} k \ g(k) < \tau(k).$$

Suppose for contradiction that $q \leq p_0$ and $g \in M$ satisfy

$$q \Vdash \forall k \ \tau(k) \le g(k).$$

Then some for some s we have $p_s \leq q$. By condition 4 we may find k and i so that $t_{si}(k) > g(k)$. But then $p_{si} \Vdash \tau(k) > g(k)$ which is a contradiction. QED

References

- K.Alster, On the product of a Lindelöf space with the space of irrationals under Martin's Axiom, Proceedings of the American Mathematical Society, 110(1990), 543-547.
- [2] Grigorieff, Serge; Intermediate submodels and generic extensions in set theory. Ann. Math. (2) 101 (1975), 447-490.
- [3] B.Lawrence, The influence of a small cardinal on the product of a Lindelöf space and the irrational, Proceedings of the American Mathematical Society, 110(1990), 535-542.
- [4] E.Michael, The product of a normal space and a metric space need not be normal, Bulletin of the American Mathematical Society, 69(1963), 375-376.
- [5] M.E.Rudin, An analysis of Michael's problem, preprint 1993.
- [6] Solovay, Robert M.; A model of set-theory in which every set of reals is Lebesgue measurable. Ann. of Math. (2) 92 1970 1-56.

Arnold W. Miller miller@math.wisc.edu http://www.math.wisc.edu/~miller University of Wisconsin-Madison Department of Mathematics, Van Vleck Hall 480 Lincoln Drive Madison, Wisconsin 53706-1388