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Long Borel Hierarchies

Arnold W. Miller 1

Abstract

We show that there is a model of ZF in which the Borel hierarchy
on the reals has length ω2. This implies that ω1 has countable
cofinality, so the axiom of choice fails very badly in our model.
A similar argument produces models of ZF in which the Borel
hierarchy has exactly λ+1 levels for any given limit ordinal λ less
than ω2. We also show that assuming a large cardinal hypothesis
there are models of ZF in which the Borel hierarchy is arbitrarily
long.
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1 Introduction

In this paper we do not assume the axiom of choice, not even in the form
of choice functions for countable families. Define the classical Borel families,
Π0

α and Σ0
α, of subsets of 2ω for any ordinal α as usual:

1. Σ0
0 = Π0

0 =clopen subsets of 2ω,

2. Π0
<α =

⋃
β<α Π0

β, Σ0
<α =

⋃
β<α Σ0

β,

3. Σ0
α = {

⋃
n<ω An : (An : n < ω) ∈ (Π0

<α)ω}, and

4. Π0
α = {

⋂
n<ω An : (An : n < ω) ∈ (Σ0

<α)ω}.

It follows from these definitions that:

Proposition 1 Without using the Axiom of Choice:

1. Π0
α ∪Σ0

α ⊆ Π0
β ∩Σ0

β for all α < β.

2. Π0
<λ = Σ0

<λ for limit ordinal λ.

3. Π0
α = {2ω\X : X ∈ Σ0

α} for all α.

Proof
The first is immediate from the definitions and the second follows from the
first. The last follows from De Morgan’s Laws.
QED

The family of Borel subsets of 2ω is the smallest family of sets containing
the clopen sets and closed under countable unions and countable intersec-
tions. Equivalently, Borel= Σ0

<∞ = Π0
<∞ where

Σ0
<∞ =

⋃
{Σ0

α : α an ordinal } and Π0
<∞ =

⋃
{Π0

α : α an ordinal }.
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The length of the Borel hierarchy is the least α such that every Borel set
is Σ0

<α. It cannot be ∞ since then there would be a map from the power set
of 2ω onto the class of all ordinals.

It is a classical Theorem of Lebesgue 1905 [8] (see Kechris [7] p. 168) that
assuming the axiom of choice for countable families, the length of the Borel
hierarchy is ω1. To see that it has height at least ω1, he shows that Σ0

α 6= Π0
α

for all α with 1 ≤ α < ω1 by constructing universal sets in each Borel class.
This requires choosing codes for Borel sets. In the absence of the axiom of
choice this may fail. Feferman and Lévy 1963 (see Cohen [3] p.143, Jech [6]
p.142) showed that it is relatively consistent with ZF that 2ω is the countable
union of countable sets. This implies that every subset of 2ω is a countable
union of countable sets. Since singletons are closed this means that every
subset of 2ω is the countable union of countable unions of closed sets, i.e.,
Fσσ. We show in Theorem 2.1 that it is always the case that Σ0

3 6= Π0
3. So

in the Feferman-Lévy model since Fσσ ⊆ Σ0
4 we have that P(2ω) = Σ0

4 = Π0
4

and therefore there are exactly four levels for the Borel hierarchy which is
the least possible.

The second place that the axiom of choice is used in the Lebesgue proof
is to prove that the Borel hierarchy has length at most ω1. The regular-
ity of ω1 implies that Σ0

<ω1
is closed under countable unions and countable

intersections and hence it contains all Borel sets.
Since there is a map from 2ω onto ω1, it follows that in any ZF model

in which 2ω is the countable union of countable sets, ω1 has cofinality ω. In
fact, in the Feferman-Lévy model, ω1 = ℵL

ω .
Péter Komjáth asked if it is possible for the Borel hierarchy to have length

greater than ω1 in some model of ZF. We show that it can be. This is the
main result of our paper.

Theorem 1.1 There is a symmetric submodel N of a generic extension of
the Feferman-Lévy model V in which the Borel hierarchy on 2ω has length
ω2, i.e., ω2 is the least α such that Σ0

<α is the family of all Borel sets.

Komjáth asks if the Borel hierarchy can have length greater than ω2. This
would require a model in which both ω1 and ω2 have cofinality ω. In Gitik
1980 [5] a model of ZF is produced (assuming the consistency of ZFC plus
unboundedly many strongly compact cardinals) in which every ℵα has cofi-
nality ω. Schindler [10] shows that the consistency strength of two successor
singular cardinals is at least a Woodin cardinal (approximately).

We prove:
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Theorem 1.2 Suppose V is a countable transitive model of ZF in which
every ℵα has countable cofinality. Then for every ordinal λ in V , there is
symmetric submodel N of a generic extension of V with the same ℵα’s as V
and the length of the Borel hierarchy in N is greater than λ.

The argument is actually easier than Theorem 1.1, since we can separate
the levels of the hierarchy by cardinality.

Note that we do not compute an upper bound on the length of the Borel
hierarchy but only prove that it can be arbitrarily long. We leave the exact
determination of the length to some interested graduate student who needs
a dissertation topic.

The arguments we use are really about closure under countable unions
and not about complementation. As we will see, complementation does not
help to generate the Borel hierarchy in our models.

Specker 1957 [12] following Church 1927 [2] defines2 the classes Gα for α
an ordinal as follows:

1. G0 is the class of countable sets,

2. G<α =
⋃

β<α Gβ, and

3. Gα = {
⋃

n<ω Xn : (Xn : n < ω) ∈ (G<α)ω}.

Gitik proves that in his model every set is in G<∞, i.e., V = G<∞. Löwe
[9] calls ZF+V = G<∞ the theory ZFG and discusses some of its philosophical
properties.

Proposition 2 (Specker [12])

1. ω2 is not the countable union of countable sets. (ℵ2 /∈ G1)

2. In fact, more generally ℵα /∈ G<α for any ordinal α.

3. Similarly P(ℵα) /∈ Gα for any ordinal α.

4. If every ℵα has cofinality ω, then ℵα ∈ Gα\G<α for every ordinal α.

Using Proposition 2 it is easy to give a simple example of a σ-algebra
with what might seem like an impossibly long hierarchy:

2Actually Specker defines Gα to be what we would write as Gα\G<α. We find our
definition easier to work with.
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Proposition 3 Suppose cof(ℵα) = ω for every α ≤ ω2. Let C0 be the set of
countable or co-countable subsets of ℵω2. If C is the σ-algebra generated by
C0, then C = P(ℵω2) and it takes exactly ω2 + 1 steps to generate C from C0
using countable unions and countable intersections.

Proof
Note that ℵω2 ∈ Gω2 ⊆ C. Since the G’s are closed under taking subsets, we
have that every subset of ℵω2 is in C. Define

Cα = {X ⊆ ℵω2 : |X| ≤ ℵα or |ℵω2 \X| ≤ ℵα}.

As usual C<α =
⋃

β<αCβ. The following facts are easy to show:

1. X ∈ Cα iff ℵω2 \X ∈ Cα.

2. If 〈Xn : n < ω〉 ∈ (C<α)ω, then
⋃

n<ω Xn ∈ Cα and
⋂

n<ω Xn ∈ Cα.

3. If X ∈ Cα, then there exists 〈Xn : n < ω〉 ∈ (C<α)ω such that either
X =

⋃
n<ω Xn or X =

⋂
n<ω Xn.

4. If A ⊆ ℵω2 has the property that |A| = |ℵω2 \A| = ℵω2 , then A /∈ C<ω2 .

This shows that the hierarchy has exactly ω2 + 1 levels.
QED

Apter and Gitik [1] give a partial solution to a (presumably still open)
problem of Specker:

Is it possible to have a model of ZF in which P(ℵα) ∈ Gα+1 for every
ordinal α?

In the Feferman-Lévy model P(ω) ∈ G1\G0. Gitik shows that in his model
that P(ω) ∈ G2\G1. There is a variation of the Feferman-Lévy model where
it is also true that P(ω) ∈ G2\G1.

In the following Theorem Nα will be a ZF submodel of the model N from
Theorem 1.1.

Theorem 1.3 For 2 ≤ α < ωV
2 in the model Nα, P(ω) ∈ (Gα\G<α). It

follows that
Borel = P(2ω) = Gα ∩ P(2ω).

If α is a limit ordinal, then the Borel hierarchy in Nα has exactly α+1 levels.
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We will make use of several hierarchies determined by closing under count-
able unions. For example, Aα (Definition 5.1), is the hierarchy generated by
the finite subsets of 2ω. It is the same as the Gα hierarchy restricted to the
subsets of 2ω but off by one for finite α. For technicals reasons it is easier to
use than the Gα. TheMα hierarchy (Definition 5.3) is generated by starting
with the nowhere dense sets. In ZFC this would be just the meager sets and
would stop at the first step. The Bα sets (Definition 5.6) are the analog of
the sets with the property of Baire, i.e., almost open modMα. Note that

Aα ⊆Mα ⊆ Bα.

2 Π0
3 6= Σ0

3

The Hausdorff terminology for the Borel hierarchy is defined as follows: F is
the family of closed sets, G is the family of open sets, Fσ is the family of sets
which can written as the countable union of closed sets, Gδ is the family of
sets which can written as the countable intersection of open sets, Fσδ is the
family of sets which can written as the countable intersection of Fσ sets, etc.

Theorem 2.1 Without using the axiom of choice

Fσδ 6= Gδσ

equivalently Π0
3 6= Σ0

3.

Proof
Let Q be the set of x ∈ 2ω which are eventually zero. Define P = Qω ⊆ (2ω)ω.
We can identify (2ω)ω with 2ω via a recursive pairing function on ω2. It is
easy to check that P is a Fσδ-set. We show that P cannot be Gδσ.

Claim. Suppose G ⊆ (2ω)ω is a Gδ set and (qi ∈ Q : i < n) has the property
that

G ⊆
∏
i<n

{qi} ×
∏

n≤k<ω

Q.

Then there exists m > n and (qi ∈ Q : n ≤ i < m) such that

G ∩

(∏
i<m

{qi} ×
∏

m≤k<ω

Q

)
= ∅.
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To prove the Claim assume for simplicity that n = 0. So G ⊆ P . G is
not dense else we could effectively construct x ∈ G with the property that
xn /∈ Q for every n. To see this write G as a descending sequence of dense
open sets Un and construct sequences (sm

n ∈ 2<ω : m < Nn) with

1. Nn < Nn+1 < ω,

2. sn
m ⊆ sn+1

m for m < Nn,

3. {x ∈ (2ω)ω : ∀i < Nn sn
i ⊆ xi} ⊆ Un, and

4. sn+1
m (k) = 1 for some k > |sn

m| and for all m < Nn.

By taking the union of the sn
m’s we get x ∈ G such that xn /∈ Q for all n.

Since G is not dense it is easy to find the required qi’s. This proves the
Claim.

Now we prove the theorem. Suppose for contradiction P =
⋃

n<ω Gn

where each Gn is a Gδ. Construct (qi ∈ Q : i < Nn) so that:

Gn ∩

(∏
i<Nn

{qi} ×
∏

Nn≤k<ω

Q

)
= ∅

by applying the Claim to the Gδ set

Gn ∩

 ∏
i<Nn−1

{qi} ×
∏

Nn−1≤k<ω

2ω

 .

But then (qi : i < ω) ∈ P\
⋃

n<ω Gn which is a contradiction.
QED

We don’t know if Theorem 2.1 is new. The set P used in the proof is
the same as P3 in Kechris [7] p. 179. The proof Kechris gives to show P3 is
properly Π0

3 is to show that the universal Π0
3 set Wadge reduces to P3. But

universal sets don’t exist in our context.



A.Miller Long Borel Hierarchies 8

3 Forcing and the Feferman-Lévy Model V

Theorem 3.1 Suppose M is a countable transitive model of ZF and P is
a partial order in M . For any G which is P-generic over M we have that
M [G] is a model of ZF with M ⊆ M [G]. Furthermore, if M satisfies AC,
then M [G] satisfies AC.

Theorem 3.2 Suppose M is a countable transitive model of ZF, P is a par-
tial order in M , and F ∈M is a normal filter of groups of automorphisms of
P. For any G which is P-generic over M the symmetric model N is a model
of ZF with M ⊆ N ⊆M [G].

Theorem 3.1 is proved in Shoenfield [11] and Kunen [4] Chapter VII. Both
of these author’s assume that M is a model of ZFC. The proof does not use
it. We have been unable to find a reference stating this well-known fact.3

We cannot find a reference for Theorem 3.2 although we think it must
be known. In Jech’s book on the Axiom of Choice [6] the boolean algebraic
version of forcing is used and he assumes that the ground model satisfies AC.
At the suggestion of one of the referees we include the proof of Theorem 3.2
here.

3.1 Elementary forcing facts

Let M be a countable transitive model of ZF. Let P be a partial order in M .
Define

1. G is a P-filter iff

(a) G ⊆ P
(b) p ≤ q and p ∈ G implies q ∈ G
(c) p, q ∈ G implies there exists r ∈ G with r ≤ p and r ≤ q.

2. D ⊆ P is dense iff for every p ∈ P there exists q ≤ p with q ∈ D.

3. G is P-generic over M iff G is a P-filter and G∩D 6= ∅ for every D ∈M
dense in P.

3Kunen says that he didn’t mention it because his book is not about the Axiom of
Choice. When I was a graduate student in the early 1970’s and puzzled over whether the
ground model must satisfy AC, Jack Silver told me,“But forcing has nothing to do with
the Axiom of Choice.”
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4. The P-names are defined inductively on rank. τ is a P-name iff each
element of τ is of the form (p, σ) where p ∈ P and σ is a P-name.

5. Given a P-filter G and P-name τ , the realization4 of τ given G is defined
inductively by

τG = {σG : ∃p ∈ G (p, σ) ∈ τ}.

6. If G is P-generic over M , then

M [G] = {τG : τ is a P-name in M}.

7. Forcing is defined by: p θ(~τ) iff

for every G P-generic over M if p ∈ G then M [G] |= θ(~τG). 5

It is shown that if M is a countable transitive model of ZF then M [G]
is a countable transitive model of ZF with M ⊆ M [G]. If in addition M
satisfies AC, then M [G] also satisfies AC.

This is proved using the two key properties of forcing:

1. (definability) For any formula θ(x1, . . . , xn),

p Pθ(τ1, . . . , τn)

is definable in M by a formula of the form ψ(p,P, τ1, . . . , τn).

2. (truth) If M [G] |= θ(~τG), then

∃p ∈ G p θ(~τ).

If π is an automorphism of P in M , then π extends to the P-names by
induction on rank:

π(τ) = {(π(p), π(σ)) : (p, σ) ∈ τ}.

A basic fact about such automorphisms is

4We prefer the notation τG to Kunen’s val(τ,G).
5We may assume our forcing language includes a predicate

◦
M denoting the ground

model and that M is a definable class of M [G] .
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Lemma 3.3 If π is an automorphism of P in M , then for any formula θ,
p ∈ P, and P-names, τ1, . . . , τn

p θ(τ1, . . . , τn) iff π(p) θ(π(τ1), . . . , π(τn)).

Proof
First prove by induction on rank that

τπ−1(G) = π(τ)G

and note that M [G] = M [π−1(G)].
The following are equivalent:

1. p θ(τ).

2. For all G P-generic over M with p ∈ G M [G] |= θ(τG).

3. For all G P-generic over M with p ∈ π−1(G) M [π−1(G)] |= θ(τπ−1(G)).

4. For all G P-generic over M with π(p) ∈ G M [G] |= θ(π(τ)G).

5. π(p) θ(π(τ)).

We have written the parameters τ1, . . . , τn as τ to simplify the notation.
QED

3.2 The symmetric submodel

Suppose that H is a group of automorphisms of P in M . Then we can define
in M :

1. For any P-name τ the subgroup of H:

Fix(τ) = {π ∈ H : π(τ) = τ}.

2. F is a normal filter of subgroups of H iff

(a) if H ⊆ K ⊆ H are subgroups and H ∈ F , then K ∈ F ,

(b) if H,K ∈ F , then H ∩K ∈ F , and

(c) if H ∈ F and π ∈ H, then πHπ−1 ∈ F .
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3. τ is symmetric iff Fix(τ) ∈ F .

4. τ is hereditarily symmetric iff τ is symmetric and σ is hereditarily
symmetric for every (p, σ) ∈ τ .

Remark. Suppose H = Fix(τ) and π ∈ H, then πHπ−1 ⊆ Fix(π(τ)). Hence
if τ is an hereditarily symmetric name and π ∈ H then π(τ) is an hereditarily
symmetric name.

For G which is P-generic over M define the symmetric model:

N = {τG : τ is an hereditarily symmetric P-name in M }.

The fact that N is transitive follows from the definition of hereditarily
symmetric names. M ⊆ N because the canonical names

x̌ = {(1, y̌) : y ∈ x}

are fixed by every automorphism of P. N ⊆M [G] is obvious.

Axioms of ZF are true in N :

1. Pair. A name for the pair {τG, σG} is {(1, τ), (1, σ)} and

Fix(τ) ∩ Fix(σ) ⊆ Fix({(1, τ), (1, σ)}).

It follows that if σ and τ are hereditarily symmetric, then so is this
name for their pair.

2. Union. Given
◦
x, let

◦
y = {(p, σ) : ∃(r, ρ) ∈ ◦

x ∃s (((s, σ) ∈ ρ) ∧ (p ≤ s) ∧ (p ≤ r))}

Then
 ◦
y =

⋃
◦
x

and Fix(
◦
x) ⊆ Fix(

◦
y). If

◦
x is hereditarily symmetric, so is

◦
y.

3. Power Set. Given
◦
x hereditarily symmetric, let

Q = {σ : ∃p ∈ P (p, σ) ∈ ◦
x}.

Note that each element of Q is hereditarily symmetric. Let

◦
y = {(p, σ) : σ ⊆ P×Q is symmetric and p σ ⊆ ◦

x}.
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Then
◦
y is a hereditarily symmetric name for the power set of

◦
x in N .

Note that the normality condition guarantees that if σ is hereditarily
symmetric then so is π(σ) for every π ∈ H. Also if

p σ ⊆ ◦
x

and π ∈ Fix(
◦
x) then

π(p) π(σ) ⊆ ◦
x.

So Fix(
◦
x) ⊆ Fix(

◦
y).

4. Comprehension. Given a formula θ(v, ~τ) with hereditarily symmetric
parameters and a hereditarily symmetric

◦
x then defining Q as before

let
◦
y = {(p, σ) ∈ P×Q : p σ ∈ ◦

x N |= θ(σ, ~τ)}.
If π fixes

◦
x and each τi then π(

◦
y) =

◦
y.

5. Replacement. We may assume that M is a definable class in M [G] by

adding a predicate
◦
M if necessary. Since M [G] models replacement and

N is a definable class in M [G] for any formula θ(x, y) and set A ∈ N
there will be a set B ∈ M of hereditarily symmetric names such that
for every a ∈ A if N |= ∃y θ(a, y) then there exist τ ∈ B such that
N |= θ(a, τG). Then:

C = {(1, π(τ)) : τ ∈ B and π ∈ H}

is hereditarily symmetric and {τG : τ ∈ B} ⊆ CG ∈ N .

This concludes the proof of Theorem 3.2.
QED

3.3 The Feferman-Lévy Model

Next we describe some of the basic properties of the Feferman-Lévy Model.
The ground model satisfies V = L, let us call it L. In L let Col be the
following version of the Lévy collapse of ℵω:

Col = {p : F → ℵω : F ∈ [ω × ω]<ω and ∀(n,m) ∈ F p(n,m) ∈ ℵn}

ordered by inclusion.
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For any n < ω let Coln = {p : dom(p) ⊆ n×ω} and for Gcol Col-generic
over L let Gcol

n = Gcol ∩ Coln.
The properties we will use of V are summarized in the next Lemma.

Lemma 3.4 L ⊆ V ⊆ L[Gcol] and Gcol
n ∈ V for each n. In V , P(ω) is the

countable union of countable sets, in fact,

P(ω) ∩ V =
⋃
n<ω

(L[Gcol
n ] ∩ P(ω)).

More generally, if X ⊆ Y ∈ L and X ∈ V , then for some n < ω we have
that X ∈ L[Gcol

n ]. It follows that ωV
1 = ℵL

ω and ωV
2 = ℵL

ω+1 and is regular in
V .

4 The model N for Theorem 1.1

The model N will be a symmetric submodel of a generic extension of the
Feferman-Lévy Model V . Working in L we will construct a well-founded tree
T ⊆ (ℵω+1)

<ω. First we make the following definitions:

1. For s ∈ (ℵω+1)
<ω and δ < ℵω+1:

sˆ〈δ〉 is the finite sequence of length |s|+ 1 which begins with s and
has one more element δ.

2. For s ∈ T , we let:

Child(s) = {δ : sˆ〈δ〉 ∈ T}.

3. For s ∈ T , we let:

rank(s) = sup{rank(sˆ〈δ〉) + 1 : δ ∈ Child(s)}.

4. The terminal nodes or leaves of T are:

Leaf(T ) = {s ∈ T : rank(s) = 0}.

Then T should have the following properties:
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1. Child(〈〉) = ℵω+1 and rank(〈α〉) = α for each α < ℵω+1.

2. If rank(s) = α+ 1 is a successor ordinal, then

{δ : sˆ〈δ〉 ∈ T} = ω

and rank(sˆ〈n〉) = α for all n < ω.

3. If rank(s) = λ is a limit ordinal and cof(λ) = ωn, then

Child(s) = ωn

and rank(sˆ〈δ〉) for δ < ωn is strictly increasing and (necessarily) cofi-
nal in λ.

It is easy to inductively construct such a T in L. Note that in V each ωL
n

is countable, so except for the root node 〈〉, T is countably branching in V ,
i.e., Child(s) is countable for every s ∈ T except the root node.

Working in V we make the following definitions:

1. Define P to be the set of finite partial functions p : F → 2<ω where
F ∈ [Leaf(T )]<ω. P is ordered by p ≤ q iff dom(p) ⊇ dom(q) and
p(s) ⊇ q(s) for every s ∈ dom(q).6

2. For π a permutation, define the support of π:

supp(π) = {t ∈ dom(π) : π(t) 6= t}.

3. Let H be the group of automorphisms of P which are induced by finite
support permutations of Leaf(T ). That is, π ∈ H iff there exists a
finite support permutation π̂ : Leaf(T )→ Leaf(T ) such that π : P→ P
is defined by

dom(π(p)) = π̂(dom(p)) and π(p)(s) = p(π̂(s)).

4. For any r ∈ T put Leaf(r) = {t ∈ Leaf(T ) : r ⊆ t}. Note that
Leaf(s) = {s} for s ∈ Leaf(T ).

6P is forcing equivalent to Cohen real forcing, Fn(ℵω+1, 2). Elements of the partial
order Fn(A,B) are of the form p : X → Y where X is a finite subset of A and Y is a finite
subset of B. It is ordered by p ≤ q iff p is an extension of q. See Kunen [4] p. 211.
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5. For any s ∈ T\Leaf(T ) define:

Hs = {π ∈ H : π̂(Leaf(sˆ〈δ〉)) = Leaf(sˆ〈δ〉) for all δ ∈ Child(s)}.

6. For any t ∈ Leaf(T ) define Ht = {π ∈ H : π̂(t) = t}.

7. Let F be the filter of subgroups of H which are generated by the Hs,
i.e., H ∈ F iff there is a finite Q ⊆ T with

HQ ⊆ H ⊆ H where HQ =def
⋂
{Hs : s ∈ Q}.

Note that we defined Ht for t ∈ Leaf(T ) just for convenience of notation,
since if sˆ〈n〉 = t, then Hs ⊆ Ht.

Lemma 4.1 The filter of subgroups F is normal, i.e., for any π ∈ H and
H ∈ F , we have that π−1Hπ ∈ F .

Proof
Fix π ∈ H and Q ⊆ T finite with HQ ⊆ H. Let R be a finite superset of
Q which contains the support of π̂. We claim that πHRπ

−1 = HR. This
follows from the fact that for any σ ∈ HR the support of σ̂ is disjoint from
the support of π̂ and so πσπ−1 = σ.

It follows that:

πHRπ
−1 = HR ⊆ HQ implies HR ⊆ π−1HQπ ⊆ π−1Hπ

and hence π−1Hπ is in F .
QED

Let G be P-generic over V and let N be the symmetric model determined
by H and F .

Lemma 4.2 ωV
1 = ωN1 , ωV

2 = ωN2 , and ωN2 remains regular in N .

Proof
It is enough to verify that this is true for V [G] in place of N , since:

V ⊆ N ⊆ V [G].
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This would seem obvious since P is forcing equivalent to the poset of the
finite partial functions, Fn(κ, 2), where κ is ωV

2 = ℵL
ω+1. If V were a model of

the axiom of choice, then we would know that forcing with P cannot collapse
cardinals.7

First we verify that ωV
1 = ℵL

ω is not collapsed in V [G]. Working in V ,
suppose for contradiction there exists p0 ∈ P and a name τ such that

p0 τ : ω → ℵL
ω is onto.

Define:

A = {(p, n, β) ∈ P× ω × ℵL
ω : p ≤ p0 and p τ(n) = β̌}.

Note that for any (p, n, β), (q, n, γ) ∈ A that if β 6= γ, then p and q are
incompatible.

The set A is a subset of a set in L, so it follows from Lemma 3.4 that there
exist k < ω such that A ∈ L[Gcol

k ]. In L[Gcol
k ], ω1 is ℵL

k+1. Since L[Gcol
k ] is a

model of the axiom of choice, the range of A, i.e., {α : ∃p, n (p, n, α) ∈ A},
cannot even cover ℵL

k+1.
Now suppose in V :

p0 τ : ω → ℵL
ω+1 is cofinal.

Define A similarly and suppose A ∈ L[Gcol
k ]. Then since ωV

2 = ℵL
ω+1 = ℵL[Gcol

k ]
ω+1

it follows that the range of A cannot be cofinal in ωV
2 = ℵL

ω+1. This shows
that the cofinality of ω2 is ω2 in V [G] and hence it is not collapsed and it
remains regular.8

QED

7Can there be a model of ZF in which for some κ forcing with Fn(κ, 2) collapses a
cardinal? This question interests us because a yes answer would be another example of
just how badly set theory can go wrong if the axiom of choice fails. Since we are more
interested in a yes answer, we could ask more generally: Can forcing with Fn(X, 2) for
some set X ever make two sets A and B of different cardinality in the ground model
become the same cardinality in the generic extension?

8An alternative proof for ω2 being regular in N is to note that it is ω1 in the model
L[Gcol]. Since L[Gcol] is a model of ZFC forcing with Fn(κ, 2) cannot collapse ω1. The
proof of Theorem 1.2 has an alternative argument for showing that cardinals are not
collapsed in N .
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5 In N the Borel hierarchy has length ω2

For each t ∈ Leaf(T ) let xt ∈ 2ω be the Cohen real attached to t which is
determined by G, i.e.,

xt =
⋃
{p(t) : t ∈ dom(p) and p ∈ G}.

For each s ∈ T define:

As = {xt : t ∈ Leaf(s)}.

So A〈〉 is the set of all the Cohen reals, xt for t a leaf of T . Working in N :

Definition 5.1 for each ordinal α define the family Aα inductively as fol-
lows:

1. A0 is the set of finite subsets of 2ω, i.e. A0 = [2ω]<ω,

2. A<α =
⋃

β<αAβ, and

3. Aα = {
⋃

n<ω Xn : (Xn : n < ω) ∈ (A<α)ω}.

It is not hard to check that

A1+α = P(2ω) ∩ Gα.

(Note that a countable union of finite subsets of 2ω is countable, because
2ω can be linearly ordered, so A1 = P(2ω) ∩ G1.) For technical reasons (for
example the statement of the next Lemma) it is easier to work with the
hierarchy Aα than Gα.

Lemma 5.2 For each s ∈ T the set As is in N . For each s ∈ T (except the
root node) As ∈ Aα where rank(s) = α < ω2.

Proof
If s ∈ Leaf(T ), then the name9 of xs:

◦
xs = {(p, ˇ〈n, i〉) : p ∈ P, p(s) = σ, and σ(n) = i}

9For any z in the ground model we use ž for its canonical name, see Kunen [4] p. 190.
For arbitrary elements z of the generic extension, we let ◦

z stand for some P-name of z.
Hence for any G generic z = ◦

zG. For example,
◦
G = {〈p, p̌〉 : p ∈ P}.
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is fixed by all π ∈ Hs. For any s ∈ T the set As = {xt : t ∈ Leaf(s)} has the

name
◦
As = {(1, ◦

xt) : t ∈ Leaf(s)} which is fixed by Hs.
Fix s ∈ T with rank(s) = α < ωN2 and assume by induction that for every

δ ∈ Child(s) that Asˆ〈δ〉 ∈ A<α. Then Hs fixes each
◦
Asˆ〈δ〉 for δ ∈ Child(s)

and so it fixes a name for the sequence 〈Asˆ〈δ〉 : δ ∈ Child(s)〉. So this
sequence is inN . Since Child(s) is countable in V ⊆ N , we see that As ∈ Aα.
QED

The elements of Aα are Borel sets, since finite sets are closed. Similarly
in the model N :

Definition 5.3 Define Mα for each α by induction:

1. M0 is the family of nowhere dense subsets of 2ω, i.e., sets whose closure
has no interior,

2. M<α =
⋃

β<αMβ, and

3. Mα = {
⋃

n<ω Xn : (Xn : n < ω) ∈ (M<α)ω}.

Note that Aα ⊆ Mα since finite sets are nowhere dense. The following
Lemma is proved by induction on α and is also true for the Aα and Gα.

Lemma 5.4 For any ordinal α the family Mα is closed under finite unions
and subsets, i.e., if X, Y ∈ Mα, then X ∪ Y ∈ Mα and if X ⊆ Y ∈ Mα,
then X ∈Mα.

Proof
Left to reader.
QED

The usual clopen basis for 2ω consists of sets of the form:

[σ] = {x ∈ 2ω : σ ⊆ x}

for σ ∈ 2<ω. The following is the main lemma of the proof of Theorem 1.1.

Lemma 5.5 For each s ∈ T not the root node and σ ∈ 2<ω

(As ∩ [σ]) /∈M<α

where α = rank(s).
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Proof
The proof is by induction on rank(s). For s ∈ Leaf(T ), i.e., rank(s) = 0,
there is nothing to prove. For rank(s) = 1 it easy to see by genericity that
As is dense in 2ω and so As ∩ [σ] cannot be inM0, the nowhere dense sets.

Working in V , for contradiction, choose α > 1 minimal so that for some
s ∈ T with rank(s) = α there exists p0 ∈ P and σ ∈ 2<ω and β < α such that

p0 (
◦
As ∩ [σ]) ∈ (Mβ)N .

Choose a hereditarily symmetric name (
◦
Xn : n < ω) such that

p0 “(
◦
As ∩ [σ]) =

⋃
n<ω

◦
Xn where

◦
Xn ∈Mβn for some βn < β < α.”

Choose a finite Q ⊆ T such that HQ fixes 〈
◦
Xn : n < ω〉 and dom(p0) ⊆ Q.

Find an ordinal δ with

1. δ ∈ Child(s),

2. rank(sˆ〈δ〉) ≥ β, and

3. Q disjoint from {r ∈ T : sˆ〈δ〉 ⊆ r}.

Choose an arbitrary r ∈ Leaf(sˆ〈δ〉). Since

p0 ∪ {〈r, σ〉}  ◦
xr ∈

◦
As ∩ [σ]

we can find an extension p1 ≤ p0 ∪ {〈r, σ〉} and an n0 so that

p1  ◦
xr ∈

◦
Xn0 ∩ [σ].

By extending p1 even more, if necessary, we may assume that p1(r) = τ ⊇ σ
where τ ∈ 2<ω has the property that it is incompatible with p1(r

′) for every
r′ ∈ dom(p1) different from r.

Claim. p1 ([τ ] ∩
◦
Asˆ〈δ〉) ⊆

◦
Xn0 .

Suppose not. Then there exists p2 ≤ p1 and r′ ⊇ sˆ〈δ〉 in dom(p2) with
p2(r

′) ⊇ τ and

p2  ◦
xr′ /∈

◦
Xn0 .
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Let π ∈ H be determined by the automorphism of Leaf(T ) which swaps r′

and r. Note that r′ /∈ dom(p1) since τ was incompatible with the range of p1

except p1(r). It follows from this that π(p2) ∪ p1 is a condition in P (in fact
π(p2) ≤ p1). By a general property of automorphisms and forcing we have
that

π(p2) π(
◦
xr′) /∈ π(

◦
Xn0).

Since π ∈ HQ we have that π(
◦
Xn0) =

◦
Xn0 and since π̂ swaps r′ and r we

have that π(
◦
xr′) =

◦
xr and so

π(p2)  ◦
xr /∈

◦
Xn0 .

But
p1  ◦

xr ∈
◦
Xn0

which contradicts the fact that π(p2) and p1 are compatible.
The Claim contradicts the minimal choice of α since βn0 < α and Mβn0

is closed under taking subsets. This proves the lemma.
QED

Working in N :

Definition 5.6 For any ordinal α define Bα to be all subsets of 2ω whose
symmetric difference with an open set is in Mα, i.e.,

Bα = {X ⊆ 2ω : ∃U ⊆ 2ω open such that X4U ∈Mα}.

Lemma 5.7 In N
Σ0

α ∪Π0
α ⊆ Bα

for each ordinal α < ω2.

Proof
First we note that

(a) Bα is closed under complementation. If X ∈ Bα, then (2ω\X) ∈ Bα.

To see this, suppose that X = U4Y where U is open and Y ∈Mα. Let
Y ′ = cl(U)\U , then since Y ′ is nowhere dense we have that Y ′ ∈ M0. Put
V = 2ω\cl(U) and then we have that:

(2ω\X)4V ⊆ Y ′ ∪ Y ∈Mα.
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Next we claim that

(b) If 〈Xn : n < ω〉 ∈ (B<α)ω, then
⋃

n<ω Xn ∈ Bα.

We need to see we can get the sequence of open sets required without
using the axiom of choice.

It follows from Lemma 5.5 that no nonempty open set is inMα for α < ω2.
An open set U ⊆ 2ω is regular iff it is equal to the interior of its closure, i.e.,
U = int(cl(U)). If U ⊆ 2ω is an arbitrary open set, then V = int(cl(U)) is a
regular open set containing U such that V4U is nowhere dense and hence
inM0. (V4U = V \U ⊆ cl(U)\U)

It follows that for every X ∈ Bα there exists a regular open set U such
that X4U ∈Mα.

Suppose U and V are regular open sets with X4U = A and X4V = B
where A,B ∈Mα. Then U4V = A4B ⊆ A∪B ∈Mα. SinceMα contains
no nontrivial open sets and U and V are regular, it must be that U = V .

Hence for any X ∈ Bα there is a unique regular open set U such that
X4U ∈ Mα. Hence given 〈Xn : n < ω〉 ∈ (B<α)ω, choose Un the unique
regular open set such that Xn4Un = Yn ∈M<α. Then

(
⋃
n<ω

Xn)4(
⋃
n<ω

Un) ⊆
⋃
n<ω

Yn ∈Mα.

From (a) and (b), induction and De Morgan’s Laws we have that Π0
α and

Σ0
α are subsets of Bα.

QED

Proof of Theorem 1.1:
Note that if rank(s) = α then As /∈ B<α. If it were, then As = U4Y where
U open and Y ∈ M<α. If U is the empty set, then this would contradict
Lemma 5.5. But if U is a nonempty set then U ⊆ As ∪ Y . By Lemma 5.2
As ∈ Aα ⊆ Mα. But Lemma 5.5 implies that no nontrivial open set is in
Mα.

It follows since each As is Borel that the Borel hierarchy has length at
least ω2. But since ω2 is a regular cardinal in N (Lemma 4.2) it must have
length exactly ω2.
QED

Remark. Note that in N if X is any topological space which contains a
homeomorphic copy of 2ω, then the Borel order of X is ω2.
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6 Proof of Theorem 1.2

Suppose V is countable transitive model of ZF and λ is a limit ordinal in
V . Suppose that in V we have cof(ℵγ) = ω for all γ < λ. We will find a
symmetric submodel N of a generic extension of V with the same ℵα’s as V
and the length of the Borel hierarchy in N is at least λ.

Throughout this section let κ = ℵV
λ .

Working in V make the following definitions:

1. P = {p : F → 2<ω : F ∈ [κ]<ω}.

2. H is the group of automorphisms π of P determined by a finite support
permutations π̂ of κ.

3. For any q = (Xn : n < ω) a partition of κ let

Hq = {π ∈ H : ∀n π̂(Xn) = Xn}.

4. F is the filter of subgroups generated by the set of all such Hq.

It is easy to check that F is a normal filter. For any G which is P-generic
over V let N be the symmetric model determined by F . Let xα ∈ 2ω be the
Cohen real attached to α, i.e.,

xα =
⋃
{p(α) : p ∈ G}.

For X ⊆ κ define
A(X) = {xα : α ∈ X}.

Note that each xα is in N and for any X ∈ V the set A(X) is in N since Hq

fixes its name where q = {X, κ\X}.

Lemma 6.1 For any α < λ and set X ∈ ([κ]ℵα)V

N |= A(X) ∈ Gα.

Proof
The proof is by induction on α. In V we have that X =

⋃
nXn where

each |Xn| = ℵαn for some αn < α and the Xn are pairwise disjoint. Take q
in V to be the partition

q = {Xn : n < ω} ∪ {κ\X}.
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Note that Hq fixes the name for the sequence 〈A(Xn) : n < ω〉 and so by
induction, A(X) ∈ Gα.
QED

Lemma 6.2 For any α < λ if X ∈ ([κ]ℵα)V and σ ∈ 2<ω, then

N |= (A(X) ∩ [σ]) /∈M<α.

Proof
If X is infinite, A(X) is dense, so A(X) ∩ [σ] /∈ M0 the nowhere dense

sets.
So suppose α > 0 and in V write X as the disjoint union of sets Xn for

n < ω of smaller cardinality. Suppose there exists β < α and p0 such that

p0 A(X) ∩ [σ] =
⋃
n

Yn where (Yn : n < ω) ∈ (M<β)ω.

Suppose Hq fixes the hereditarily symmetric names (
◦
Yn : n < ω). By refining

the Xn and q we may assume that q = (Zn : n < ω) is a partition with Z2n =
Xn for all n. Choose Z2n0 with |Z2n0| ≥ ℵβ and disjoint from the domain of
p0. Choose an arbitrary δ ∈ Z2n0 and find an extension p1 ≤ p0 ∪ {(δ, σ)}
and n1 such that

p1 xδ ∈ Yn1 .

Let τ = p1(α) and assume τ is incomparable with the other elements of the
range of p1.

Claim. p1 A(Z2n0) ∩ [τ ] ⊆ Yn1 .

Suppose not and take p2 ≤ p1 and β ∈ Z2n0 such that p2(β) ⊇ τ and

p2 xβ /∈ Yn1 .

Then the automorphism π which swaps δ and β is in Hq and fixes
◦
Yn1 but

p1 and π(p2) are compatible and π(p2) xδ /∈ Yn1 . This proves the Claim.

The claim yields the lemma.
QED

The two lemmas together imply that the Borel hierarchy in N has length
at least λ. Lemma 6.1 implies that A(ℵα) is Borel. Lemma 6.2 implies (just
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as in the proof of Theorem 1.1) that A(ℵα) /∈ B<α. The proof of Lemma
5.7 also holds in this N , so Π0

<α ∪ Σ0
<α ⊆ B<α and the length of the Borel

hierarchy is at least λ.

The last thing to show is that N and V have the same ℵα’s 10. For B ⊆ κ
in V , let PB = {p ∈ P : dom(p) ⊆ B} and let GB = G ∩ PB.

Lemma 6.3 Suppose f : α→ β is in N where α and β are ordinals. Then
there exist in V a countable B ⊆ κ such that f ∈ V [GB].

Proof
Let Hq fix

◦
f where q = (Xn : n < ω). Let B =

⋃
{Xn : |Xn| < ω}. Then B

is a countable subset of κ. By the usual automorphism argument f ∈ V [GB].
QED

The partial order PB is countable in V and so V and V [GB] have the
same cardinals, i.e., if f : γ → β is a map in V [GB], then in V there is map
g : γ×ω → β such that for every δ f(δ) = g(δ,m) for some m < ω. Hence,
N and V have the same ℵα’s.

This finishes the proof of Theorem 1.2. Note that to use this method to
get the Borel hierarchy to have length at least ω2 + 1 requires us to assume
the consistency of ω2 + 1 strongly compact cardinals. We do not know if we
can simply start with any model in which ω1 and ω2 both have countable
cofinality.

7 Proof of Theorem 1.3

We prefer to use the hierarchy Aα (see 5.1) instead of Gα and so we will show
that

Nα |= 2ω ∈ Aα\A<α.

As in the proof of Theorem 1.1 let V be the Feferman-Lévy model and T ∈ L
be the well-founded tree of rank (ℵω+1)

L. For each α < ωV
2 define

Tα = {s : 〈α〉ˆs ∈ T}.

Then the rank of 〈〉 in Tα is exactly the rank of 〈α〉 in T which was α. Let
Nα be defined exactly as N but using the tree Tα in place of T .

10We do not know if V and V [G] have the same cardinals.
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Lemma 7.1 Nα |= A〈〉 ∈ Aα\B<α.

Proof
This is exactly the same proof as in Theorem 1.1.
QED

Since Aβ ⊆ Bβ this implies that A〈〉 /∈ A<α and since A〈〉 ⊆ 2ω, and
X ⊆ Y ∈ Aβ implies X ∈ Aβ, thus we have that

Nα |= 2ω /∈ A<α.

Most of the remainder of the proof of Theorem 1.3 (Lemmas 7.2-7.7), is
to show that

Nα |= 2ω ∈ Aα.

The intuitive reason this is true is because A〈〉 ∈ Aα and the reals in Nα

can somehow be easily obtained from A〈〉 and the reals in V .
Let 〈·, ·〉 be a computable pairing function from ω×ω to ω. For example,

〈n,m〉 = 2n(2m+ 1)− 1.

Using this define a bijection from 2ω to (2ω)ω by

x 7→ (xn ∈ 2ω : n < ω) where xn(m) = x(〈n,m〉).

Hopefully, we will not confuse the notation xn with the Cohen reals xs which
are attached to the nodes s ∈ Leaf(Tα).

For sets A,B ⊆ 2ω define: A#B =

{x ∈ 2ω : ∃N < ω ∃y ∈ B (∀n < N xn ∈ A and ∀n ≥ N xn = yn)}.

Lemma 7.2 For any α ≥ 1 if A,B ∈ Aα, then A#B ∈ Aα.

Proof
For α = 1 note that for A and B countable, the set A#B is countable
(without using choice). Recall that the Aα families are closed under finite
unions. Given increasing sequences An and Bn for n < ω note that:

(
⋃
n<ω

An)#(
⋃
n<ω

Bn) =
⋃
n<ω

(An#Bn).
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So now the result follows by induction.
QED

For A ⊆ 2ω define

A<ω = {x ∈ 2ω : ∃N < ω ∀n < N xn ∈ A and ∀n ≥ N xn ≡ 0}

where x ≡ 0 means x is identically zero.

Lemma 7.3 For any α ≥ 1 if A ∈ Aα, then A<ω ∈ Aα.

Proof
Note that A<ω = A#{0} where 0 is the identically zero function.
QED

In the model V [Gα] for each t ∈ Tα\Leaf(Tα), define

Bt = {x ∈ 2ω : ∃s ⊇ t rank(s) = 1 and ∀n < ω xn = xsˆ〈n〉}.

Recall that At = {xs : s ∈ Leaf(t)}. Define Ct = At#Bt.

Lemma 7.4 Ct ∈ Nα, in fact, Ct ∈ (Aβ)Nα where β = rank(t).

Proof
Working in V consider the set Pt of sequences of names, 〈 ◦xn : n < ω〉 such
that there exists N < ω and s ⊇ t with rank(s) = 1 such that

1. for all n < N there exists r ∈ Leaf(t) such that
◦
xn =

◦
xr and

2. for all n ≥ N
◦
xn =

◦
xsˆ〈n〉.

Recall that all π ∈ H have finite support and the π ∈ Ht permute the set of
names for elements of At, i.e., { ◦xs : s ∈ Leaf(t)}, moving only finitely many
of them. It follows that any π ∈ Ht permutes around the elements of Pt.

From Pt it is an exercise to construct a name for
◦
Ct which is fixed by Ht.

But π ∈ Ht also map
◦
Atˆ〈δ〉 to itself for each δ ∈ Child(t). Hence Ht

fixes the sequence (
◦
Ctˆ〈δ〉 : δ ∈ Child(t)). Recall that Child(t) is countable in

V ⊆ Nα and since

Ct =
⋃
{(∪s∈FAs)#Ctˆ〈δ〉 : δ ∈ Child(t) and F ∈ [Child(t)]<ω}

the lemma follows by induction.
QED

Since the lemmas yield C〈〉 ∈ Aα in Nα we have:
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Corollary 7.5 C<ω
〈〉 ∈ Aα.

Working in V define Q to be the set of all f : ω × ω → 2<ω ∪ {∗}. Since
Q is essentially the same as ωω we know that Q is the countable union of
countable sets. Given any f ∈ Q and x ∈ 2ω define f(x) ∈ 2ω by

f(x)(n) =

{
1 if ∃m f(n,m) ⊆ x
0 otherwise.

We assume that ∗ is not a subsequence of any x. For example, if M is a
model of ZF and x is 2<ω-generic over M , then for any y ∈ M [x] ∩ 2ω there
exists f ∈ M such that f(x) = y. To see this, work in M , and construct f
so that for any n < ω

{f(n,m) : m < ω} = {p ∈ 2<ω : p  ◦
y(n) = 1}.

Lemma 7.6 In V [G], for all y ∈ 2ω

y ∈ Nα iff ∃f ∈ QV ∃z ∈ C<ω
〈〉 f(z) = y.

Proof
The implication ← is trivial because both QV and C<ω

〈〉 are in Nα.

For the nontrivial direction, we will find z ∈ B<ω
〈〉 . Suppose that y ∈

2ω ∩Nα and suppose HQ fixes
◦
y where Q is a finite subset of Tα.

At this point it would simplify our argument to assume that for any s ∈ T
if rank(s) > 1 , then the rank(sˆ〈δ〉) > 0 for all δ ∈ Child(s). Equivalently,
the parent of any leaf node has rank one. Obviously we could have built T
with this property, so we assume we did.

Assume that Q contains the rank one parent of every rank zero node in
Q. Let (si : i < N) list all rank one nodes in Q. Define

1. Leaf(Q) =
⋃
{Leaf(si) : i < N} and

2. PQ = {p ∈ P : dom(p) ⊆ Leaf(Q)}.

We claim that y has a PQ-name. To see this note that for any pair of finite
sets F0 and F1 of leaf nodes disjoint from Leaf(Q) there is a π ∈ HQ for
which π̂(F0) is disjoint from F1. From this it follows that for any n, i, and
p ∈ P

p  ◦
y(n) = i iff p �Leaf(Q)  ◦

y(n) = i.

Hence y has a PQ-name.
Define zi ∈ 2ω for each i < N so that zi

n = xsiˆ〈n〉 for every n. So
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1. each zi is in B〈〉,

2. y ∈ V [〈zi : i < N〉] and

3. 〈zi : i < N〉 is (2<ω)N -generic over V .

As in the argument of Lemma 4.2, let

A = {(p, n, i) ∈ (2<ω)N × ω × {0, 1} : p  ◦
y(n) = i}.

Since there exists n < ω with A ∈ L[Gn], we can construct f ∈ L[Gn] ⊆ V
such that f(〈zi : i < N〉) = y.
QED

Lemma 7.7 In N , for any set A ∈ Aα where α ≥ 2 the set

Q ◦ A =def {f(x) : f ∈ Q and x ∈ A}

is in Aα.

Proof
For α = 2 Aα is the family of sets which are the countable union of countable
sets. Let A =

⋃
nAn and let Q =

⋃
nQn where An and Qn are countable.

Then for each n,m < ω the set

{f(x) : x ∈ An and f ∈ Qm}

is countable, so Q ◦ A is the countable union of countable sets.
For larger α note that

Q ◦ (
⋃
n<ω

An) =
⋃
n<ω

Q ◦ An

so the result follows by induction.
QED

By Corollary 7.5 and Lemmas 7.6 and 7.7, we have that in Nα

2ω = Q ◦ C<ω
〈〉 ∈ Aα
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hence this concludes the proof that

Nα |= 2ω ∈ (Aα\A<α).

Finally we consider the Borel hierarchy in Nα when α is a limit ordinal.
Note that, P(2ω) ⊆ Aα, because the Aα families are closed under taking
subsets. If α is a limit ordinal then:

A<α ⊆ Σ0
<α ∩Π0

<α ⊆ B<α.

Since the set A〈〉 is not in B<α, the Borel hierarchy has to have length at
least α. But every subset of 2ω is in Aα, so every subset of 2ω is in Σ0

α and
hence Π0

α. Hence the Borel hierarchy has exactly α+ 1 levels.

8 A Question

In Theorem 1.3 for successor ordinals α we get a weaker result for the Borel
hierarchy. Suppose α = λ + n for λ limit ordinal and 0 < n < ω, then the
Borel hierarchy in Nα has length γ where λ + n ≤ γ ≤ λ + 2n. We are not
sure what it is exactly. The problem is that in the definition of Σ0

α and Π0
α

we forced an alternation between union and intersection. Hence

Aλ+n ⊆ Π0
λ+2n ∩Σ0

λ+2n.

If instead we allow taking unions and then more unions, e.g., redefined Σ0
α

(and similarly Π0
α) as:

Σ0
α = {

⋃
n<ω

An : (An : n < ω) ∈ (Σ0
<α ∪Π0

<α)ω},

then this problem disappears and the Borel hierarchy has length exactly α
even for successor ordinal case.

On the other hand, we could instead define Σ0
α to be the smallest class

of sets containing Π0
<α and closed under countable unions, and similarly, Π0

α

to be the smallest class of sets containing Σ0
<α and closed under countable

intersections. Then in our models for Theorem 1.3, Σ0
2 contains all subsets

of 2ω. Similarly the sets As and A(ℵα) from Theorems 1.1 and 1.2 would be
Σ0

2.

Question 8.1 Using this alternative definition of the length of the Borel
hierarchy, can it be greater than ω1?
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nal de Mathématiques Pures et Appliqués, 1(1905), 139-216.
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Appendix

The appendix is not intended for final publication but for the on-line
electronic version only.

The Feferman-Lévy model

The ground model satisfies V = L, let us call it L. In L let Col be the
following version of the Lévy collapse of ℵω:

Col = {p : F → ℵω : F ∈ [ω × ω]<ω and ∀(n,m) ∈ F p(n,m) ∈ ℵn}.

The group H of automorphisms of Col are those which are determined by
finite support permutations of ω×ω which preserve the first coordinate, that
is, π ∈ H iff there exists a finite support permutation π̂ : ω×ω → ω×ω such
that π̂(n,m) = (n′,m′) implies n = n′ and π(p)(s) = p(π̂(s)) for all p ∈ Col.
The normal filter F of subgroups is generated by

Hn = {π ∈ H : π̂ � n× ω is the identity }

for n < ω.
The Feferman-Lévy model, V , is the symmetric model L ⊆ V ⊆ L[G]

determined by Col, G, and the group H and filter of subgroups F .
For any n < ω let

Coln = {p ∈ Col : dom(p) ⊆ n× ω}.

For G Col-generic over L let Gn = G∩Coln. Note that Hn fixes the canonical
name for Gn,

◦
Gn = {(p, p̌) : p ∈ Coln}

so L[Gn] ⊆ V . If we let

◦
Xn = {(1, τ) : τ ⊆ Coln × {ǩ : k < ω}}

then Xn = L[Gn] ∩ P(ω) and every π ∈ H fixes
◦
Xn. It follows that the

sequence (L[Gn] ∩ P(ω) : n < ω) is in V . Note that each L[Gn] ∩ P(ω) is
countable in V .
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Theorem 9.1
P(ω) ∩ V =

⋃
n<ω

(L[Gn] ∩ P(ω)).

More generally, if X ⊆ Y ∈ L and X ∈ V , then for some n < ω we have
that X ∈ L[Gn]

Proof
We prove the last statement. Suppose

p0 
◦
X ⊆ Y̌ ∈ L and

◦
X ∈ V.

Choose n large enough so that Hn fixes
◦
X and p0 ∈ Coln.

Note that for each k ≥ n that π ∈ Hn can arbitrarily permute {k} × ω.
It follows that for any y ∈ Y and p ≤ p0 that

p y̌ ∈
◦
X iff p �(n×ω) y̌ ∈

◦
X

and similarly

p y̌ /∈
◦
X iff p �(n×ω) y̌ /∈

◦
X.

Define

◦
W = {(p, y̌) ∈ Coln × {y̌ : y ∈ Y } : p ≤ p0 and p y̌ ∈

◦
X}.

It follows that p0 
◦
X =

◦
W . But clearly, WG ∈ L[Gn].

QED

A variant of the Feferman-Lévy model

We show that the following variant of the Feferman-Lévy model has the
property that P(ω) ∈ G2\G1 using an argument similar to Gitik’s. Redefine
the Lévy Collapse as follows:

Col = {p : F → ℵω : F ∈ [ℵω × ω]<ω and ∀(α,m) ∈ F p(α,m) ∈ α}.

The group H is defined similarly, the normal filter of subgroups, F , is defined
to be the filter generated by subgroups of the form

HF = {π ∈ H : π̂ � F × ω is the identity}

where F ∈ [ℵω]<ω. Call this alternative Feferman-Lévy model V ′.
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Theorem 9.2 In V ′ we have that P(ω) is not the countable union of count-
able sets but is the countable union of countable unions of countable sets.

Proof
For any finite F ⊆ ℵω define

ColF = {p ∈ Col : dom(p) ⊆ F × ω}

and for G which is Col-generic define

GF = G ∩ ColF .

Claim. P(ω) ∩ V ′ =
⋃
{L[GF ] ∩ P(ω) : F ∈ [ωV

1 ]<ω}.

This claim follows from a similar argument to the ordinary Feferman-Lévy
model.

Each ColF -name is fixed by HF . The set of all ColF -names:

◦
XF = {(1, τ) : τ is a ColF -name}

is fixed by every π ∈ H. Note that L[GF ]∩P(ω) = XG
F is a countable set in

V ′ and the sequence (XG
F : F ∈ [ℵL

ω ]<ω) is in V ′. Note that⋃
n<ω

∪{L[GF ] ∩ P(ω) : F ∈ [ℵL
n ]<ω}

is a countable union of countable unions of countable sets.

Now we prove that in V ′ the power set of ω is not the countable union of
countable sets. This follows from the

Claim. If Y ⊆ X ∈ L and Y ∈ V ′, then there exists F finite such that
Y ∈ L[GF ].

This claim is proved similarly to Theorem 9.1.

In V ′, suppose for contradiction that P(ω) =
⋃

n<ω Yn where each Yn is

countable. Working in L let (
◦
Yn : n < ω) and (

◦
fn : n < ω) be sequences of

hereditarily symmetric names and p ∈ Col such that for each n

p 
◦
fn : ω →

◦
Yn is onto.
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By the Claim we can find in L a sequence (Fn : n < ω) of finite sets such
that

p 
◦
fn ∈ L[GFn ].

Choose any α /∈
⋃

n Fn and let x ⊆ ω code the generic map gα : ω → α.
Then x /∈

⋃
n Yn.

QED

A remark on descriptive set theory

Lévy [10] shows that in any model of ZF in which ω1 = ℵL
ω there is a Π1

2

predicate Q(n, x) on ω × 2ω such that

∀n∃x Q(n, x) ∧ ¬∃(xn : n < ω)∀n Q(n, xn).

The predicate Q says that x is a code for a countable model of the form
(Lα,∈) with n infinite cardinals and there is no real y coding a model of
the form (Lβ,∈) with β > α in which these cardinals are collapsed. He
notes that such an example cannot be done for a Σ1

2 predicate because the
Kondo-Addison Theorem can be proved without the axiom of choice.

Proof of Specker’s Proposition

At the suggestion of one of the referees the proof was omitted from the
published paper. We include it here for the convenience of the online reader.

Proposition. (Specker)

1. ω2 is not the countable union of countable sets.

In fact, more generally

2. ℵα /∈ G<α for any ordinal α.

Similarly

3. P(ℵα) /∈ Gα for any ordinal α.

If every ℵ has cofinality ω, then

4. ℵα ∈ Gα for every ordinal α.
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Proof
(1) Suppose for contradiction that ω2 =

⋃
n<ω Xn where each Xn is count-

able. For each n < ω there exists a unique countable ordinal αn < ω1 and
unique order preserving bijection fn : αn → Xn. Therefore there is no choice
required to define the onto map f : ω × ω1 → ω2 by:

f(n, α) =

{
fn(α) if α < αn

0 otherwise.

But there is a definable bijection between ω × ω1 and ω1 so this would be a
contradiction.

(2) Left to the reader.
(3) In ZF there is a bijection between κ and κ×κ for any infinite ordinal

κ. Also there is a map from P(κ× κ) onto κ+ (map each well-ordering onto
its order type). Since Gα is closed under taking images and ℵα+1 /∈ Gα the
claim follows.

(4) ℵ0 ∈ G0. Given ℵα we have by induction that for every ordinal β < ℵα

that β ∈ G<α and since the cofinality of ℵα is ω the proposition follows.
QED

The width of the Borel hierarchy

At the suggestion of one of the referees, this section was omitted from the
published paper.

Rather than using the terminology, Fσσδσσ, for example, let us consider
the following. For f ∈ 2<ω1 define the class Γf as follows:

1. Γ = Γ〈〉 be the family of clopen subsets of 2ω.

2. For f : δ → 2 where δ is a limit ordinal, define:

Γf =
⋃
{Γf�α : α < δ}.

3. For f : α+ 1→ 2 define:

if f(α) = 0 then Γf = {
⋃
n<ω

An : (An : n < ω) ∈ (Γf�α)ω},

if f(α) = 1 then Γf = {
⋂
n<ω

An : (An : n < ω) ∈ (Γf�α)ω}.
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Hence Fσσδσσ = Γ〈1,0,0,1,0,0〉.
Note that Γ〈0,0〉 = Γ〈0〉 = open sets and Γ〈1,1〉 = Γ〈1〉 = closed sets. To rule

out these trivial collapses, we define nontrivial f : δ → 2 to be admissible if
f(0) 6= f(1).

For f and g admissible define f E g iff there exists a strictly increasing

π : dom(f)→ dom(g) such that ∀α ∈ dom(f) f(α) = g(π(α)).

Note that if f E g, then Γf ⊆ Γg. Instead of looking for very long Borel
hierarchies we can ask instead for very wide Borel hierarchies:

Conjecture 9.3 It is relatively consistent with ZF that for every f and g
admissible

f E g iff Γf ⊆ Γg.

However, it is impossible that it be infinitely wide, by which we mean:

Theorem 9.4 For any infinite set X of admissables there exists distinct
f, g ∈ X with f E g, hence Γf ⊆ Γg.

Proof
The ordering E is a well-quasiordering. This is due to Nash-Williams

[12]. We show how to avoid using the axiom of choice.
A well-quasi ordering (Q,E) is a reflexive transitive relation such that for

every sequence (fn : n < ω) ∈ Qω there exists n < m with fn E fm. Besides
the fact that Nash-Williams proof may use the axiom of choice, the set X
might be infinite but not contain an infinite sequence, i.e., X is Dedekind
finite.

This particular quasi-ordering is absolute; take π witnessing f E g by
choosing the least possible value:

π(α) = min β ≥ sup{π(γ) + 1 : γ < α} such that f(α) = g(β).

If any π works, the least possible value π works. It follows that for any two
models M ⊆ N of set theory and f, g ∈M ,

M |= f E g iff N |= f E g.

This is true even if M and N are nonwell-founded models. To see that ZF
proves our proposition, suppose not. Then there is a countable model (M,E)
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of ZF which models M |= X is an infinite pairwise E-incomparable family.
Using forcing we can generically add a sequence (fn ∈ X : n < ωM) and get
a model N ⊇M which thinks there is an infinite sequence (ωN = ωM) which
is an E-antichain. But the inner model of N , ((L[fn ∈ X : n < ωN ])N , EN),
satisfies the axiom of choice and hence the Nash-Williams Theorem is true,
which is a contradiction.
QED

An erroneous attribution

Kunen’s Set Theory contains an erroneous attribution to “A.Miller” for
Exercises E3 and E4 of Chapter VII page 245. These are due to Paul E.
Cohen [1]. Cohen gives an easy proof that L[R] of the Cohen real model fails
to satisfy the axiom of choice.

Other interesting references.

Gregory H. Moore [11] has an interesting book on the history of the
axiom of choice. The book by Herrlich [7] contains many results on the
theme “Disasters without choice”.

Hájek [4] shows the independence of Church’s axioms (although I have
not been able to see a copy of this paper). Hardy 1904 [5, 6] shows without
AC that ω1 can be embedded into ωω if there is a ladder sequence on ω1, i.e.,
〈Cα ⊆ α : α ∈ lim(ω1)〉 where Cα is a cofinal ω-sequence in α.

Gitik and Lowe [3] investigate models of ZF in which there are linear
orders in which there are no cofinal well-ordered subsets.

Gitik [2] shows that it is consistent to have a model of ZF in ℵ0 and ℵ1

are the only two regular cardinals.
Howard [8] proves that the axiom of choice of countable families of count-

able sets does not imply that the countable union of countable sets is count-
able.

Jech [9] shows that in ZF every hereditarily countable set has rank less
than ω2 and if ω1 is singular, then there are hereditarily countable sets of all
ranks less than ω2.

Truss [13] also has a model of ZF in which every set is Borel. We do not
know what the length of the Borel hierarchy is in his model.
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