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Results in this note were obtained in 1994 and reported on at a meeting
on Real Analysis in  Lodz, Poland, July 1994.

Let ωω be the Baire space, infinite sequences of natural numbers with the
product topology. In this topology a set K ⊆ ωω is compact iff there exists
a finite branching tree T ⊆ ω<ω such that

K = [T ] =def {x ∈ ωω : ∀n ∈ ω x � n ∈ T}.

Theorem 1 If there exists a countable standard model of ZFC, then there
exists M , a countable standard model of ZFC, N ⊇ M , a generic extension
of M , and T ∈ N a finite branching subtree of ω<ω with the properties that

(a) ∀f ∈ [T ] ∩N ∃g ∈M ∩ ωω ∀∞n f(n) < g(n) and

(b) ∀g ∈M ∩ ωω ∃f ∈ [T ] ∩N ∃∞n g(n) < f(n).

I don’t know how to do this over an arbitrary ground model M , for
example a model of V = L.

I don’t know if we can have (a) and the stronger condition:

(b)′ ∀g ∈M ∩ ωω ∃f ∈ [T ] ∩N ∀∞n g(n) < f(n).

This Theorem is related to Michael’s problem [4] of whether there must
be a Lindelöf space X such that X × ωω is not Lindelöf and M.E.Rudin’s
characterization of that problem [5]. See also Alster [1] and Lawrence [3].

Proof of the Theorem.

Let P be the natural forcing for producing a finite splitting tree using
finite conditions. Namely, p ∈ P iff p ⊆ ω<ω is a finite subtree and p ≤ q iff
p ⊇ q is an end extension of q. End extension means if s ∈ p\q then s ⊇ t
for some t ∈ q which is terminal in q, i.e., has no extensions in q. This order
is countable and hence forcing equivalent to adding a single Cohen real. The
union of P-generic filter is a tree T ⊆ ω<ω which determines a compact set
K ⊆ ωω by K = [T ].
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Given X ⊆ ωω define HX to be a version of Hechler forcing restricted to
X:

HX = {(s, F ) : s ∈ ω<ω and F ∈ [X]<ω}

and (s, F ) ≤ (t,H) iff F ⊇ H, s ⊇ t, and

∀f ∈ H ∀n [ |t| ≤ n < |s| → f(n) ≤ s(n) ].

Forcing with this determines a g ∈ ωω such that

∀f ∈ X ∀∞n f(n) ≤ g(n).

For V a countable transitive model of set theory let K = [T ] be P-generic
over V and gα HXα-generic over V [K]〈gβ : β < α〉 where Xα = Hα ∪Kα;

Hα = ωω ∩ V 〈gβ : β < α〉 and Kα = K ∩ V [K]〈gβ : β < α〉.

We use finite supports and so this is a ccc.

Our models are M = V [〈gα : α < ω1〉] and N = M [K].

Condition (a): In N , K = ∪α<ω1Kα and gα eventually dominates each
element of Kα.

Condition (b): It suffices to show that for all α < ω1 there exists f ∈ [T ]
such that ∃∞n gα(n) < f(n). This is sufficient because {gα : α < ω1} is a
dominating family in M .

Claim. For any α < ω1 and s ∈ T there exists t ⊇ s with t ∈ T such that
t(n) > gα(n) for some n with |s| < n < |t|.

Assuming the Claim it is easy to produce f ∈ [T ] which is infinitely often
larger than gα. The rest of the proof is to prove the Claim.

We now describe the posets.

1. For each α ≤ ω1 define Pα:

(a) (p, (si, Ki, Hi)i<α) ∈ Pα iff

(b) p ∈ P and

(c) si = Ki = Hi = ∅ for all but finitely many i,
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(d) si ∈ ω<ω, Ki is finite set of Pi-names for elements of ωω and for
all τ ∈ Ki

(p, (sj, Kj, Hj)j<i) 
Piτ ∈ [T ]

(e) Hi is a finite set of Hi-names for elements of ωω.

(f) Let N = max{s(n) : s ∈ p and n < s|} and let f ∈ ωω be
the constant function N . Then f̌ ∈ Hi for every i < α with Ki

nonempty.

2. Hα = {(p, (si, Hi, Ki) : i < α) ∈ Pα : p = ∅ and ∀i < α Ki = ∅}

3. τ is Hi-name for an element of ωω iff τ ⊆ Hi×{ ˇ〈n,m〉 : n,m < ω} and

1 
Pi∀n ∃!m 〈n,m〉 ∈ τ.

4. Define the ordering on Pα by: (p′, (s′i, K
′
i, H

′
i)i<α) ≤ (p, (si, Ki, Hi)i<α)

iff

(a) p′ ≤ p and for each i < α

(b) Hi ⊆ H ′i and Ki ⊆ K ′i

(c) ∀τ ∈ Hi ∪Ki ∀n |si| ≤ n < |s′i| →

(p, (sj, Kj, Hj)j<i) 
Pis
′(n) ≥ τ(n).

There are two possible orderings on Hα. They only differ on the forcing
relation in the conclusion of clause 4c, i.e., use 
Hi instead of 
Pi . It will be
necessary to show that these are in fact the same. It is the reason behind the
innocuous condition 1f. We will need to drop p but retain some information
about p in the Hi’s.

Note that any condition not satisfying condition 1f can be extended to
one that does simply by putting the required f̌ into Hi. Define

H+
i =

{
Hi ∪ {f̌} if Ki 6= ∅
Hi otherwise

Then (p, (si, Ki, H
+
i )i<α) ≤ (p, (si, Ki, Hi)i<α). So conditions satisfying (1a-

1f) are dense in those satisfying (1a-1e).
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Lemma 2 (a) Suppose that τ ⊆ Hα × { ˇ〈n,m〉 : n,m < ω} and θ(x) is a
Borel predicate with parameters from V . For any (p, (si, Ki, Hi)i<α) ∈ Pα

(∅, (si, ∅, Hi)i<α) 
Hαθ(τ) iff (p, (si, Ki, Hi)i<α) 
Pαθ(τ).

(b) Every D ⊆ Hα in V which is dense in Hα is predense in Pα.
(c) For every G which is Pα-generic over V if G′ = G ∩ Hα, then G′ is
Hα-generic over V .

Proof
This is by induction on α. H0 = {∅} is the trivial partial order and so τ
evaluates to a ground model real. Hence the trivial condition in P0 = P∗{∅}
decides θ(τ). Suppose that the Lemma is true for all i < α. This implies
that the forcing in clause 4c coincides for the posets Hi and Pi. Also the
forcing in the notion of Hi-name (3) for an element of ωω.

Proof of (b). Suppose D ⊆ Hα is dense in Hα. We claim that it is
predense in Pα. Given an arbitrary (p, (si, Ki, Hi)i<α.

Let (∅, (s′i, ∅, H ′i)i<α) ≤ (∅, (si, ∅, Hi)i<α) be any element of D. We need
to show that for some p+ ≤ p that

(p+, (s′i, Ki, H
′
i)i<α ≤ (p, (si, Ki, H

+
i )i<α

The only problem is clause 4c for the case that τ ∈ Ki.
To choose p+ let n1 = max{|s′i| : i < α} and let p+ be obtained by adding

n1 + 1 or more zeros to each terminal node of p. Note that the f ∈ Hi given
by clause 1f dominates all s ∈ p+. For any i < α and τ ∈ Ki since f ∈ Hi

we know that for any n with |si| ≤ n < |s′i| that s′i(n) ≥ f(n) ≥ r(n) for
any r ∈ p+ and since τ � n + 1 is forced to be in p+ (since it is forced that
τ ∈ [T ]), we have verified clause 4c.

Proof of (c). Since the suborder is the same, condition (b) implies that if
G Pα-generic over V , then G ∩Hα is Hα-generic over V .

Proof of (a). Suppose that (∅(si, ∅, Hi)i<α) 
Hαθ(τ). Then given any G
Pα-generic over V with (p, (si, Ki, Hi)i<α) ∈ G we have that

(∅, (si, ∅, Hi)i<α) ∈ G′ =def G ∩Hα.

By the definition of forcing we have that V [G′] |= θ(τG
′
). But τG

′
= τG

and by Borel absoluteness V [G] |= θ(τG). Consequently by the definition of
forcing

(p, (si, Ki, Hi)i<α) 
Pαθ(τ)
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On the other hand, if it is not the case that (∅, (si, ∅, Hi)i<α) 
Hαθ(τ),
then there exists (∅, (s′i, ∅, H ′i)i<α) ≤ (∅, (si, ∅, Hi)i<α) such that

(∅, (s′i, ∅, H ′i)i<α) 
Hα¬θ(τ)

as we saw in the proof of (b) we may construct p+ ≤ p such that

(p+, (s′i, Ki, H
′
i)i<α) ≤ (p, (si, Ki, Hi)i<α)

(p+, (s′i, Ki, H
′
i)i<α) 
Pα¬θ(τ)

and therefor it is not the case that (p, (si, Ki, Hi)i<α) 
Pαθ(τ).
QED

Our next lemma finds a node t in T below s which has nothing to do with
the currently mentioned elements of K. This will allow us to extend t without
having to worry about extensions of the si dominating these elements of K.

Lemma 3 For any β, (p, (si, Ki, Hi)i<β) ∈ Pβ and s ∈ p there exists

(p′, (s′i, K
′
i, H

′
i)i<β) ≤ (p, (si, Ki, Hi)i<β)

and t ∈ p′ with s ⊆ t with the property that for every j < β and every τ ∈ K ′j
that

(p′, (s′i, K
′
i, H

′
i)i<j) 
t 6⊆ τ

Proof
The proof is by induction on β. For β limit it is trivial. For the successor
case β + 1 suppose we are given (p, (si, Ki, Hi)i≤β) and s ∈ p. Let n = |Kβ|.
Extend p so as to have at least n + 1 nodes t1, t2, . . . , tn+1 below s and
having the same length, say |ti| = k > |s|. Extend (p, (si, Ki, Hi)i<β) to

(p̂, (ŝi, K̂i, Ĥi)i<β) which decides τ � k for each τ ∈ Kβ. Some t̂ = ti is not

ruled out. Apply the induction hypothesis to (p̂, (ŝi, K̂i, Ĥi)i<β) and t̂.
QED

We are now ready to prove the Claim. Let Ts = {t ∈ T : s ⊆ t} and
suppose for contradiction that for some (p, (si, Ki, Hi)i≤α) ∈ Pα+1 with s ∈ p
that

(p, (si, Ki, Hi)i≤α) 
∀t ∈ Ts ∀n (|s| < n < |t| → t(n) < gα(n)).
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Without loss by Lemma 3 we may assume that there exists t ∈ p a terminal
node of p extending s with the property that all τ ∈

⋃
i≤αKi are being

forced incompatible with t. Extend t by concatenating zeros to it so that
|t| = n0 > |sα|. By Lemma 2 we can find

(∅, (s′i, ∅, H ′i)i<α) ≤ (∅, (si, ∅, Hi)i<α)

and N < ω such that for each τ ∈ Hα and for each n with |sα| ≤ n ≤ n0

(∅, (s′i, ∅, H ′i)i<α) 
Hατ(n) < N.

In addition we may assume that N > s(n) for all s ∈ p and n < |s|. Now
we define p+ as follows. We extend t by adding N + 1 to it’s end, i.e., t′ ⊇ t
with t′(n0) = N + 1. For all other terminal nodes of p we extend by adding
zeros until they are longer than any of the lengths of the s′i. We define s′α
to be the extension of sα of length n0 + 1 gotten by adding the constant
sequence N .

Then
(p+, (s′i, Ki, H

′
i)i≤α) ≤ (p, (si, Ki, Hi)i≤α)

because none of the elements of any Ki go thru the node t and all the other
nodes are extended by zeros. But this is a contradiction, t′(n0) = N + 1 and
this condition forces that gα(n0) = N since s′α(n0) = N .

This proves the Claim and therefore Theorem 1.
QED

By general forcing facts N is a ccc generic extension of M . In fact, N
is a generic extension of M using a ccc suborder of Pω1 , see Solovay [6] p.22
definition of Σ. For a proof using complete Boolean algebras see Grigorieff
[2]. However this factor forcing cannot be countable in M even though K is
added by a poset countable in V .

Proposition 4 Suppose M is a countable transitive model of ZFC, G P-
generic over M where M |= P is countable. Then M and N = M [G] fail to
satisfy Theorem 1.

Proof
Suppose not. In N let T ⊆ ω<ω be a finitely branching tree satisfying:

(a) ∀f ∈ [T ] ∩N ∃g ∈M ∩ ωω ∀∞n f(n) < g(n) and
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(b) ∀g ∈M ∩ ωω ∃f ∈ [T ] ∩N ∃∞n g(n) < f(n).

Define
B = {s ∈ T : ∃g ∈M ∩ ωω ∀f ∈ [Ts] f ≤∗ g}

to be the M -bounded nodes of T . Without loss of generality we may assume
that B is empty. To see this replace T by T0 = T\B. This will be an
M -unbounded tree for which the corresponding B0 is empty. This is true
because given any H ⊆ M ∩ ωω such that N |= H is countable, there exists
g ∈M ∩ ωω with h ≤∗ g for all h ∈ H.

Working in M suppose for some p0 and name T

p0 
T ⊆ ω<ω is finitely branching tree and B = ∅.

We will prove that (a) fails. Suppose p ≤ p0 and p 
s ∈ T , then let

T (p) = {t ∈ ω<ω : s ⊆ t and ∃q ≤ p q 
t ∈ T}.

Note that T (p) is a subtree of ωω. Clearly it cannot be finite branching
because then s is M -bounded. Hence for some k the set {t(k) : t ∈ T (p)}
is infinite. Using this observation we can build a name τ for an element of
[T ] which is infinitely often larger than any ground model real, so (a) fails.
Construct (pt, ts) for s ∈ ω<ω such that

1. p〈〉 = p0 and t〈〉 = 〈〉.

2. psi for i < ω is a maximal antichain beneath ps.

3. ps 
ts ∈ T .

4. tsi ⊇ ts and for some k the set {tsi(k) : i < ω} is infinite.

5. For any q ∈ P with q ≤ p0 there exists s such that ps ≤ q.

For any generic filter G containing p0 there will be a unique f ∈ ωω

pf�n ∈ G for all n. Let τ be a name for ∪n<ωtf�n. We claim

p0 
τ ∈ [T ] and ∀g ∈M ∃∞ k g(k) < τ(k).

Suppose for contradiction that q ≤ p0 and g ∈M satisfy

q 
∀k τ(k) ≤ g(k).

Then some for some s we have ps ≤ q. By condition 4 we may find k and i
so that tsi(k) > g(k). But then psi 
τ(k) > g(k) which is a contradiction.
QED
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