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Abstract

A set X ⊆ 2ω is a λ′-set iff for every countable set Y ⊆ 2ω there
exists a Gδ set G such that (X ∪ Y ) ∩ G = Y . In this paper we
prove two forcing results about λ′-sets. First we show that it is
consistent that every λ′-set is a γ-set. Secondly we show that it
is independent whether or not every (†)-λ′-set is a λ′-set.

1 λ′-sets and γ-sets

A set X ⊆ 2ω is a λ′-set iff for all countable A ⊆ 2ω there exists a Gδ set G
such that

(X ∪ A) ∩G = A

An ω-cover of X is a countable set of open sets such that every finite subset
of X is contained in an element of the cover. A γ-cover of X is a countable
sequence of open subsets of X such that every element of X is in all but
finitely many elements of the sequence.

Define X to be a γ-set iff any ω-cover of X contains a γ-cover of X.

In this section we answer a question of Gary Gruenhage who asked if
there is always a λ′-set which is not a γ-set. We answer this in the negative.

It is well known (see Gerlits and Nagy [4]) that MA(σ-centered) implies
that every set of reals of cardinality less than the continuum is a γ-set. The
standard model for MA(σ-centered) (see Kunen and Tall [8]) is obtained as
follows:

Suppose that M is a countable standard model of ZFC+CH and we iterate
σ-centered forcings of size ω1 in M with a finite support iteration of length
ω2. In the final model Mω2 , we have that MA(σ-centered) is true and the
continuum is ω2.

1Thanks to the Fields Institute for Research in Mathematical Sciences at the University
of Toronto for their support during the time this paper was written and to Juris Steprans
who directed the special program in set theory and analysis.
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Theorem 1.1 In the standard model for MA(σ-centered) every λ′ set has
cardinality ≤ ω1, and (it follows from MA(σ-centered)) every set of size ω1

is a γ-set. Hence, in this model, every λ′-set is a γ-set.

Proof
We will use the following Lemma in our proof.

Lemma 1.2 Suppose that P is a σ-centered forcing such that

|`τ ∈ 2ω

Then there exists a countable set A ⊆ 2ω in the ground model such that for
every p ∈ P and open set U ⊇ A coded in the ground model there exists q ≤ p
such that q|`τ ∈ U .

Proof
To prove the Lemma we will use the following Claim.

Claim. Suppose Σ ⊆ P is a centered subset. Then there exists x ∈ 2ω

such that for every p ∈ Σ and for every n < ω there exists q ≤ p such that

q|`x̌ � n = τ � n.

pf: Otherwise by the compactness of 2ω there exists a finite set

{pm : m < N} ⊆ Σ and {sm : m < N} ⊆ 2<ω

such that {[sm] : m < N} covers 2ω and for each m < N we have that

pm|`τ /∈ [sm].

But this is a contradiction since there exists some p ∈ P below all of the pm.
This proves the Claim.

Let P =
⋃

n<ω Σn be a sequence of centered sets. Then for each n there
exists xn ∈ 2ω such that for every p ∈ Σn and for every m ∈ ω there exists
q ≤ p such that

q|`x̌n � m = τ � m.

Now let A = {xn : n < ω}. This proves the Lemma.
QED

Suppose X ⊆ 2ω is a λ′-set in Mω2 . For each α ≤ ω2 define

Xα = X ∩Mα

By a standard Lowenheim-Skolem argument we can find α < ω2 such that
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1. Xα ∈ Mα and

2. for every countable A ⊆ 2ω which is in Mα there exists a Gδ-set G
coded in Mα such that

(Xω2 ∪ A) ∩G = A

We claim that X = Xω2 = Xα and hence has cardinality ≤ ω1. Suppose that
τ is any term for an element of 2ω in Mω2 . Since τ is added at some latter
stage β with α ≤ β < ω2 and the iteration of σ-centered forcings of length
< ω2 is σ-centered, it follows that τ is added by a σ-centered forcing over
Mα. Let A ⊆ 2ω be the countable set given by the Lemma. By the Lemma it
follows that τ must be an element of any Gδ set coded in Mα which contains
A. Using item (2) above we see that τ must be in A if it is in Xω2 . Therefore
Xω2 \Xα = ∅.
QED

Remark. This argument is similar to the proof that there are no λ′-sets
of size ω2 in Laver’s model, see Miller [12].

Remark. A set of reals X is a λ-set iff every countable subset of X is a
relative Gδ. In ZFC we must always have a λ-set which is not a γ-set. To
see this let

X = {fα ∈ ωω : α < b}

be well-ordered by eventual dominance and unbounded. Then Rothberger
[15] (or see Miller [11]) showed that X is a λ-set. However X is not a γ-set
as is witnessed by the sequences of ω-covers

Um = {Um
n : n ∈ ω} where Um

n = {f ∈ ωω : f(m) < n}.

In fact the set X is a λ′-set with respect to ωω.

Remark. A Hausdorff gap is an example of a λ′ set of cardinality ω1.
γ-sets have strong measure zero and Laver [9] proved that it consistent that
every strong measure zero set is countable.

Suppose there exists X, Y ⊆ 2ω such that |X| = |Y | and X is a λ′-set
and Y is not a γ-set. Then there exists Z which is a λ′-set and not a γ-
set. To see this let X = {xα : α < κ} and Y = {yα : α < κ}. Put
Z = {(xα, yα) : α < κ}. The first κ for which MA(σ-centered) fails is p (Bell
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[1]) and p is also the size of the smallest non γ-set. Hence any model where
every λ′-set is γ-set and c ≤ ω2 must satisfy MA(σ-centered) and c = ω2.

Remark. Gruenhage and Szeptycki [6] were interested in obtaining a set
of reals X ⊆ 2ω which is γ-set and not a λ′-set because of the following two
topological games.

Let X be a topological space and x ∈ X and define the following games:

GO,P(X, x): On round n player O chooses an open neighborhood Un of
x and player P chooses a point pn ∈ Un. Player O wins iff the sequence pn

converges to x.

Gfin
O,P(X, x): The same except we allow player P to choose a finite set of

points Pn ⊆ Un on his move and O wins iff ∪n<ωPn converges to x.

It is not hard to check that player O has a winning strategy in GO,P(X, x)

iff player O has a winning strategy in Gfin
O,P(X, x). Also if player P has a

winning strategy in GO,P(X, x), then it is a winning strategy in Gfin
O,P(X, x).

Given X ⊆ 2ω consider the topology on 2<ω ∪∞ generated by

1. {σ} for each σ ∈ 2<ω and

2. {∞} ∪ (2<ω \ {x � n : n < ω}) for each x ∈ X.

Let XF denote this countable topological space.

Gruenhage [5], Nyikos [14], Sharma [16], and Gruenhage and Szeptycki [6]
can be combined to show that:

X is not a γ-set iff player P has a winning strategy in Gf
O,P(XF ,∞).

If X is a λ′-set, then P has no winning strategy in GO,P(XF ,∞).

Hence, if there is a set X which is a λ′-set and not a γ-set, then P has a
winning strategy in Gf

O,P(XF ,∞) but not in GO,P(XF ,∞).

Daniel Ma [10] has a clearer proof of the connection between γ-sets and such
games.

Dow [2] results imply that in Laver’s model [9]:
X is a λ′-set iff P has no winning strategy in GO,P(XF ,∞).
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But, it also consistent that they are not the same. In Galvin and Miller
[3] it is shown that assuming MA(σ-centered) there is a γ-set X which is
concentrated on a countable subset of itself. Hence P has no winning strategy
in Gf

O,P(XF ,∞) hence none in GO,P(XF ,∞), but X is not a λ′-set.

Question 1.3 Is it consistent with ZFC that for every X ⊆ 2ω that
P has no winning strategy in GO,P(XF ,∞)
iff
P has no winning strategy in Gf

O,P(XF ,∞)?

After the first version of this paper was written, Gruenhage [7] con-
structed (in ZFC) using a gap construction an example of a countable space
which distinguishes the two games.

2 (†)-λ′-set
In this section we answer Problem 2.12 from Nowik and Weiss [13] which
asks basically whether it is true that every (†)-λ′-set is a λ′-set.

Definition. For any a ∈ [ω]ω let a = {a0, a1, . . .} be its increasing enu-
meration, then for any f ∈ ωω let

Gf = {a ∈ [ω]ω ⊆ 2ω : ∀n ∃m > n an < f(n)}

Definition. A set X ⊆ 2ω is a (†)-λ′-set iff for every f ∈ ωω we have
X ∩Gf is a λ′-set.

Theorem 2.1 Suppose that the continuum hypothesis is true or even just
b = d. Then there exists a (†)-λ′-set which is not a λ′-set.

Theorem 2.2 In the Cohen real model (Cohen’s original model for not CH)
every (†)-λ′-set is a λ′-set.

Proof of Theorem 2.1
Assume CH. Let {fα ∈ ωω : α < ω1} be a scale. That is, for α < β

we have that fα <∗ fβ and for all g ∈ ωω there exists α < ω1 such that
g <∗ fα. We may also assume that the fα are strictly increasing. Let
X ⊆ [ω]ω be the set of ranges of the elements of the scale. Then for any
g ∈ ωω we have that Gg ∩ X is countable and hence a λ′-set. On the other
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hand X is not a λ′-set because of the countable set [ω]<ω. If U ⊆ P (ω) is
an open set containing [ω]<ω, then K = P (ω) \ U is a compact subset of
[ω]ω. If we identify [ω]ω with the strictly increasing elements of ωω (via the
homeomorphism a 7→ {a0, a1, . . .})), then there exists f ∈ ωω such that for
all g ∈ K we have ∀n g(n) < f(n). It follows that for all but countably
many α we have that the range(fα) ∈ U .

The proof using b = d is similar. Start with a scale indexed by b and
note that any set Y ⊆ P (ω) of size less than b is a λ′-set (this is due to
Rothberger, see the proof of Lemma 2.4).
QED

Proof of Theorem 2.2
Assume that M is a countable transitive standard model of ZFC+CH.
For any α ≤ ωM

2 let Pα be the finite partial functions from α into 2. We
claim that for any G a Pω2-generic filter over M that in the model M [G]
every (†)-λ′-set is a λ′-set.

Lemma 2.3 Suppose N is a countable standard model of ZFC+CH, P is a
countable poset in N , and

N |= X ⊆ ωω is unbounded in ≤∗

Then for any G which is P-generic over N we have that

N [G] |= X is unbounded in ≤∗

Proof
Let {gα : α < ωN

1 } be a scale in N . Working in N choose fα ∈ X so that

∃∞n fα(n) > gα(n)

Note that for every g ∈ ωω ∩N there exists α < ω1 such that

∀β > α ∃∞n fβ(n) > g(n).

Suppose by way of contradiction that for some g ∈ N [G] ∩ ωω and all
α < ω1 we have that fα ≤∗ g. Then for some Σ ∈ [ω1]

ω1 and n < ω we have
that

∀m > n ∀α ∈ Σ fα(m) ≤ g(m)
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Let q ∈ G force this fact. Now since P is a countable poset, there exists some
p ∈ G with p ≤ q such that

Γ = {α < ω1 : p|`α ∈ Σ̇}

is uncountable (and by definability of forcing it is in N). But note that
{fα : α ∈ Γ} is unbounded and so for some m > n the set {fα(m) : α ∈ Γ}
is unbounded in ω.

Let r ≤ p decide g(m), i.e., for some k < ω suppose

r|`ġ(m) = k.

Choose α ∈ Γ such that fα(m) > k, then r forces a contradiction and the
Lemma is proved.
QED

Lemma 2.4 Suppose N is a countable standard model of ZFC+CH, P is a
countable poset in N , and

N |= Y ⊆ 2ω is not a λ′ - set

Then for G P-generic over N we have that

N [G] |= Y is not a λ′ - set

Proof
Let D ⊆ 2ω be countable in N and witness that Y is not a λ′-set, i.e.,. there
is no Gδ set

⋂
n Un coded in N with⋂

n

Un ∩ (Y ∪D) = D

Working in N let D = {xn : n < ω} and let Z = Y \D and for each z ∈ Z
define fz ∈ ωω such that fz(n) is the least m such that xn � m 6= z � m. Now
the family X = {fz : z ∈ Z} must be unbounded in ≤∗ in N . Suppose not,
then there exists g ∈ ωω ∩N which eventually dominates each element of X.
It follows that if we let

Un =
⋃

m<ω

[xm � max{n, g(m)}]
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then
(
⋂
n<ω

Un) ∩ (Y ∪D) = D

which is a contradiction.
It follows from Lemma 2.3 that X is unbounded in N [G]. I claim that D

cannot be Gδ in Y ∪ D in the model N [G]. Suppose it is, and let
⋂

n<ω Un

be a Gδ in N [G] such that ⋂
n<ω

Un ∩ (Y ∪D) = D

For each n let gn ∈ ωω be such that for every m we have that

[xm � gn(m)] ⊆ Un.

Now for any z ∈ Z there exist a n such that z /∈ Un. But this means that
fz(m) ≤ gn(m) for every m since otherwise

xm � gn(m) = z � gn(m)

and then z ∈ Un. This proves the Lemma.
QED

Now we prove Theorem 2.2. Suppose that X ⊆ 2ω is in M [G] where G is
Pω2-generic over M and

M [G] |= X is not a λ′-set

By Lowenheim-Skolem arguments there exists α < ω2 such that

Xα =def X ∩M [Gα], Xα ∈ M [Gα], and M [Gα] |= Xα is not a λ′-set

Since being a λ′-set only depends on codes for Gδ-sets and reals are added
by countable suborders of P[α,ω2) it follows from Lemma 2.4 that

M [G] |= Xα is not a λ′-set

But if f ∈ ωω ∈ M [G] is ω<ω-generic over M [Gα] then Xα ⊆ Gf . It follows
that

M [G] |= X is not (†)-λ′-set
as was to be proved.
QED
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The appendices are not intended for final publication but for the electronic
version only.

Appendix A

Here is a proof of

Theorem (Nyikos, Gruenhage, Sharma) If X ⊆ 2ω is a λ′-set which is
dense in 2ω, then P has no winning strategy in GO,P(XF ,∞).
Proof
For contradiction let τ be a winning strategy for P .

Claim. For any play (F1, . . . , Fn) by O there exists y ∈ 2ω so that for all
finite F ⊆ X and k < ω there exists Fn+1 ⊇ F a finite subset of X such that

y � k ⊆ τ(F1, F2, . . . , Fn, Fn+1)

proof: Let U be a regular ultrafilter on the [X]<ω, ie.,

{F ∈ [X]<ω : x ∈ F} ∈ U for all x ∈ X.

Define y ∈ 2ω by

y(k) = 1 iff {F ∈ [X]<ω : τ(F1, F2, . . . , Fn, F )(k) = 1} ∈ U

Note that the length of τ(F1, F2, . . . , Fn, F ) is greater than k for U almost all
F because X is dense. Also, for any k < ω and finite F ⊆ X we have that

{Fn+1 : F ⊆ Fn+1, y � k ⊆ τ(F1, F2, . . . , Fn, Fn+1)} ∈ U

Hence the Claim is proved.

Let ω<ω = {si : i < ω}. Using the Claim construct 〈Fs, ys : s ∈ ω<ω〉 so
that

1. Fs contains all ysi
which are in X for i < |s| and

2. ys � k ⊆ τ(Fs�1, Fs�2, . . . , Fs, Fsk)
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Let Y = {ys : s ∈ ω<ω} and suppose Un is a descending sequence of open
sets such that ⋂

n<ω

Un ∩ (X ∪ Y ) = Y

Construct f ∈ ωω as follows. Since yf�n ∈ Un there exists k < ω such that
[yf�n � k] ⊆ Un. Let f(n) = k and thus we have that for each n

τ(Ff�1, Ff�1, . . . , Ff�(n+1)) =def sn and [sn] ⊆ Un

But this is a losing play for P . Suppose x ∈ X and ∃∞n sn ⊆ x. Then
x ∈

⋂
n<ω Un and so x ∈ Y . But by our construction each element of Y is

in Ff�n for all but finitely many n and since sn 6⊆ x for x ∈ Ff�n we have a
contradiction.
QED

Remark. For a kind of weak converse suppose that there exists a countable

A ⊆ 2ω \X

which is not Gδ in X ∪ A, then P has a winning strategy. Let

A = {an : n < ω}

be listed with infinitely many repetitions. Let P play some σn ⊆ an such
that [σn] ∩ Fn = ∅. To see that it is winning let

G = {z ∈ 2ω : ∃∞n σn ⊆ z}

Since A ⊆ G and is not relatively Gδ there exists x ∈ X such that σn ⊆ x
for infinitely many n. Hence σn does not converge to ∞.

Player P also has a winning strategy if X contains a perfect subset Q.
Just let player P play a sequence σn such that

G = {x ∈ Q : ∃∞n σn ⊆ x}

is comeager in Q.
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Appendix B

If X = {fα ∈ ωω : α < b} is well-ordered by eventual dominance and
unbounded. Then Rothberger showed the set X is a λ′-set with respect to
ωω.

This follows from the following lemma.

Lemma 2.5 (Rothberger) Suppose Zβ = {fα : α < β} ⊆ ωω is well-ordered
by eventual dominance, and A ⊆ ωω is countable and for every g ∈ A there
exists α < β such that ∃∞n g(n) < fα(n). Then there exists a Gδ set G with

G ∩ (Zβ ∪ A) = A

Proof
This is proved by induction on β. and assume the lemma is true for all δ < β.
If β is a successor ordinal, then the induction is trivial.
Case 1. β is a limit ordinal of uncountable cofinality.

Find δ0 < β so that for each g ∈ A ∃∞n g(n) < fδ0(n). Then by
induction there exists a Gδ set G with

G ∩ (Zδ0 ∪ A) = A

Let H = {g ∈ ω : ∃∞n g(n) < fδ0(n)} Then H is a Gδ set containing A and
missing Zβ \ Zδ and so

(G ∩H) ∩ (Zβ ∪ A) = A

Case 2. β is a limit ordinal of countable cofinality.
Let βn be an increasing ω-sequence with limit β and let

An = {g ∈ A : ∃∞m g(m) < fβn(m)}
By inductive assumption there exists Gδ sets Gn so that

Gn ∩ (Zβn ∪ An) = An

Define
G∗

n = Gn ∪ {g ∈ ωω : ∃∞m fβn(m) ≤ g(m)}
Note that G∗

n is a Gδ set which contains A but still

G∗
n ∩ (Zβn ∪ An) = An

Define G = ∩n<ωG∗
n. Then G is a Gδ-set with

G ∩ (Zβ ∪ A) = A

QED
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Appendix C

To better see the connection with γ-sets consider the following game:

Game: Gγ
F ,C(X): Two players F finite and C clopen alternate plays as

follows. On round n player F plays a finite set Fn ⊆ X and player C responds
with a clopen set Cn in 2ω with Fn ⊆ Cn. Player F wins iff 〈Cn : n < ω〉 is
a γ-cover of X, ie. for all x ∈ X for all but finitely many n we have x ∈ Cn.

This game is exactly the same as Gf
O,P(XF ,∞). A neighborhood basis

for ∞ in XF consists of sets of the form 2<ω \ {x � n : x ∈ F, n < ω} for
F ⊆ X finite. So we can regard O as player F playing a finite subset of X.
Instead of P playing a finite set Pn ⊆ 2<ω just regard him as C playing the
clopen set

Cn = 2ω \
⋃
{[s] : s ∈ Pn}.

Theorem 2.6 (Daniel Ma) For X ⊆ 2ω the following are equivalent:

1. X is not a γ-set

2. C has a winning strategy in Gγ
F ,C(X).

Proof
Suppose X is not a γ-set and let U be an ω-cover with no γ-subcover. With-
out loss of generality we may assume the elements of U are clopen. Given
any Fn let C choose Cn ∈ U with Fn ⊆ Cn. Then since 〈Cn : n < ω〉 is not a
γ-cover, C wins.

For the other direction suppose Player C has a winning strategy τ in
Gγ
F ,C(X). Construct 〈Fs, Cs : s ∈ ω<ω〉 so that

1. for each s ∈ ω<ω the set Us = {Csn : n < ω} is an ω-cover of X and

2. for each s ∈ ω<ω and the set Cs is the response of player C using the
strategy τ against the play Fs�1, Fs�2, . . . , Fs.

To do this just let

Us = {C : ∃F C = τ(Fs�1, Fs�2, . . . , Fs, F )}
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This is countable since there are only countably many clopen sets and by the
rules of the game it must be an ω-cover. For each element of Us choose a
witness F .

Suppose for contradiction that X is a γ-set. It is well known (Gerlits
and Nagy [4]) that for a γ set X that given a sequence of ω-covers, we may
choose one element of each to get a γ-cover. This is denoted X ∈ S1(ω, Γ).
Hence we may choose Csns for each s ∈ ω<ω such that every x ∈ X is in all
but finitely many Csns . But now just look at the branch

m0, m1, m2, . . . where m0 = n〈〉, . . . ,mk+1 = n〈m0,m1,m2,...,mk〉

But
F〈m0〉, C〈m0〉, . . . , F〈m0,m1,...,mk〉, C〈m0,m1,...,mk〉, . . .

is a play using the strategy τ with yields a γ cover. This is a contradiction.
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