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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 78, Number 1, January 1980 

THERE ARE NO Q-POINTS IN LAVER'S MODEL 
FOR THE BOREL CONJECTURE 

ARNOLD W. MILLER 

ABSTRACT. It is shown that it is consistent with ZFC that no nonprincipal 
ultrafilter on w is a Q-point (also called a rare ultrafilter). 

All ultrafilters are assumed to be nonprincipal and on w. 

DEFINITIONS. (1) U is a Q-point (also called rare [C]) iff Vf E oS' if f is 
finite-to-one then 3X E U, f r X is one-to-one. 

(2) U is a P-point iff Vf E w, 3X E U, f r X is constant or finite-to-one. 
(3) U is a semi- Q-point (also called rapid [C], iff Vf E o", 3g E 

o", Vn f(n) < g(n) and g"& E U. 
(4) U is semiselective iff it is a P-point and a semi-Q-point. 
(5) Forf, g c @, [f < g iff 3n Vm > n (f(m) < g(m))]. 
(6) For IF c d", [IF is dominant iff Vf E 3g c IF (f < g)]. 

THEOREM 1 (KETONEN [Ke]). If every dominant family has cardinality 2K0, 

then there exists a P-point. 

THEOREM 2 (MATHIAS, TAYLOR [M3]). If there exists a dominant family of 
cardinality K,, then there exists a Q-point. 

Kunen [Kul] showed that adding K2 random reals to a model of ZFC + 

GCH gives a model with no semiselective ultrafilters. More recently he 
showed [Ku2] that if one first adds $1 Cohen reals (then the random reals) 
then the resulting model has a P-point. In either case one has a dominant 
family of size X, so there is a Q-point. 

THEOREM 3. The following are equivalent: 
(1) U is a semi-Q-point. 
(2) Given Pn C w finite for n < K there exists X E U such that Vn, X n PI 

< n. 

(3) 3h E 
- 

w' such that given Pn C o finite for n < o there exists X E U such 
that Vn, IX n Pnl < h(n). 

PROOF. (1) => (2). Let f(n) = sup( U < n Pn) + 1. Suppose that for all n, 
g(n) > f(n); then Pn n g". C { g(O), . . *, g(n - 1)). 

(3) =X (1). Assume f increasing. Choose no < nI < n2 < , so that h(k + 
1) < nk. Let Pk = f(nk) and let Y E U so that I Y n Pkl < h(k). Then, for 
each m > no, IY n f(m)I <Km, since if nk < m <nk+l then 
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104 A. W. MILLER 

IY n f(nk+l) < h(k + 1) < nk < m. 

Hence if g E wo enumerates Y - f(no + 1) in increasing order then Vn, 

f(n) < g(n). [1 
Define U x V = {A c o X : {n: {m: (n, m) E A) E V} C U). Whilst 

U x V is never a P-point or a Q-point, nevertheless: 

THEOREM 4. U x V is a semi-Q-point iff V is a semi-Q-point. 

PROOF. (=*) Given Pk C , finite let Pk = {<n, m>: m C Pk and n < m). 
ChooseZ C U x Vsothat Vk,IZ n PkI <k.Letn CEsothat Y= {m > 
n: (n, m) C Z) C V then V k, IY n PkI < k. (More generally if f*U= V 
and U is a semi-Q-point and f is finite-to-one then V is a semi-Q-point.) 

('-=) Given Pk C w2 finite, choose nk increasing so that Pk c nk2. Let YC V 
so that Vk, Ink n YI < k. Let Z = U k<,{k) x {m: m C Y and m > nk) 
then 

P l'k C_ Z n n,2 c k X (nk lY ZnPkCznnk c(k n Y) 

which has cardinality < (k + 1)2. C1 

THEOREM 5. In Laver's model N for the Borel conjecture [L] there are no 
semi- Q-points. 

PROOF. Some definitions from [L]: 
(1) T C 6Y iff T is a subtree of w<0 with the property that there exist s C T 

(called stem T) so that Vt E T, t C s or s C t, and if t D s and t C 'T then 
there are infinitely many n C c such that t^<n> c T. 

(2)7T> Tiff T C T. 
(3) T,= {t C T: s C t or t C s). 
(4) To > T iff T > T and they have the same stem. 
(5) For x Ky < let [x,y) = {n <o: x <n <y). 

LEMMA 1. Suppose we are given T E 'I and finite sets F, for each s C T - 

{0) such that for each s C T - {0): 
(a) if s = (ko, . . . , kn, kn + 1), then Fs C [kn, kn + 1); 
(b) if s = <n>, then Fs C [0, n); 
(c) 3N < o V t immediately below s in T7IJFA < N. For any T > T let 

H= U {FFS: s C T). Then 3 T1, TO > T such that HT? n HT, is finite. 

PROOF. We may as well assume that the stem of T is 0. Given Q any 
infinite family of sets of cardinality < N < o there exists G, I GI < N, 
3 Q 5 Q infinite so that VF, F E Q, F n F S G (i.e., a A-system). Now trim 
Tto obtain T > T so that Vs E T, 3Gs S [kn, ] finite (s = (ko, . . ., k)) 
and for all t, t immediately below s in T, (F, n Fi) C Gs Build two sequences 
of finite subtrees of T: 
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so that 

[U (F U GS)] n[ U (FS u c.) C G0 
LsE 22J sE i; 

and U<W T, = T' > Tfor i = 0, 1. 
This is done as follows: Suppose we have To, T,' and we are presented with 

s E Tn2 and asked to add an immediate extension of s to Tn. Then since 
{F, - G: t immediately below s in T} is a family of disjoint sets and 
Gt C [kn, o] where t = (ko, . . . , kn) we can find infinitely many t im- 
mediately below s in T so that 

[(Ft-GG) u G] n [U (FS u G)] =0. E 

The above is a double fusion argument. 
Some more definitions from [L]: 
(1) Fix a natural o-ordering of o<W and for any T E 'J transfer it to 

{t e T: stem T C t} in a canonical fashion. T<n> denotes the nth element of 
{t E T: stem T C t}. 

(2)T n > Tiff T > T and Vi > n, Ti> = T<i>. 
(3) The p.o. P., is the W2 iteration of IF with countable support (p ra 

- "p(a) E qMG]J" for all a and supp(p) = {a: p(a) ? <w} is countable). 
(4) For K finite and n < o, PK > q iff [p > q and Va E K, p ra ,-F "p(a) 

> q(a)"]. 

LEMMA 2. Let f be a term denoting the first Laver real and T any term. If 
p E P., and p 1V "T E W", Vn (f(n) < T(n)) and T increasing" then 3Z0, Z1 
such that ZO n Z1 is finite and 3p0, p1 > p such that pi 1 "Ts C Zi" for 
i = 0, 1. 

PROOF. Construct a sequence p <0 Pn <0 pn+I so that Un<wK = 

U n<(, supp(pn) and 0 E Ko. Having gotten Pn, let s = (ko, . .. , k,) be 
pn(0)<n>. Fix t = (ko, . .. , km, km+i) inpn(0). Then for each i K m + 1, 

Pt = <P (?)t Pn r [ 11 W2)> 1 T(i) > km+ I or w <km+, T(i) = 1 

Hence by applying Lemma 6 of [L] m + 2 many times we can find qtn > pt 
and F, C [km, km+,] such that IFtl < (m + 2)(n + 1)IK-I and qt 1h "T"o n 
[km, km+i) C Ft". (Note pt I- "Vi > m + 1, T(i) > km+,"). Let Pn+1(O) = 

(Pn(O) - Pn()) U U {qt(0): t is immediately below s in P(O)). Let 
Pn+HJ 1, W2) be a term denoting qt r [1, 02) if qt(0) or pn r [1, w2) if Pn(0) - {t: 
S 5 t). Hence Pn +I n> Pn. Now let p^ be the fusion of the sequence of pn 
(see [L, Lemma 5]). Then for each t C p^(0) if t = <ko9 ... , k,, km+ > and 
t D stem p(0), then <p^(0), ' N P' [1, '2)> 1- "T " n [kn, kn+1) C Ft". For 
t E15(0) and t ( stem p(0) let Ft = km+i. Applying Lemma 1 obtain To, T, 
> A(0), ZO and Z1 such that ZO n Z1 is finite, and <Ti ' P r W1 ,2]> 

1- "iT-" C Zi" for i = 0, 1. El 
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PROOF OF THEOREM 5. Suppose M[G^,2] IF "U is a semi-Q-point". Applying 
an argument of Kunen's we get a < 2 such that U n M[Gat] E M[GoJ. 
(M[G] IF "CH" for allG s o2 SO construct using W2-C.C., AX < W2 for X < 01 

so that Vx E M [GaA] n 2', PaA+1 decides "x E U". Let a = sup ax. Note 
M[Ga] n 2o = U 8< M[Gf] n 2' since RI is not collapsed.) By [L, Lemma 
11] we may assume U n M E M. But Lemma 2 clearly implies that for any 
V ult. in M, M[G 2] IFI "no extension of V is a semi-Q-point." Dl 

REMARKS. (1) A similar argument shows that in the model gotten by (2 

iteration of Mathias forcing with countable support there are no semi-Q- 
points. In fact, as Mathias later pointed out to me, the appropriate argument 
needed is an easy generalization of Theorem 6.9 of [M2]. 

(2) In [Ml] Mathias shows [o-? (X)@] => [There are no rare filters or 
nonprincipal ultrafilters.] 

(3) In neither the Laver or Mathias models are there small dominant 
families so by Ketenon [Ke] there is a P-point. Also it is easily shown no 
ultrafilter is generated by fewer then K2 sets. 

(4) Not long after the results of this paper were obtained, Shelah showed 
that it is consistent that no P-points exist [W]. In his model there is a 
dominant family of size 8l so there are Q-points. It remains open whether or 
not it is consistent that there are no P-points or Q-points. 

CONJECTURE. Borel conjecture < there does not exist a semi-Q-point. 
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