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Abstract

In this paper we ask the question: to what extent do basic set

theoretic properties of Loeb measure depend on the nonstandard

universe and on properties of the model of set theory in which

it lies? We show that assuming Martin's axiom and �-saturation

the smallest cover by Loeb measure zero sets must have cardinal-

ity less than �. In contrast to this we show that the additivity

of Loeb measure cannot be greater than !

1

. De�ne cof(H) as

the smallest cardinality of a family of Loeb measure zero sets

which cover every other Loeb measure zero set. We show that

card(blog

2

(H)c) � cof(H) � card(2

H

) where card is the external

cardinality. We answer a question of Paris and Mills concerning

cuts in nonstandard models of number theory. We also present a

pair of nonstandard universes M and N and hyper�nite integer

H 2 M such that H is not enlarged by N , 2

H

contains new el-

ements, but every new subset of H has Loeb measure zero. We

show that it is consistent that there exists a Sierpi�nski set in the

reals but no Loeb-Sierpi�nski set in any nonstandard universe. We

also show that is consistent with the failure of the continuum hy-

pothesis that Loeb-Sierpi�nski sets can exist in some nonstandard

universes and even in an ultrapower of a standard universe.

Let H be a hyper�nite set in an !

1

�saturated nonstandard universe. Let

� be the counting measure on H, i.e. for any internal subset A of H let �(A)

be the nonstandard rational:

jAj

jH j

where jAj is the internal cardinality of A, a

hyperinteger. Loeb (1975)[12] showed that the standard part of � has a nat-

ural extension to a countably additive measure on the �-algebra generated
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by the internal subsets of H. For more background on nonstandard measure

theory and its applications, see the survey article Cutland (1983)[3]. Refer-

ences on general properties of Loeb measure and the �-algebra generated by

the internal sets include Henson (1979)[5][6] and Keisler et. al. (1989)[8].

Some properties of Loeb measure are the following. For every Loeb mea-

surable set X there exists an internal set A � H such that (X�A)[(A�X)

has Loeb measure zero. Also every Loeb measure zero set can be covered by

one of the form \

n2!

A

n

where each A

n

is an internal set of measure less than

1

n+1

. It is related to Lebesgue measure on the unit interval [0; 1]. Identify H

with the time line T = fn4t : n < jHjg where 4t =

1

jH j

. Let st : T ! [0; 1]

be the standard part map. Then for any Lebesgue measurable Z � [0; 1] the

set st

�1

(Z) is Loeb measurable with the same measure as Z.

Theorem 0.1 Keisler-Leth (19..)[9] If F is a family of internal Loeb mea-

sure zero subsets of an in�nite hyper�nite set H, the nonstandard universe

is ��saturated, and F has external cardinality less than �, then there exists

an internal set A � H of Loeb measure zero which covers every element of

F .

proof:Consider the sentences �(A):

fB � A : B 2 Fg [ f

jKj

jHj

<

1

n+ 1

: n 2 !g

where A is a variable. Clearly this set of sentences is �nitely satis�able and

has cardinality the same as F . It follows by ��saturation that some internal

A satis�es them all simultaneously.

2

Note that this implies that in a �-saturated universe any external X � H

of cardinality less that � has Loeb measure zero.

Theorem 0.2 Suppose the universe is !

1

-saturated and every set of reals of

cardinality < � has Lebesgue measure zero, then for any in�nite hyper�nite

set H and X � H of an external cardinality < �, X has Loeb measure zero.

proof:The standard part map shows this.

2

In this case it may be impossible to cover X with an internal set of Loeb

measure zero.
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Theorem 0.3 For any M an !

1

-saturated universe and H an in�nite hy-

per�nite set in M , there exists any elementary !

1

-saturated extension N of

M which has the property that there exists a family fA

�

� H : � < !

1

g of

internal Loeb measure zero subsets of N such that for every internal Loeb

measure zero B � H in N there exists � < !

1

with B � A

�

.

proof:Build an elementary chain of !

1

-saturated universes M

�

for � < !

1

.

Use the proof of Theorem 0.1 to get A

�

2M

�+1

such that every Loeb measure

zero set B 2 M

�

is covered by A

�

.

2

By using a simple diagonal argument in a universe given by the last

theorem there will be an X � H of cardinality !

1

which is not covered by

any internal Loeb measure zero set. In fact, the set X will have the property

that for every internal Loeb measure zero A � H, X \ A is countable. We

say that X � H is a Loeb-Sierpi�nski set i� it is uncountable and meets

every Loeb measure zero set in a countable set. Thus what we have here

is a weak kind of Loeb-Sierpi�nski set. If MA+:CH is true, then every set

of reals of cardinality !

1

has measure zero. So by Theorem 0.2 this weak

Loeb-Sierpi�nski set would not be a Loeb-Sierpi�nski set.

Now we ask for the smallest cardinality of a cover of H by Loeb measure

zero sets. Note that since monads (st

�1

fpg for some p 2 [0; 1]) have measure

zero, H can always be covered by continuum many Loeb measure zero sets.

MA

�

stands for the version of Martin's Axiom which says that for any par-

tially ordered set Pwhich has the countable chain condition and any family

D of dense subsets of P of cardinality less than � there exists a P-�lter G

which meets all the dense sets in D.

Theorem 0.4 Suppose MA

�

and the nonstandard universe is �-saturated,

then H cannot be covered by fewer than � sets of Loeb measure zero.

proof:Let Pbe the partial order of all internal subsets of H of positive Loeb

measure ordered by inclusion (where stronger conditions are smaller). Forc-

ing with P is the same as using the measure algebra formed by taking the

��algebra generated by the internal subsets of H and dividing out by the

Loeb measure zero sets. It has the countable chain condition because it is

impossible to �nd n+ 1 sets of measure greater than

1

n

which have pairwise

intersections of measure zero.
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For � < � let f

T

n2!

K

�

n

: � < �g be a family of � many Loeb measure

zero sets where each K

�

n

is an internal subset of H of Loeb measure less than

1

n+1

. For each � de�ne a dense D

�

� Pby

D

�

= fb 2 P : 9n b \K

�

n

= ;g

Using MA

�

let G be a P-�lter meeting every D

�

for � < �. For each � let

n

�

be such that (H �K

n

�

�

) 2 G. Consider the family of sentences �(x):

fx 2 (H �K

n

�

�

) : � < �g

Since G is a P-�lter this family of sentences is �nitely satis�able. Hence by

�-saturation some internal x 2 H satis�es them all. But this shows that the

family of Loeb measure zero sets did not cover H.

2

This partial order was also used in Kaufmann and Schmerl (1987)[10].

Next we consider the additivity of Loeb measure. Here we show that it is

always as small as possible.

Theorem 0.5 For any in�nite hyper�nite H in an !

1

�saturated universe

there exists a family of !

1

Loeb measure zero sets whose union does not have

measure zero.

proof:Without loss of generality we may assume H = 2

K

for some internal

hyperinteger K, since H may be replaced by its internal cardinality and for

some hyperinteger K we have 2

K

� H � 2

K+1

and 2

K

has Loeb measure

at least 1=2 in H. Suppose � 2 [K]

!

where [K]

!

is the in�nite countable

subsets of K and let � = f�

n

: n 2 !g. For each n 2 ! de�ne

H

n

= fh 2 2

K

: h(�

0

) = h(�

1

) = : : : = h(�

n�1

) = 0g

Then each H

n

is an internal set of measure

1

2

n

.

Lemma 0.6 If A is an internal set and

T

n2!

H

n

� A, then there exists

n 2 ! such that H

n

� A.

This follows from the fact that the H

n

are a descending sequence and the

universe is !

1

�saturated.

2

Let �

�

2 [K]

!

for � < !

1

be a family of disjoint countable subsets of K.

LetH

�

n

be de�ned as H

n

was but using �

�

instead of �. De�neA

�

= \

n2!

H

�

n

.
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So each A

�

has Loeb measure zero. We show that the union [

�<!

1

A

�

cannot

have Loeb measure zero. Suppose A is an internal set and

[

�<!

1

A

�

� A

By the Lemma there exists n 2 ! and f�

m

: m 2 !g 2 [!

1

]

!

such that

for every m 2 ! H

�

m

n

� A. Let K

m

= H

�

m

n

. Note that each K

m

for

m 2 ! has Loeb measure � =

1

2

n

and they are independent, i.e. for any

m

1

< m

2

< : : : < m

k

< ! the Loeb measure of

K

m

1

\K

m

2

\ : : : \K

m

k

is �

k

. Consequently [

m2!

K

m

has Loeb measure one (since the measure of

\

m<N

(H �K

m

) is (1� �)

N

and (1� �)

N

! 0 as N !1). Consequently the

Loeb measure of A is one and the theorem is proved.

2

The last cardinal associated with Loeb measure we will consider is the

co�nality, cof(H). This is the smallest cardinality of a family F of Loeb

measure zero sets such every Loeb measure zero set is covered by a member

of the family F .

Theorem 0.7 Let card be the external cardinality function and H an in�nite

hyperinteger in some !

1

�saturated universe, then

card(blog

2

(H)c) � cof(H) � card(2

H

)

proof:The �rst inequality is proved by a similar argument to the proof of the

last theorem. Let the hyper�nite integer K = blog

2

(H)c so 2

K

� H � 2

K+1

.

Let f�

�

: � < card(K)g be disjoint countable subsets of K and de�ne

A

�

� H as above. The argument above shows that no Loeb measure zero

set covers uncountably many of the A

�

, hence card(K) � cof(H).

The second inequality follows from the fact that every Loeb measure zero

set is covered by a Loeb measure zero set in the �-algebra generated by the

internal subsets of H and the following result of Shelah (1970)[17]: if L is

an in�nite hyper�nite set in an !

1

-saturated universe and � = card(L), then

�

!

= � (take L = 2

H

the number of internal subsets of H).

2

In Keisler (1967)[7] it is shown under GCH that for any set of in�nite

successor cardinals C there exists a nonstandard universe M in which

C = fcard(H) : H is a hyper�nite set in Mg
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For �nite C the nonstandard universe M can be an ultrapower of a standard

universe.

In Shelah (1975)[16] it is shown that for any countable theory T with

distinguished unary predicates Q and P , if for every n < ! T has a model M

such that n

n

� jQ

M

j

n

� jP

M

j < !, then T has a model M where jQ

M

j = !

and jP

M

j = 2

!

. Taking T to be any theory containing arithmetic and Q

to be n

2

and P to be 2

n

2

we see that there is a nonstandard universe with

a hyperinteger H where card(H) = ! and card(2

H

) = 2

!

. If follows from

Chang's two cardinal theorem and its proof that assuming the continuum

hypothesis there is an !

1

-saturated nonstandard universe with a hyperinteger

H where card(H) = !

1

and card(2

H

) = !

2

.

This result was also proved by Paris and Mills (1979)[15] using a method

similar to the MacDowell-Specker theorem. For any in�nite cardinal � and

nonstandard universe M let

I

M

�

= fH : card(H) � � and H an integer of Mg

Since H

2

has the same internal cardinality as the cartesian product H �H

which has the same external cardinality as H for in�nite H it is clear that I

M

�

must be closed under multiplication. Paris and Mills show this is su�cient

by showing: If M is any countable nonstandard universe and I is a proper

initial segment of the integers of M closed under multiplication, then there

exists an elementary extension N of M in which I

N

!

= I and every integer H

of N not in I has cardinality 2

!

. The following theorem answers a question

raised by Paris and Mills concerning cuts in nonstandard models of number

theory.

Theorem 0.8 Assume the continuum hypothesis. Then there exists an !

1

-

saturated universe N with a hyperinteger H which has external cardinality

!

1

but every integer greater than H

n

for all n < ! has cardinality !

2

.

proof:Let M be any !

1

-saturated universe of cardinality !

1

and let H be any

in�nite hyperinteger of M . Let

I = fK a hyperinteger of M : 9n 2 ! K < H

n

g

and let J be the complement of I (with respect to the hyperintegers of M).

We construct a sequence < X

�

: � < !

1

> of elements of M such each X

�

is

a hyper�nite set of hyperintegers of M such that
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� the internal cardinality of X

�

is an element of J

� if � < � then X

�

� X

�

� for any set X in M there exists an � such that either X

�

� X or X

�

is disjoint from X

� for any � and function f in M whose domain includes X

�

there exists

a � � � such that f � X

�

is either one-to-one or constant

� for any d 2 J some X

�

has internal cardinality less than d

Note that since M is !

1

-saturated and the co�nality of I is ! the coinitiality

of J is !

1

, i.e. for any countable set B � J there exists c 2 J such that for

every b 2 B we have c < b. To obtain X

�

for � < !

1

a limit ordinal, �rst

�nd b 2 J such that for every � < � the internal cardinality of X

�

is greater

than b. Now use !

1

-saturation to �nd X

�

of internal cardinality greater than

b and for all � < � X

�

� X

�

. To make functions one-to-one or constant use

the following lemma.

Lemma 0.9 Suppose f : X ! Y is an onto function in M such that the

internal cardinality of X is in J , then there exists an internal set X

0

� X

with internal cardinality in J and f � X

0

is either one-to-one or constant.

proof:Note that X =

S

y2Y

f

�1

(y). If some f

�1

(y) has internal cardinality

b 2 J , then let X

0

= f

�1

(y) and hence f � X

0

is constant. Otherwise (since

internally f is a �nite function and the maximum of a hyper�nite set of

integers is always achieved) there exists c 2 I such that for every y 2 Y

the internal cardinality of f

�1

(y) is less than c. Since I is closed under

multiplication, it follows that the internal cardinality of Y is in J . In M

choose a set X

0

� X such that f maps X

0

one-to-one onto Y and hence the

internal cardinality of X

0

is in J .

2

This ends the construction of the sequence < X

�

: � < !

1

>. Let c be a

new constant symbol and let T be the theory which consists of the elementary

diagram of M plus all statements of the form \c 2 X

�

" for � < !

1

. Let M

1

be any model of T which is an elementary superstructure of M and let M

0

be the set of all f

M

1

(c) such that f 2M is a function whose domain contains

some X

�

.
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Claim: For any formula  (x

1

; x

2

; : : : ; x

n

) and

~

f = hf

1

; f

2

; : : : ; f

n

i a se-

quence of functions from M

M

1

j=  (

~

f(c)) i� 9� < !

1

8b 2 X

�

M j=  (

~

f(b))

This is proved just like  Los's theorem.

Claim: M is an elementary substructure of M

0

.

We have that M � M

0

because of the constant functions in M . So it is

enough to note that M

0

is an elementary substructure of M

1

. This follows

from the Tarski-Vaught criterion. Suppose

M

1

j= 9x �(x; f

1

(c); : : : ; f

n

(c))

then there must be some X

�

contained in the domain of each f

i

such that

M j= 8b 2 X

�

9x �(x; f

1

(b); : : : ; f

n

(b))

In M �nd g with domain X

�

such that

M j= 8b 2 X

�

�(g(b); f

1

(b); : : : ; f

n

(b))

and hence

M

1

j= �(g(c); f

1

(c); : : : ; f

n

(c))

It follows that M is an elementary substructure of M

0

.

Claim: If a 2 I and b 2 M

0

with b < a then b 2 M , i.e. the initial

segment of the hyperintegers of M

0

determined by I is not enlarged.

To see this let f(c) = b for some f 2 M and let X

�

be contained in the

domain of f have the property that for every x 2 X

�

we have f(x) < a.

By our construction we may assume that f � X

�

is one-to-one or constant.

However it cannot be one-to-one since the internal cardinality of X

�

is in J

and a is in I, so it must be constant. Hence this constant must be in M and

therefore in I.

Claim: for every d 2 J there exists b 2 M

0

�M with b < d, i.e. there

are arbitrarily small new elements of J .

Some X

�

has internal cardinality less than d. Let f 2M be a one-to-one

function from X

�

into d. Clearly f

M

0

(c) < d. f

M

0

(c) must be new because

for any b 2M it must be true that some X

�

� (X

�

� f

�1

(b)). It is also true

that no new element of M

0

is beneath every element of J .
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Claim: M

0

is an !

1

-saturated model of cardinality !

1

.

Clearly M

0

has cardinality !

1

, so it is enough to check that it is !

1

-

saturated. So let �(x) = f�

n

(x; f

n

(c)) : n 2 !g be a �nitely realizable

type in M

0

. We may assume parameters are singletons since n-tuples are

elements of our universe. Let � be su�ciently large so that X

�

is a subset

of the domain of f

n

for every n < !. Since �(x) is �nitely realizable we can

also choose � large enough so that for every n 2 !

M j= 8b 2 X

�

9x ^

m<n

�

m

(x; f

m

(b))

Consider the following type �(g) with variable g over M . �(g) contains the

sentence \g is a function with domain X

�

"and for each n 2 ! the sentence

8b 2 X

�

�

m

(g(b); f

n

(b)). Since the type �(g) is �nitely realizable in M and

M is !

1

-saturated some function g in M realizes it and so g(c) realizes �(x)

in M

0

. (Kotlarski (1983)[11] shows that every simple co�nal extension of an

!

1

-saturated model is !

1

-saturated.)

Now we prove Theorem 0.8. This is proved similarly to the standard proof

of Chang's two cardinal Theorem (see Chang and Keisler (1973)[2] Theorem

7.2.7 p.438). If M is an elementary substructure of N let

I

N

= fb a hyperinteger of N : 9a 2 I b < ag

Construct an elementary chain of models N

�

for � < !

2

such that N

0

= M ,

each N

�

is isomorphic M , and I

N

�

= I.

For successor steps to obtain N

�+1

just use the pair M;M

0

. So the only

thing to do is the step for � a limit ordinal. Letting N be the union of N

�

for � < � and I

N

be the initial segment of N determined by I we need to

see that N can be embedded into M in such a way that I

N

is mapped onto

I. This is done by showing that N (while not necessarily !

1

-saturated) is

!

1

-saturated for types realizable in I

N

:

Claim: Any countable �nitely realizable type �(x) over N , which con-

tains for some b 2 I

N

the formula x < b, is realized in N .

Let �(x) = f�

n

(x; a

n

) : n 2 !g. Choose a sequence hb

n

: n 2 !i from N

such that for each n 2 ! b

n

< b and for m < n N j= �

m

(b

n

; a

m

). Since I

N

=

I

N

0

and N

0

is !

1

-saturated, there exists an internal sequence hb

n

: n 2 Ki for

an in�nite hyperinteger K in N

0

which is an extension of hb

n

: n 2 !i. Since

N

0

is substructure of N we have that hb

n

: n 2 Ki 2 N . Working in N for

9



each n 2 ! let K

n

be the least m < K (if any) such that N j= :�

n

(b

m

; a

n

).

By construction each K

n

is an in�nite integer of N . Since the I

N

= I

N

0

the

coinitiality of the nonstandard integers of N must be !

1

and so there exists

some hyper�nite L in N less than all K

n

for n 2 !. It follows that b

L

realizes

�(x).

N

�

is now obtained by a back-and-forth argument starting with taking

H to itself where I = fb : 9n 2 ! b < H

n

g. This concludes the proof of

Theorem 0.8.

2

I do not know what either cof(H) or cof(2

H

) are in this model. This

argument needs only that the coinitiality of J is !

1

. I do not know how to

do it if the coinitiality of J is !, as for example in the proof of Theorem 0.10.

The result easily generalizes to (�; �

+

) in place of (!

1

; !

2

) if �

<�

= �.

This technique can also be used to prove the following theorem.

Theorem 0.10 Let M be a countable nonstandard universe and H an in�-

nite hyperinteger in M . Then there exists an elementary extension N of M

such that there exists new subsets of H, i.e. X � H with X 2 (N �M)

but every new X � H has nonzero Loeb measure, i.e. if X 2 N and

jX j

H

is

in�nitesimal, then X 2 M , i.e. the internal Loeb measure zero sets are the

same in M and N .

proof:Let J = fK a hyperinteger of M : 9n 2 ! K > 2

H

n

g and let I be

the complement of J in the hyperintegers of M . Similar to the last proof

construct an !-sequence hX

n

: n 2 !i of hyper�nite sets of integers in M

such that

� the internal cardinality of each X

n

is an element of J

� if n < m, then X

m

� X

n

� for any set X in M there exists an n such that either X

n

� X or X

n

is disjoint from X

� for any n and function f in M whose domain includes X

n

there exists

an m > n such that f � X

m

is either one-to-one or constant

� for any d 2 J some X

n

has internal cardinality less than d (of course

this will automatically be true if we take X

0

= 2

H

)

10



Let c be a new constant symbol and let T be the theory which consists of

the elementary diagram of M plus all statements of the form \c 2 X

n

" for

n < !. Let M

1

be any model of T which is an elementary superstructure of

M and let N be the set of all f

M

1

(c) such that f 2 M is a function whose

domain contains some X

n

for n < !. The following set of claims also go

thru:

Claim: For any formula  (x

1

; x

2

; : : : ; x

n

) and

~

f = hf

1

; f

2

; : : : ; f

n

i a se-

quence of functions from M

M

1

j=  (

~

f(c)) i� 9n < ! 8b 2 X

n

M j=  (

~

f(b))

Claim: M is an elementary substructure of N .

Claim: If a 2 I and b 2 N with b < a then b 2 M , i.e. the initial

segment of N determined by I is not enlarged.

Claim: for every d 2 J there exists b 2 N �M with b < d, i.e. there are

arbitrarily small new elements of J .

It remains only to show that if X � H in N has the property that

jX j

H

is in�nitesimal, then X 2 M . To do that we need the following claim from

nonstandard calculus:

Claim: Suppose K < H are in�nite hyperintegers and

K

H

� 0, then

 

H

K

!

1

H

� 1

i.e. if

K

H

is in�nitesimal, then the H

th

root of the number of subsets of H of

size K is in�nitesimally close to 1.

We will use Stirling's approximation for n!

n! = (

n

e

)

n

p

2�n(1 + �

n

)

where �

n

� 0 if n is in�nite. Since H;K, and H �K are all in�nite we get

that

 

H

K

!

=

H!

(H �K)!K!

=

H

H

K

K

(H �K)

H�K

 

H

K(H �K)

!

1

2

x

11



where x �

1

p

2�

. For any positive �nite but not in�nitesimal real number x

we have that x

1

H

� 1. Consequently we need only show:

0

@

H

H

K

K

(H �K)

H�K

 

H

K(H �K)

!

1

2

1

A

1

H

� 1

Calculating this let � =

K

H

so that K = �H and

1

H

< � � 0:

0

@

H

H

K

K

(H �K)

H�K

 

H

K(H �K)

!

1

2

1

A

1

H

=

H

K

K=H

(H �K)

1�K=H

 

H

K(H �K)

!

1

(2H)

=

H

(�H)

�

(H � �H)

(1��)

 

H

�H(H � �H)

!

1

(2H)

=

1

�

�

(1 � �)

(1��)

 

1

�(1� �)H

!

1=(2H)

=

1

�

�

(1 � �)

(1��)

 

1

�

1=H

(1� �)

1=H

(

1

H

)

1=H

!

1=2

Since � � 0 we have (1��)

(1��)

� 1, and (1��)

1=H

� 1. Using L'Hopitol's

rule it easy to check that for any positive in�nitesimal � that �

�

� 1, hence

�

�

� 1, (

1

H

)

1=H

� 1, and since

1

H

< � < 1 we have that

1 � (1=H)

1=H

< �

1=H

< 1

and so �

1=H

� 1. This proves the Claim.

Now we prove the theorem. Suppose X � H is in N but not M , and

suppose X = f

M

1

(c) where f is a function from M whose domain includes

X

n

. Clearly f cannot be constant so we may assume it is a one-to-one map

from X

n

to the (internal) set of all subsets of H. Working in M de�ne the

function g : X

n

! H by letting g(x) be the internal cardinality of f(x).

As H is in I the function g cannot be made one-to-one and hence for some

m � n, g � X

m

is constantly equal to some hyperintegerK. Since the internal

12



cardinality of X is K and X is new, clearly K must be in�nite. If

K

H

is not

in�nitesimal, then we are done. So assume that

K

H

� 0. By our last claim

we have that for any n < !

 

H

K

!

1

H

< 2

1

n

so that for any n < !

 

H

K

!

< 2

H

n

It follows that

 

H

K

!

is in I. This contradicts the fact that the range of f

on X

m

must have internal cardinality the same as X

m

, an element of J .

2

A set of real numbers X is a Sierpi�nski set i� it is uncountable but meets

every measure zero set in a countable set. Keisler-Leth (19..)[9] have in-

troduced the analogous notion of a Loeb-Sierpi�nski set. A set X � H is a

Loeb-Sierpi�nski set i� it is uncountable but meets every Loeb measure zero

set in a countable set.

Keisler and Leth have proved that in an !

1

-saturated universe in which

the external cardinality of 2

H

is !

1

there exists a Loeb-Sierpi�nski set X � H.

Such a universe can exist i� the continuum hypothesis holds. They also note

that the standard part map takes a Loeb-Sierpi�nski set to a Sierpi�nski set

in the reals. Note that by Theorem 0.1 if there is a Loeb-Sierpi�nski set in a

nonstandard universe that universe cannot be !

2

-saturated.

For any cardinal � let �

�

be the product measure on 2

�

. This measure is

determined by: for any F 2 [�]

<!

and s : F ! 2

�

�

(fx 2 2

�

: s � xg) =

1

2

jF j

We de�ne X � 2

�

is a �

�

-Sierpi�nski set i� X is uncountable but meets every

�

�

measure zero set in a countable set. We begin by establishing a relation

between Loeb-Sierpi�nski sets and Sierpi�nski sets in 2

�

.

Theorem 0.11 If there exists a Loeb-Sierpi�nski set X � H in some !

1

-

saturated universe and in�nite cardinal � � card(dlog

2

(H)e) (where card is

the external cardinality), then there exists an �

�

-Sierpi�nski set in 2

�

.

13



proof:Let K = dlog

2

(H)e), so that K is a hyperinteger satisfying 2

K�1

�

H � 2

K

. Since H has measure at least half in 2

K

a Loeb-Sierpi�nski set

in H is also Loeb-Sierpi�nski set in 2

K

. Without loss of generality we may

assume H = 2

K

. Let fx

�

: � < �g � K be distinct and de�ne � : H ! 2

�

by �(h)(�) = h(x

�

), where we identify 2

K

with internal maps from K into

2 = f0; 1g. Note that for any � < � and i = 0 or 1

�

�1

(fx 2 2

�

: x(�) = ig) = fh 2 2

K

: h(x

�

) = ig

which is an internal set of Loeb measure 1=2.

Claim: If Y � 2

�

has �

�

measure zero, then �

�1

(Y ) has Loeb measure

zero.

Suppose Y �

T

n<!

Y

n

where Y

n

=

S

t2X

n

[t

n

], each t 2 X

n

is a �nite

partial function from � to 2, [t] = fx 2 2

�

: t � xg with �

�

([t]) = 1=2

jtj

,

each X

n

countable, and �

t2X

n

�

�

([t]) < 1=n. But then �

�1

(Y ) � �

�1

(Y

n

)

and �

�1

(Y

n

) =

S

t2X

n

�

�1

([t]). Since each �

�1

([t]) is an internal set with Loeb

measure �

�

([t]), it follows that the Loeb measure of �

�1

(Y

n

) < 1=n. This

proves the claim.

Hence if X � H is a Loeb-Sierpi�nski set, then �

00

X � 2

�

is a �

�

-Sierpi�nski

set.

2

Theorem 0.12 Suppose card(dlog

2

(H)e) > 2

!

1

, then there cannot be a

Loeb-Sierpi�nski set in H.

proof:It su�ces to show there cannot be a �

�

-Sierpi�nski set for � = (2

!

1

)

+

.

Suppose for contradiction that X = fx

�

2 2

�

: � < !

1

g is a �

�

-Sierpi�nski set

and let fy

�

2 2

!

1

: � < �g be de�ned by y

�

(�) = x

�

(�). Since � = (2

!

1

)

+

there exists A 2 [�]

!

and y 2 2

!

1

such that for all � 2 A we have y

�

= y.

Choose B 2 [!

1

]

!

1

and i 2 f0; 1g such that y � B is constantly i. It follows

that for all � 2 A that x

�

� B is constantly equal to i, however the set

fx 2 2

�

: x � B = ig

has measure zero.

2

Theorem 0.13 It is consistent with ZFC that there exists a Sierpi�nski set

in 2

!

, but no Loeb-Sierpi�nski set in any !

1

-saturated nonstandard universe.
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It su�ces to �nd a model of set theory which contains a Sierpi�nski set,

but does not contain a �

c

-Sierpi�nski set where c is the cardinality of the

continuum. The model is obtained as follows. Let M be a countable standard

model of ZFC+GCH and let � = @

M

!

and let B

�

be the measure algebra on

2

�

, i.e. the complete boolean algebra of Borel subsets of 2

�

modulo the

�

�

-measure zero sets. Let G be B

�

generic over M . Then

M [G] j= There is a Sierpi�nski set in 2

!

but none in 2

c

We need only show there is no Sierpi�nski set in 2

c

. The argument will be

similar to one found in Miller (1982)[14]. We will use the following Lemma

of Kunen from that paper:

Lemma 0.14 (Kunen) Suppose B

i

� X for i < n are �-measurable sets

with �(B

i

) � 3=4, then

�

��

r 2 X : jfi < n : r 2 B

i

gj �

5

8

n

��

� 1=3

For any sentence � in the forcing language let [j�j] be the boolean value

of �, i.e. [j�j] = �fb 2 B

�

: b j` �g

Lemma 0.15 Suppose f 2 (2

!

1

)

M [G]

, then 9n < ! 9g 2 M [G

n

] such that

domain(g) 2 ([!

1

]

!

1

)

M

and 8� 2 domain(g) �

�

([jf(�) = g(�)j]) � 3=4.

proof:Working in M for each � < !

1

let C

�

� 2

�

be a clopen set such that

�

�

([jf(�) = 1j]4C

�

) � 1=4, where4 denotes symmetric di�erence. SinceC

�

is clopen there exists F

�

2 [�]

<!

and T

�

� 2

F

�

such that C

�

=

S

t2T

�

[t], i.e.

a �nite union of cylinders over �nitely many coordinates. Since � =

S

n2!

!

n

there exists n 2 ! and Y 2 [!

1

]

!

1

such that for every � 2 Y we have F

�

� !

n

.

De�ne g : Y ! 2 by g(�) = 1 i� C

�

2 G. Then g 2M [G

n

] since C

�

2 G i�

C

�

2 G

n

. Also [jf(�) 6= g(�)] � ([jf(�) = 1j]4 C

�

) which has measure less

than 1=4. This proves the Lemma.

2

In M [G] we have that �

+

= c = @

!+1

. Now suppose fx

�

2 2

�

+

: � < !

1

g

is a Sierpi�nski set in 2

c

in M [G]. Let fy

�

2 2

!

1

: � < �

+

g be de�ned by

y

�

(�) = x

�

(�). By the Lemma and the fact that

M [G

n

] j= 2

!

1

= !

n

15



there exists Q 2 [�

+

]

!

\M (in fact one of size �

+

) and g : Y ! 2 with

g 2M [G

n

] and Y 2 ([!

1

]

!

1

)

M

such that 8� 2 Q 8� 2 Y

�

�

([jy

�

(�) = g(�)j]) �

3

4

equivalently

�

�

([jx

�

(�) = g(�)j]) �

3

4

Now fx

�

� Q : � 2 Y g must be a Sierpi�nski set in 2

Q

. Consequently letting

Q = f�

n

: n 2 !g, by the strong law of large numbers for all but countably

many � 2 Y

lim

n!1

jfi < n : x

�

(�

i

) = 0gj

n

=

1

2

Choose � 2 Y and n 2 ! so that if

b = [j

7

16

<

jfi < n : x

�

(�

i

) = 0gj

n

<

9

16

j]

then �

�

(b) >

2

3

. Let B

i

= [jx

�

(�

i

) = g(�)j] and note that �

�

(B

i

) � 3=4, so

by Kunen's Lemma:

�

�

��

r 2 2

�

: jfi < n : r 2 B

i

gj �

5

8

n

��

� 1=3

Let

c =

�

r 2 2

�

: jfi < n : r 2 B

i

gj �

5

8

n

�

= [jfi < n : x

�

(�

i

) = g(�)gj �

5

8

nj]

I claim that b^ c = 0, which contradicts the fact that �

�

(b) > 2=3 and

�

�

(c) � 1=3. This is because it is impossible that

jfi < n : x

�

(�

i

) = 0gj �

5

8

n or jfi < n : x

�

(�

i

) = 1gj �

5

8

n

and

7

16

<

jfi < n : x

�

(�

i

) = 0gj

n

<

9

16

This proves the theorem.

2

In a model due to Bartoszynski and Ihoda (1989)[1] there exists a subset

of 2

!

of cardinality !

1

which is a Sierpi�nski set, but also every Sierpi�nski set

16



in 2

!

has cardinality !

1

. This does not mean that there is no Sierpi�nski set

in 2

c

. To construct their model start with a model M of ZFC+MA+:CH,

then add !

1

random reals, i.e. force with the measure algebra of 2

!

1

. In

this model there is a Sierpi�nski set in 2

!

2

. To see this let D

�

2 [!

1

]

!

1

for

� < !

2

be almost disjoint sets (uncountable sets with pairwise intersection

countable) and de�ne x

�

2 2

!

2

for � < !

1

by x

�

(�) = G(D

�

(�)) where

G : !

1

! 2 is the generic map and D

�

(�) is the �

th

element of D

�

. It is not

hard to show that fx

�

: � < !

1

g � 2

!

2

is a Sierpi�nski set. We do not know

of model for Theorem 0.13 where the continuum is !

2

.

Theorem 0.16 It is relatively consistent with ZFC that the continuum hy-

pothesis is false but in some !

1

-saturated universe there is a Loeb-Sierpi�nski

set.

proof:Suppose M is a countable standard model of ZFC+:CH. And let W 2

M be an !

1

-saturated nonstandard universe, and H 2 W some hyper�nite

set. Let B be the boolean algebra obtained by taking the �-algebra generated

by the internal subsets of H and dividing out by the Loeb measure zero sets.

Then B has the countable chain condition. Let G be B -generic over M .

Working in M [G] �nd an elementary extension of W say W

0

such that the

type �(x) = fx 2 A : [A] 2 Gg is realized in W

0

. It is easy to check that

for any hA

n

: n 2 !i 2 M such that each A

n

� H is internal and the Loeb

measure of A

n

less than 1=n, then there exists n 2 ! with [H �A

n

] 2 G. It

follows that x =2

T

n2!

A

n

. Iterate this forcing !

1

times using �nite support

at limits and obtain W

�

2 M

�

and x

�

2 H 2 W

�

, then using the countable

chain condition, in the �nal model M

!

1

the universe W

!

1

=

S

�<!

1

W

�

is

!

1

-saturated and fx

�

: � < !

1

g is a Loeb-Sierpi�nski set.

2

We say that a nonstandard universe W is an !-power i� there exists

an in�nite ordinal � (a typical example is � = ! + !) and a nonprincipal

ultra�lter U on ! such that W is the ultrapower V

!

�

=U , where V

�

is the set

of all sets of rank less than �. All !-powers are !

1

-saturated.

Theorem 0.17 It is relatively consistent with ZFC that continuum hypoth-

esis is false and we have an !-power in which there exists a Loeb-Sierpi�nski

set.

proof:We will use the following lemmas.
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Lemma 0.18 If M is a countable standard model of ZFC and U 2 M a

nonprincipal ultra�lter on !, then there exists a generic extension N of M

which satis�es the countable chain condition and

N j= 9Z 2 [!]

!

8X 2 U Z �

�

X

where A �

�

B means inclusion modulo �nite.

proof:This is a well-known forcing f(s;X) : s 2 [!]

<!

and X 2 Ug, see

Mathias (1977)[13].

2

Suppose F � P (!) is a �eld of sets and � : F ! [0; 1] is a �nitely additive

measure with �(!) = 1 and �(n) = 0 for each n 2 !. Let P= fb 2 F : �(b) >

0g ordered by inclusion.

Lemma 0.19 Phas the countable chain condition. If G is P- generic over a

model M of ZFC , then for every ha

n

: n 2 !i 2M \F

!

with lim

n!!

�(a

n

) =

0 there exists n 2 ! with (! � a

n

) 2 G.

proof:The countable chain condition holds because there cannot be n sets

of measure greater than 1=n and pairwise intersection measure zero. The

second sentence is an easy density argument.

2

Given Z 2 [!]

!

and h 2 !

!

with h(n) � 2 all n 2 Z, then de�ne

X = �

n2Z

h(n) and give X the product measure � determined as follows.

Let A

i;n

= fx 2 X : x(n) = ig for i < h(n) then �(A

i;n

) = 1=h(n) and for

n

1

; n

2

; : : : ; n

k

distinct

�(A

i

1

;n

1

\ : : : \A

i

k

;n

k

) =

1

h(n

1

)

�

1

h(n

2

)

� � �

1

h(n

k

)

Let B be the measure algebra determined by X and �, i.e. the Borel subsets

of X modulo the � measure zero sets. Then B is isomorphic to the usual

random real forcing and a generic �lter G determines and is determined by

a \random real" r 2 X.

Lemma 0.20 Suppose h and Z are elements of M a countable standard

model of ZFC, r 2 X is a random real over M , g : Z ! [!]

<!

with g 2 M ,
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g(n) � h(n) all n, and lim

n!! n2Z

jg(n)j

h(n)

= p. Then the following limit exists

and equals p:

lim

n!!

jfm < n : m 2 Z and r(m) 2 g(m)gj

jfm < n : m 2 Zgj

= p

proof:This follows from the strong law of large numbers for variable dis-

tributions (see Feller (1968)[4] X.7 page 258). For each n 2 ! let X

n

be a random variable which is 1 with probability p

n

and 0 with probabil-

ity 1 � p

n

where p

n

=

jg(z

n

)j

h(z

n

)

and fz

n

: n < !g is an enumeration of Z.

The sequence is mutually independent and satis�es Kolmogorov's Criterion

(variances are less than 1) so that the strong law of large numbers holds.

This implies that with probability 1 the sequence

S

n

�m

n

n

tends to zero where

S

n

= X

0

+ X

1

+ : : :+ X

n�1

and m

n

= p

0

+ : : : + p

n�1

. Since any random

real r must be in any measure one set coded in the ground model we must

have that for

a

n

= jfm < n : r(k

m

) 2 g(k

m

)gj

that lim

n!1

a

n

�m

n

n

= 0. To �nish the proof it is enough to see that

lim

n!1

a

n

n

= p

This is true because lim

n!1

m

n

n

= p since

m

n

n

� p =

p

0

+ p

1

+ : : :+ p

n�1

� np

n

=

(p

0

� p) + : : :+ (p

m

� p)

n

+

(p

m+1

� p) + : : :+ (p

n�1

� p)

n

and choosing m large makes the second quotient small and n large drives the

�rst down.

2

Now suppose H is an in�nite hyperinteger in an !-power via a nonprin-

cipal ultra�lter U from M a countable standard model of ZFC, and h 2 !

!

represents H in this ultrapower, i.e. [h]

U

= H. We combine the last three

lemmas:
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Lemma 0.21 There exists a countable chain condition generic extension N

of M and an ultra�lter U

�

2 N extending U and f 2 !

!

such that [f ]

U

�

2

H = [h]

U

�

and [f ]

U

�

is not in any Loeb measure zero set coded in M , i.e.

hg

n

: n 2 !i 2 M such that [g

n

]

U

� H and such that Loeb measure of [g

n

] is

less than 1=n for each n, there exists n 2 ! with [f ]

U

�

=2 [g

n

]

U

�

.

proof:Apply Lemma 0.18 to obtain Z 2 [!]

!

so that 8X 2 U we have Z �

�

X.

Let r 2 X = �

n2Z

h(n) be a random real over M [Z]. Working in M [Z][r]

de�ne the �eld of sets

F = fX � ! : 9g 2M g : ! ! [!]

<!

and X \ Z = fm 2 ! : r(m) 2 g(m)gg

De�ne �(X) for any X 2 F by

�(X) = lim

n!!

jX \ Z \ nj

jZ \ nj

By Lemma 0.20 this limit exists and in fact equals the Loeb measure of the

[g]

U

that put X into F . Use Lemma 0.19 to obtain G P-generic over M [Z][r]

(where P= fb 2 F : �(b) > 0g) and let U

�

be any ultra�lter extending G.

Let f 2 !

!

be any map extending r. Since �(Z) = 1 we have U

�

� U . If

hg

n

: n 2 !i 2 M is the code for a Loeb measure zero subset of H, then

letting X

n

= fm 2 ! : f(m) 2 g

n

(m)g (f = r on Z) we have that the Loeb

measure of [g

n

]

U

is �(X

n

) which goes to zero as n!1. So by Lemma 0.19

there exists n 2 ! such that (! �X

n

) 2 G � U

�

. This means that

fm : f(m) =2 g

n

(m)g 2 U

�

so [f ]

U

�

=2 [g

n

]

U

�

.

2

Now we prove Theorem 0.17. Start with any M

0

countable standard

model of ZFC+:CH, nonprincipal ultra�lter U 2M

0

on !, and H = [h]

U

an

in�nite hyperinteger with h 2 !

!

\M . Iterate Lemma 0.21 with �nite support

!

1

times to obtain hf

�

: � < !

1

i and hU

�

: � < !

1

i with [f

�

]

U

�

2 [h]

U

�

= H

and [f

�+1

]

U

�+1

not in any Loeb measure zero set coded in M

�

. Since the

entire iteration has the countable chain condition, at the end U =

S

�<!

1

U

�

is an ultra�lter in M

!

1

and ff

�

: � < !

1

g will be a Loeb-Sierpi�nski set.

2

I do not know if a Loeb-Sierpi�nski set can have cardinality !

2

.
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