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This is a survey paper on the lengths of Borel hierarchies and related
hierarchies. It consists of lecture notes of a lecture given in July 2016 at
the Kurt Godel Research Center, Vienna, Austria and at the TOPOSYM,
Prague, Czech Republic.

Notation for the Borel hierarchy is as follows:

open = Σ0
1˜ = G

closed = Π0
1˜ = F

Σ0
2˜ = Fσ = countable unions of closed sets

Π0
2˜ = Gδ = countable intersections of open sets = complements of Σ0

2˜ -sets

Σ0
α˜ = {

⋃
n<ω An : An ∈ Π0

<α˜ =
⋃
β<α Π0

β˜ }

Π0
α˜ = complements of Σ0

α˜ sets

Borel = Π0
ω1˜ = Σ0

ω1˜
In a metric space closed sets are Gδ, i.e., Π0

1˜ ⊆ Π0
2˜ . Similarly for 1 ≤ α <

β
Σ0
α˜ ∪Π0

α˜ ⊆ Σ0
β˜ ∩Π0

β˜ =def ∆0
β˜

Theorem 1 (Lebesgue 1905) For every countable α > 0

Σ0
α˜ (2ω) 6= Π0

α˜ (2ω).

Define ord(X) to be the least α such that Σ0
α˜ (X) = Π0

α˜ (X).

Hence ord(2ω) = ω1. If X is any topological space which contains a
homeomorphic copy of 2ω, then ord(X) = ω1. More generally, if Y ⊆ X,
then ord(Y ) ≤ ord(X). This is because

Σ0
α˜ (Y ) = {A ∩ Y : A ∈ Σ0

α˜ (X)} and Π0
α˜ (Y ) = {A ∩ Y : A ∈ Π0

α˜ (X)}.

If X countable, then ord(X) ≤ 2.

Theorem 2 (Bing, Bledsoe, Mauldin 1974) Suppose (2ω, τ) refines the
usual topology and is second countable. Then ord(2ω, τ) = ω1.
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Theorem 3 (Rec law 1993) If X is a second countable space and X can
be mapped continuously onto any space containing 2ω, then ord(X) = ω1.

Q 1. It is consistent that for any 2 ≤ β ≤ ω1 there are X, Y ⊆ 2ω and
f : X → Y continuous, one-to-one, and onto such that ord(X) = 2 and
ord(Y ) = β, see Theorem 23. What other pairs of orders (α, β) are possible?

Corollary 4 If X is separable metric space which is not zero-dimensional,
then ord(X) = ω1.

To see why, let x0 ∈ X be any point and consider the map x 7→ d(x0, x).
If the image of this map contains an interval then ord(X) = ω1. Otherwise
there are arbitrarily small clopen balls centered at x0.

If X is separable, metric, and zero-dimensional, then it is homeomorphic
to a subspace of 2ω. So from now on we consider only X which are subsets
of 2ω.

Define X ⊆ 2ω is a Luzin set iff it is uncountable and X ∩M is countable
for every meager set M ⊆ 2ω.

Theorem 5 (Poprougenko and Sierpiński 1930) If X ⊆ 2ω is a Luzin
set, then ord(X) = 3.

If X ⊆ 2ω is a Luzin set, then for every Borel set B there are Π0
2˜ C and

Σ0
2˜ D such that B ∩X = (C ∪D) ∩X. This is because every Borel sets is

open mod meager and hence relative to X open mod countable. It cannot
have order 2 because a dense Gδ would meet it in an uncountable set. We
might think of the order of X as being 2 + ε, since these sets are at level one
of the Hausdorff difference hierarchy.

Q 2. Can we have X ⊆ 2ω with ord(X) = 4 and for every Borel set B
there are Π0

3˜ C and Σ0
3˜ D such that B ∩X = (C ∪D) ∩X?

Q 3. Same question for the βth level of the Hausdorff difference hierarchy
inside the ∆0

α+1˜ sets?

Theorem 6 (Szpilrajn 1930) If X ⊆ 2ω is a Sierpiński set, then the order
of X is 2.

This is because every Borel set contains an Fσ of the same measure.

Theorem 7 (Miller 1979) The following are each consistent with ZFC:
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• for all α < ω1 there is X ⊆ 2ω with ord(X) = α.

• ord(X) = ω1 for all uncountable X ⊆ 2ω.

• {α : α0 < α ≤ ω1} = {ord(X) : unctbl X ⊆ 2ω}.

Q 4. What other sets can {ord(X) : unctbl X ⊆ 2ω} be?
{α : ω ≤ α ≤ ω1}? Even ordinals?

Theorem 8 (Miller 1979) For any α ≤ ω1 there is a complete ccc Boolean
algebra B which can be countably generated in exactly α steps.

Theorem 9 (Kunen 1979) (CH) For any α < ω1 there is an X ⊆ 2ω with
ord(X) = α.

Theorem 10 (Fremlin 1982) (MA) For any α < ω1 there is an X ⊆ 2ω

with ord(X) = α.

Theorem 11 (Miller 1979a) For any α with 1 ≤ α < ω1 there is a count-
able set Gα of generators of the category algebra, Borel(2ω) mod meager,
which take exactly α steps.

Suppose Borel(2ω)/Iα has order α. If α < β and there is an Iα-Luzin set,
then does there exists a Iβ-Luzin set? If X is Iω-Luzin is it the clopen sum
of sets of order < ω?

Cohen real model and Random real model

Theorem 12 (Miller 1995) If there is a Luzin set of size κ, then for any
α with 3 ≤ α < ω1 there is an X ⊆ 2ω of size κ and hereditarily of order α.

In the Cohen real model there is X, Y ∈ [2ω]ω1 with hereditary order 2 and ω1

respectively. Also, every X ∈ [2ω]ω2 has ord(X) ≥ 3 and contains Y ∈ [X]ω2

with ord(Y ) < ω1.

Theorem 13 (Miller 1995) In the random real model, for any α with 2 ≤
α ≤ ω1 there is an Xα ⊆ 2ω of size ω1 with α ≤ ord(Xα) ≤ α + 1.

Q 5. Presumably, ord(Xα) = α but I haven’t been able to prove this.
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Sacks real model

Theorem 14 (Miller 1995) In the iterated Sacks real model for any α with
2 ≤ α ≤ ω1 there is an X ⊆ 2ω of size ω1 with ord(X) = α. Every X ⊆ 2ω

of size ω2 has order ω1.

In this model there is a Luzin set of size ω1. Also for every X ⊆ 2ω of size
ω2 there is a continuous onto map f : X → 2ω (Miller 1983) and hence by
(Rec law 1993) ord(X) = ω1.

What if the Axiom of Choice fails?

Theorem 15 (Miller 2008) It is consistent with ZF that ord(2ω) = ω2.

This implies that ω1 has countable cofinality, so the axiom of choice fails very
badly in our model. We also show that using Gitik’s model (1980) where
every cardinal has countable cofinality, there are models of ZF in which the
Borel hierarchy is arbitrarily long. It cannot be “class” long since then there
would be a map from the family of Borel sets onto the ordinals.

Q 6. If we change the definition of Σ0
α˜ so that it is closed under countable

unions, then I don’t know if the Borel hierarchy can have length greater than
ω1.

Q 7. Over a model of ZF can forcing with Fin(κ, 2) collapse cardinals?

No, see Klausner and Goldstern 2016 [6].

The ω1-Borel hierarchy of subsets of 2ω

• Σ∗0 = Π∗0 = clopen subsets of 2ω

• Σ∗α = {∪β<ω1Aβ : (Aβ : β < ω1) ∈ (∪β<αΠ∗β)ω1}

• Π∗α = {2ω\A : A ∈ Σ∗α}

CH → Π∗2 = Σ∗2 = P(2ω)

Theorem 16 (Miller 2011) (MA+notCH) Π∗α 6= Σ∗α for every positive
α < ω2.
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Q 8. This result generalizes: (MA) if κ < c then the κ-Borel hierarchy has
length κ+. What about the < c-Borel hierarchy for c weakly inaccessible?

Theorem 17 (Miller 2011) In the Cohen real model Σ∗ω1+1 = Π∗ω1+1 and
Σ∗α 6= Π∗α for every α < ω1.

Q 9. I don’t know if Σ∗ω1
= Π∗ω1

holds in the Cohen real model.

Q 10. (Brendle, Larson, Todorcevic 2008) Is it consistent with notCH to
have Π∗2 = Σ∗2?

If notCH, then P(2ω) 6= Σ∗2; consider a Bernstein set.

Theorem 18 (Steprans 1982) It is consistent that Π∗3 = Σ∗3 = P(2ω) and
Π∗2 6= Σ∗2.

Theorem 19 (Carlson 1982) If every subset of 2ω is ω1-Borel, then the
cofinality of the continuum must be ω1.

Theorem 20 (Miller 2012) (1) If P(2ω) = ω1-Borel, then P(2ω) = Σ∗α
for some α < ω2.

(2) For each α ≤ ω1 it is consistent that Σ∗α+1 = P(2ω) and Σ∗<α 6= P(2ω),
i.e. length α or α + 1.

Q 11. Can the ω1- Borel hierarchy have length α for some α with ω1 <
α < ω2?

Define X ⊆ 2ω is a Qα-set iff ord(X) = α and Borel(X) = P(X). Q-set
is the same as Q2-set.

Theorem 21 (Fleissner, Miller 1980) It is consistent to have X ⊆ 2ω,
an uncountable Q-set, which is concentrated on E = {x ∈ 2ω : ∀∞n x(n) =
0}.
Hence X ∪ E is a Q3-set.

Concentrated means that X\U is countable for any open U ⊇ E. Hence
the order of X ∪ E is 2 + ε. It is also consistent to have a concentrated set
with ord(X) = ω1.

Theorem 22 (Miller 2014) (CH) For any α with 3 ≤ α < ω1 there are
X0, X1 ⊆ 2ω with ord(X0) = α = ord(X1) and ord(X0 ∪X1) = α + 1.
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Q 12. Is it consistent that the Xi be Qα-sets?
Q 13. What about getting ord(X0 ∪X1) ≥ α + 2?

Theorem 23 (Judah and Shelah 1991) It is consistent to have a Q-set
and d = ω1 using an iteration of proper forcings with the Sacks property.

Q 14. What about a Qα-set for α > 2?

In this model for any α with 2 < α ≤ ω1 there are X,Z ⊆ 2ω with
ord(X) = α , ord(Z) = 2, and a continuous one-to-one map f : Z → X. The
Sacks property implies that the cofinality of the meager ideal is ω1, i.e., there
is a family of meager sets M with |M| = ω1 such that for every meager set
X there is Y ∈M with X ⊆ Y . It follows that there is a Luzin set X of size
ω1. Hence by Theorem 12 for any α with 2 < α < ω1 there is a set Xα of
size ω1 with ord(Xα) = ω1. If we put Xω1 =

⋃
α<ω1

Xα, then ord(Xω1) = ω1.
Now let Y = {yβ : β < ω1} be the Q-set and let Xα = {xβ : β < ω1}.

Put Z = {(xβ, yβ) : β < ω1}. Then ord(Z) = 2 and the projection map from
Z to Xα is one-to-one and continuous.

Theorem 24 (Miller 2003) It is consistent to have a Q-set X ⊆ [ω]ω

which is a maximal almost disjoint family.

Q 15. It is consistent to have Q-set {xα : α < ω1} and a non Q-set
{yα : α < ω1} such that xα =∗ yα all α. Can such an {xα : α < ω1} be
MAD?

Products of Q-sets

Theorem 25 (Brendle 2016) It is consistent to have a Q-set X such that
X2 is not a Q-set.

In this theorem ord(X2) = 3, in fact, there is a subset ∆ ⊆ X2 such that
∆ 6= A ∩X2 for any ∆0

3˜ set A ⊆ (2ω)2, i.e., the order of X2 is not 2 + ε. To
see this let ∆ = {(xα, xβ) : α < β < ω1}.

Define ∆ ⊆∗ A iff ∃γ0 < ω1 ∀α, β (γ0 < α < β < ω1) → (α, β) ∈ A and
similarly define ∆ ⊆∗ A iff ∃γ0 < ω1 ∀α, β (γ0 < β < α < ω1)→ (α, β) ∈ A.

Brendle shows that for his Q-set that for any Gδ set A ⊆ (2ω)2 that
∆ ⊆∗ A iff ∆ ⊆∗ A. Now consider any A ⊆ (2ω)2 which is ∆0

3˜ . The Hausdorff
difference hierarchy Theorem implies that there are Gδ sets (Gα : α < λ) for
some limit λ < ω1 such that
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1. α < β < λ implies Gβ ⊆ Gα,

2. Gγ =
⋂
α<γ for limit γ < λ, and

3. A =
⋃
{Gα\Gα+1 : α even < λ}.

Suppose ∆ = A ∩ X2. Let Σ = {α < λ : ∆ ⊆∗ Gα and α even}. Since
A ⊆ G0 it follows that 0 ∈ Σ. Let β = sup(Σ). Then β ∈ Σ or β = λ by
condition (2). We claim that β = λ. Assume not. Since ∆ ⊆∗ Gβ we have
that ∆ ⊆∗ Gβ. But since β is even, ∆ is disjoint from Gβ\Gβ+1 which is a
subset of A. It follows that ∆ ⊆∗ Gβ+1 and so ∆ ⊆∗ Gβ+1. But Gβ+1\Gβ+2

is disjoint from ∆, hence β + 2 ∈ Σ which contradicts β = sup(Σ).
So β = λ. But this implies ∆ ⊆∗

⋂
α<λGα and hence is disjoint from A,

contradiction.

Theorem 26 (Miller) (1) If X2 Qα-set and |X| = ω1, then Xn is a Qα-set
for all n.

(2) If X3 Qα-set and |X| = ω2, then Xn is a Qα-set for all n.
(3) If |Xi| < ωn,

∏
i∈K Xi a Qα-set for every K ∈ [N ]n, then

∏
i∈N Xi is

a Qα-set.

(1) Suppose X = {xα ∈ 2ω : α < ω1}. Let

∆3 = {(xα, xβ, xγ) : α, β ≤ γ}.

Choose Fn : ω1 → ω2
1 so that for each γ < ω1 (γ + 1)2 = {Fn(γ) : n < ω}.

Define F i
n by Fn(γ) = (F 0

n(γ), F 1
n(γ)). Then since ord(X2) = α the set

H i
n = {(xδ, xγ) : F i

n(γ) = δ} is a relative Σ0
α˜ in X2. And so

Gn =def {(x, y, z) : (x, z) ∈ H0
n} ∩ {(x, y, z) : (y, z) ∈ H1

n}.

is Σ0
α˜ in X3. Consider any A ⊆ ∆3. Define

Dn = {xγ : Fn(γ) = (α, β) and (xα, xβ, xγ) ∈ A}.

Since ord(X) ≤ α the set Dn is a relative Σ0
α˜ in X and

A =
⋃
n<ω

(X2 ×Dn) ∩Gn
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is Σ0
α˜ in X3. The same argument works for the sets

∆1 = {(xα, xβ, xγ) : γ, β ≤ α} and ∆2 = {(xα, xβ, xγ) : γ, α ≤ β}.

For any A ⊆ X3 there are Ai ⊆ ∆i so that A = A1 ∪ A2 ∪ A3, therefor
ord(X3) = α.

(2) Suppose X = {xα : α < ω2}. For each α < ω2 let gα : ω1 → α+ω1 be
a bijection. Choose Fn : ω2

2 → ω2
2 for n < ω so that for every α3 ≤ α4 < ω2

(γ + 1)2 = {Fn(α3, α4) : n < ω} where gα4(γ) = α3.

Define F i
n by Fn(α3, α4) = (F 0

n(α3, α4), F
1
n(α3, α4)). Since ord(X3) = α we

have that the graphs of the F i
n are Σ0

α˜ in X3 and since the graph Fn is
essentially the intersection of these it is Σ0

α˜ in X4. It follows as above that if

A ⊆ {(xα1 , xα2 , xα3 , xα4) : α1, α2 ≤ α3 ≤ α4 < ω2}

then A is Σ0
α˜ in X4. Similarly for any permutation i, j, k, l of 1, 2, 3, 4 if

A ⊆ {(xα1 , xα2 , xα3 , xα4) : αi, αj ≤ αk ≤ αl < ω2}

then A is Σ0
α˜ in X4. Hence any A ⊆ X4 is a finite union of Σ0

α˜ sets and so
ord(X4) = α.

(3) is left to the reader.

Q 16. Can we have an X ⊆ 2ω such that X2 a Q-set but X3 is not Q-set?

In Theorem 25 Brendle could have used a generic relation R ⊆ ω1 × ω1

instead of a well-ordering to witness that X2 is not a Q-set. Perhaps here a
generic relation R ⊆ ω2 × ω2 × ω2 would work.

Q 17. For α > 2 can we have X a Qα-set but X2 not a Qα-set?

Theorem 27 (Miller 1995) (CH) For any α with 3 ≤ α < ω1 there is a
Y ⊆ 2ω such that ord(Y ) = α and ord(Y 2) = ω1.

Q 18. Can we have α < ord(Y 2) < ω1 in this Theorem?

Theorem 28 (Miller 1979) If Borel(X) = P(X), then ord(X) < ω1. In
other words, there can be no Qω1-set.

Theorem 29 (Miller 1979) It is consistent to have: for every α < ω1

there is a Qα-set.
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In this model the continuum is ℵω1+1.

Q 19. For α ≥ 3 can we have a Qα of cardinality greater than or equal to
some Qα+1-set?

Q 20. If we have a Qω-set must there be Qn-sets for infinitely many n < ω?

Q 21. Can there be a Qω-set of cardinality ω1?

Theorem 30 (Miller 1979, 2014) For any successor α with 3 ≤ α < ω1

it is consistent to have a Qα-set but no Qβ-set for β < α.

In this model the continuum has cardinality ω2. The Qα-set X has size
ω1 and has “strong order” α. Namely, even if you add countably many more
sets to the topology of X its order is still α. Another way to say this is that in
this model P(ω1) is a countably generated σ-algebra in α-steps but it cannot
be countably generated in fewer steps. (In fact, not even with ω1-generators.)
I don’t know about Qβ sets for β > α in this model. However, if Brendle’s
argument can be generalized it would show that X2 is a Qα+1-set.

Abstract Rectangles

Theorem 31 (Rao 1969, Kunen 1968) Assume the continuum hypothe-
sis, then every subset of the plane is in the σ-algebra generated by the abstract
rectangles at level 2: P(2ω × 2ω) = σ2({A×B : A,B ⊆ 2ω}).

Theorem 32 (Kunen 1968) Assume Martin’s axiom, then
P(2ω × 2ω) = σ2({A×B : A,B ⊆ 2ω}).

In the Cohen real model or the random real model any well-ordering of 2ω is
not in the σ-algebra generated by the abstract rectangles.

Theorem 33 (Rothberger 1952 and Bing, Bledsoe, Mauldin 1974)
Suppose that 2ω = ω2 and 2ω1 = ℵω2 then the σ-algebra generated by the ab-
stract rectangles in the plane is not the power set of the plane.

Theorem 34 (Bing, Bledsoe, Mauldin 1974) Suppose every subset of the
plane is in the σ-algebra generated by the abstract rectangles. Then for some
countable α every subset of the plane is in the σ-algebra generated by the
abstract rectangles by level α. P(2ω × 2ω) = σα({A×B : A,B ⊆ 2ω})
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Theorem 35 (Miller 1979 ) For any countable α ≥ 2 it is consistent that
every subset of the plane is in the σ-algebra generated by the abstract rectan-
gles at level α but for every β < α not every subset is at level β. ord(σ({A×
B : A,B ⊆ 2ω})) = α

Theorem 36 (Miller 1979 ) Suppose 2<c = c and α < ω1. Then the fol-
lowing are equivalent:

(1) Every subset of 2ω × 2ω is in the σ-algebra generated by the abstract
rectangles at level α.

(2) There exists X ⊆ 2ω with |X| = c and every subset of X of cardinality
less than c is Σ0

α in X.

Q 22. Can we have 2<c 6= c and P(2ω × 2ω) = σ({A×B : A,B ⊆ 2ω})?
Q 23. Can we have ord(σ({A× B : A,B ⊆ 2ω})) < ω1 and P(2ω × 2ω) 6=
σ({A×B : A,B ⊆ 2ω})?
Q 24. Can we have ord(σ({A × B : A,B ⊆ 2ω})) be strictly smaller than
ord(σ({A×B × C : A,B,C ⊆ 2ω}))?

Borel Universal Functions

Theorem 37 (Larson, Miller, Steprans, Weiss 2014) Suppose 2<c = c
then the following are equivalent:

(1) There is a Borel universal function, i.e, a Borel function F : 2ω×2ω →
2ω such that for every abstract G : 2ω × 2ω → 2ω there are h : 2ω → 2ω and
k : 2ω → 2ω such that for every x, y ∈ 2ω G(x, y) = F (h(x), k(y)).

(2) Every subset of the plane is in the σ-algebra generated by the abstract
rectangles.

Furthermore the universal function has level α iff every subset of the plane
is in the σ-algebra generated by the abstract rectangles at level α.

Abstract Universal Functions

Theorem 38 (Larson, Miller, Steprans, Weiss 2014) If 2<κ = κ, then
there is an abstract universal function F : κ× κ→ κ, i.e.,
∀G∃h, k∀α, β G(α, β) = F (h(α), k(β)).

Theorem 39 (Larson, Miller, Steprans, Weiss 2014) It is relatively con-
sistent that there is no abstract universal function F : c× c→ c.
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Q 25. Is it consistent with 2<c 6= c to have a universal F : c× c→ c?

Higher Dimensional Abstract Universal Functions

Theorem 40 (Larson, Miller, Steprans, Weiss 2014) Abstract univer-
sal functions F : κn → κ of higher dimensions reduce to countably many cases
where the only thing that matters is the arity of the parameter functions, e.g.

(1) ∃F∀G∃h, k∀x, y G(x, y) = F (h(x), k(y))
(2) ...G(x, y, z) = F (h(x, y), k(y, z), l(x, z))
(n) ...G(x0, . . . , xn) = F (hS(xS) : S ∈ [n+ 1]n)

Theorem 41 (Larson, Miller, Steprans, Weiss 2014) In the Cohen real
model for every n ≥ 1 there is a universal function on ωn where the parame-
ter functions have arity n+1 but no universal function where the parameters
functions have arity n.

A set is Souslin in X iff it has the form
⋃
f∈ωω

⋂
n<ω Af�n where each As

for s ∈ ω<ω is Borel in X.

Theorem 42 (Miller 1981) It is consistent to have X ⊆ 2ω such that ev-
ery subset of X is Souslin in X and ord(X) = ω1. A QS-set.

Theorem 43 (Miller 1995) (CH) For any α with 2 ≤ α ≤ ω1 there is
exists an uncountable X ⊆ 2ω such that ord(X) = α and every Souslin set
in X is Borel in X.

Theorem 44 (Miller 2005) It is consistent that there exists X ⊆ 2ω such
ord(X) ≤ 3 and there is a Souslin set in X which is not Borel in X.

Q 26. Can we have ord(X) = 2 here?

Theorem 45 (Miller 1981) It is consistent that for every subset A ⊆ 2ω×
2ω there are abstract rectangles Bs×Cs with A =

⋃
f∈ωω

⋂
n<ω (Bf�n×Cf�n)

but P(2ω × 2ω) 6= σ({A×B : A,B ⊆ 2ω}).

Theorem 46 (Miller 1979) It is consistent that the universal Σ1
1 set U ⊆

2ω × 2ω is not in the σ-algebra generated by the abstract rectangles.

Theorem 47 (Miller 1981) It is consistent that there is no countably gen-
erated σ-algebra which contains all Σ1

1 subsets of 2ω.
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Q 27. Thm 3 is stronger than Thm 2. Is the converse true?
For X a separable metric space define:

• ΣX
0 = ΠX

0 = Borel subsets of Xm some m.

• ΣX
n+1 the projections of ΠX

n sets.

• ΠX
n+1 the complements of ΣX

n+1 sets.

• Proj(X) =
⋃
n<ω ΣX

n .

Theorem 48 (Miller 1990) It is consistent there are X, Y, Z ⊆ 2ω of pro-
jective orders 0, 1, 2:

• ord(X) = ω1 and ΣX
0 = Proj(X)

• ΣY
0 6= ΣY

1 = Proj(Y )

• ΣZ
0 6= ΣZ

1 6= ΣZ
2 = Proj(Z)

Q 28. (Ulam) What about projective order 3 or higher?
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