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Abstract

We continue to investigate various diagonalization properties for

sequences of open covers of separable metrizable spaces introduced

in Part I. These properties generalize classical ones of Rothberger,

Menger, Hurewicz, and Gerlits-Nagy. In particular, we show that most

of the properties introduced in Part I are indeed distinct. We charac-

terize two of the new properties by showing that they are equivalent

to saying all �nite powers have one of the classical properties above

(Rothberger property in one case and in the Menger property in other).

We consider for each property the smallest cardinality of metric space

which fails to have that property. In each case this cardinal turns out

to equal another well-known cardinal less than the continuum. We

also disprove (in ZFC) a conjecture of Hurewicz which is analogous to

the Borel conjecture. Finally, we answer several questions from Part

I concerning partition properties of covers.

3

Introduction

Many topological properties of spaces have been de�ned or character-

ized in terms of the properties of open coverings of these spaces. Popular

among such properties are the properties introduced by Gerlits and Nagy

[6], Hurewicz [7], Menger [12] and Rothberger [14]. These are all de�ned in

terms of the possibility of extracting from a given sequence of open covers of

some sort, an open cover of some (possibly di�erent) sort.
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In Scheepers [16] it was shown that when one systematically studies the

de�nitions involved and inquires whether other natural variations of the de�n-

ing procedures produce any new classes of sets which have mathematically

interesting properties, an aesthetically pleasing picture emerges. In [16] the

basic implications were established. It was left open whether these were the

only implications.

Let X be a topological space. By a \cover" for X we always mean \count-

able open cover". Since we are primarily interested in separable metrizable

(and hence Lindel�of) spaces, the restriction to countable covers does not lead

to a loss of generality. A cover U of X is said to be

1. large if for each x in X the set fU 2 U : x 2 Ug is in�nite;

2. an !{cover if X is not in U and for each �nite subset F of X, there is

a set U 2 U such that F � U ;

3. a {cover if it is in�nite and for each x in X the set fU 2 U : x 62 Ug

is �nite.

We shall use the symbols O, �, 
 and � to denote the collections of all

open, large, ! and {covers respectively, of X. Let A and B each be one

of these four classes. We consider the following three \procedures", S

1

, S

fin

and U

fin

, for obtaining covers in B from covers in A:

1. S

1

(A;B): For a sequence (U

n

: n = 1; 2; 3; : : :) of elements of A, select

for each n a set U

n

2 U

n

such that fU

n

: n = 1; 2; 3; : : :g is a member

of B;

2. S

fin

(A;B): For a sequence (U

n

: n = 1; 2; 3; : : :) of elements of A, select

for each n a �nite set V

n

� U

n

such that [

1

n=1

V

n

is an element of B;

3. U

fin

(A;B): For a sequence (U

n

: n = 1; 2; 3; : : :) of elements of A, select

for each n a �nite set V

n

� U

n

such that f[V

n

: n = 1; 2; 3; : : :g is a

member of B or

4

there exists an n such that [V

n

= X.

For G one of these three procedures, let us say that a space has property

G(A;B) if for every sequence of elements of A, one can obtain an element of

B by means of procedure G. Letting A and B range over the set fO;�;
;�g,

4

This is similar to the � convention of [16].
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Figure 1: Basic diagram for S

fin

we see that for each G there are potentially sixteen classes of spaces of the

form G(A;B). Each of our properties is monotone decreasing in the �rst

coordinate and increasing in the second, hence we get the following diagram

(see �gure 1) for G = S

fin

.

It also is easily checked that S

fin

(�;
) and S

fin

(O;�) are impossible for

nontrivial X. Hence the �ve classes in the lower left corner are eliminated.

The same follows for the stronger property S

1

. In the case of U

fin

note that for

any class of covers B, U

fin

(O;B) is equivalent to U

fin

(�;B) because given an

open cover fU

n

: n 2 !g we may replace it by the -cover, f[

i<n

U

i

: n 2 !g.

This means the diagram of U

fin

reduces to any of its rows. Now clearly S

1

implies S

fin

. Also it is clear that S

fin

(�;A) ! U

fin

(�;A) for A = �;
;O.

The implication

S

fin

(�;�)! U

fin

(�;�)

is also true, but takes a little thought since when we take �nite unions we

might not get distinct sets. To prove it, assume U

n

are {covers of X with

no �nite subcover. Applying S

fin

we get a sequence of �nite V

n

� U

n

such

that for any x there exists in�nitely many n such that x 2 [V

n

. But since

3



the U

m

's have no �nite subcover we can inductively choose a �nite W

n

with

V

n

� W

n

� U

n

and [W

n

6= [W

m

for any m < n. Hence

S

fW

n

: n = 1; 2; 3; : : :g is a large

cover of X.

In the three-dimensional diagram of �gure 2 the double lines indicate

that the two properties are equivalent. The proof of these equivalences can

be found in either Scheepers [16] or section 1 of this paper. After removing

duplications we obtain �gure 3.

For this diagram, we have provided four examples fC;S;H;Lg which

show that practically no other implications can hold. C is the Cantor set

(2

!

), S is a special Sierpi�nski set such the S+S can be mapped continuously

onto the irrationals, L is a special Lusin set such that L+L can be mapped

continuously onto the irrationals, and H is a generic Lusin set. Thus the

only remaining problems are:

Problem 1 Is U

fin

(�;
) = S

fin

(�;
)?

Problem 2 And if not, does U

fin

(�;�) imply S

fin

(�;
)?

All of our examples are subsets of the real line, but only one of them (the

Cantor set) is a ZFC example. Thus, the following problem arises:

Problem 3 Are there ZFC examples of (Lindel�of) topological spaces which

show that none of the arrows in �gure 3 can even be consistently reversed?

The paper is organized as follows:

In section 1, we prove the equivalences of our properties indicated in

�gure 2. We prove that S

1

(�;�) = S

fin

(�;�) and S

fin

(�;�) = S

fin

(�;�).

The other equivalences are either trivial or were proved in Scheepers [16].

In section 2 we present the four examples C,S,H,L indicated in �gure 3. In

section 3 we study the preservation of these families under the taking of �nite

powers and other operations.

In section 4 we study for each of these eleven families the cardinal

non(P ):=

the minimum cardinality of a set of reals that fails to have property P .
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Figure 2: Full 3d diagram
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We show that each is equal to either b, d, p, or the covering number

of the meager ideal cov(M). We also show that r = non(Split(�;�)) and

u = non(Split(
;
)). (Split(A;B) holds i� every in�nite cover from A can be

split into two covers from B).

In section 5 we give a ZFC counterexample to a conjecture of Hurewicz

by showing that there exists an uncountable set of reals in U

fin

(�;�) which is

not �-compact. We also show the any U

fin

(�;�) set which does not contain

a perfect set is perfectly meager.

In section 6 we consider other properties from Scheepers [16] and settle

some questions about Ramsey-like properties of covers that were left open in

[16]. We show that S

1

(
;
) implies Q(
;
) and hence

S

1

(
;
) = P(
;
) + Q(
;
):

We also show that 
 ! d
e

2

2

is equivalent to S

fin

(
;
) (see section 6 for

the de�nitions).
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1 Equivalences

In this section we show S

1

(�;�) = S

fin

(�;�) and S

fin

(�;�) = S

fin

(�;�).

The equivalence S

1

(
;�) with the -set property (every !-cover contains

a -cover) was shown by Gerlits and Nagy [6]. But it is easy to see that

S

fin

(
;�) implies the -set property and hence S

1

(
;�) = S

fin

(
;�). In

Scheepers [16] (Cor 6) it was shown that S

1

(�;�) = S

1

(�;O).

All of the other equivalences are either to the Rothberger property C

00

or

the Menger property. For the Menger property, in Scheepers [16] (Cor 5) it

was shown that S

fin

(�;�) = U

fin

(�;O). S

fin

(�;�) = S

fin

(�;�) by Theorem

1.2 and note also that S

fin

(O;O) easily follows from U

fin

(�;O) and hence

all nine classes (see �gure 2) are equivalent to the Menger property. In [16]

(Thm 17) it was shown that all �ve classes (see �gure 2) are equivalent to

the Rothberger property (C

00

).

Theorem 1.1 S

1

(�;�) = S

fin

(�;�).

Proof:

Note that the class S

1

(�;�) is contained in the class S

fin

(�;�). The

di�culty with showing that these two classes are in fact equal is as follows:

when we are allowed to choose �nitely many elements per {cover, we are

allowed to also pick no elements; for S

1

(�;�) we are required to choose an

element per {cover.

Let X be a space which has property S

fin

(�;�), and for each n let U

n

be

a {cover of X, enumerated bijectively as (U

n

1

; U

n

2

; U

n

3

; :::).

For each n de�ne V

n

to be fV

n

1

; V

n

2

; V

n

3

; :::g, where

V

n

k

= U

1

k

\ U

2

k

\ U

3

k

\ : : : \ U

n

k

:

For each n , V

n

is a {cover: For �x n. For each x, and for each i 2 f1; : : : ; ng

there exists an N

i

such that x is in U

i

m

for all m > N

i

. But then x is in V

n

m

for all m > maxfN

i

: i = 1; : : : ; ng.

Now apply S

fin

(�;�) to (V

n

: n = 1; 2; : : :). We get a sequence

(W

n

: n 2 !)

such that W

n

is a �nite subset of V

n

for each n, and such that [

1

n=1

W

n

is a

{cover of X.
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Choose a an increasing sequence n

1

< n

2

< : : : < n

k

< : : : such that

for each j, W

n

j

n [

i<j

W

n

i

is nonempty. This is possible because each W

n

is

�nite, while the union of these sets, being a {cover of X, is in�nite. For

each j, choose m

j

such that V

n

j

m

j

is an element of W

n

j

n [

i<j

W

n

i

. Then

fV

n

k

m

k

: k = 1; 2; : : :g is a {cover of X.

For each n in (n

k

; n

k+1

] we de�ne U

n

= U

n

n

k+1

. Then fU

n

: n = 1; 2; : : :g

is a  cover of X.

�

Theorem 1.2 S

fin

(�;�) = S

fin

(�;�).

Proof:

Since � � �, it is clear that S

fin

(�;�) implies S

fin

(�;�). We prove the

other implication.

Assume S

fin

(�;�) and let (U

n

: n 2 !) be a sequence of large covers of X.

Without loss of generality we may assume that for every �nite F �

S

n2!

U

n

we have that U

k

\F = ; for all but �nitely many k. (This can be accomplished

by throwing out �nitely many elements from each U

n

.)

For each n enumerate U

n

bijectively as (U

n

k

: k 2 !), and de�ne

V

n

m

=

[

fU

n

i

: i < mg:

Since each V

n

= (V

n

m

: m 2 !) is a nondecreasing open cover of X, either

there exists m

n

such that V

n

m

n

= X or V

n

is a -cover. So there must be an

in�nite A for which one or the other always occurs. Suppose V

n

is a -cover

for every n 2 A . Apply S

fin

(�;�) to obtain W

n

a �nite subset of V

n

such

that

S

fW

n

: n 2 Ag is a large cover of X. Let P

n

be a �nite subset of U

n

such that every element of W

n

is a union of elements of P

n

. Since P

n

is

disjoint from all but �nitely many of the U

k

, it follows that

S

fP

n

: n 2 Ag

is a large cover of X. In the case that V

n

m

n

= X for every n 2 A just take

P

n

= fU

n

i

: i < m

n

g and the same argument works.

�

2 Examples

The Cantor set C
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We shall check that every �{compact space (the union of countably many

compact sets) belongs to U

fin

(�;�) and S

fin

(
;
). We also show that the

Cantor set, 2

!

, is not in the class S

1

(�;�).

For the sake of conciseness, let us introduce the following notion. An open

cover U of a topological space X is a k{cover i� there is for every k{element

subset of X an element of U which covers that set.

Lemma 2.1 Let k be a positive integer. Every !{cover of a compact space

contains a �nite subset which is a k{cover for the space.

Proof:

Let U be an !{cover of the compact space X and let k be a positive

integer. Then the set V = fU

k

: U 2 Ug of k{th powers of elements of U

is a collection of open subsets of X

k

, and it is a cover of X

k

since U is an

!{cover of X. Since X is compact, so is X

k

. Thus there is a �nite subset of

V which covers X

k

, say fU

k

1

; : : : ; U

k

n

g. But then fU

1

; : : : ; U

n

g is a k{cover of

X.

�

Theorem 2.2 Every �{compact topological space is a member of both the

class S

fin

(
;
) and U

fin

(�;�).

Proof:

Let X be a �{compact space, and write X = [

n2!

K

n

where

K

0

� K

1

� : : : � K

n

�

is a sequence of compact subsets of X.

Let (U

n

: n 2 !) be a sequence of !{covers of X. For each n apply

Lemma 2.1 to the !{cover U

n

of the space K

n

, to �nd a �nite subset V

n

of

U

n

which is an n{cover of K

n

. Then [

n2!

V

n

is an !{cover of X. This shows

that X has property S

fin

(
;
).

Now suppose that (U

n

: n 2 !) is a sequence of -covers of X. Since

any in�nite subset of a -cover is a -cover, we may assume that our covers

are disjoint. Since each K

n

is compact we may choose V

n

2 [U

n

]

<!

so that

K

n

� [V

n

. Either there exists n such that [V

n

= X or f[V

n

: n 2 !g is

9



in�nite and hence a -cover of X. It follows that X has property U

fin

(�;�).

�

Theorem 2C of [3] shows that if X is not compact, then X

!

is not in the

class S

fin

(O;O). For compact X we have the following.

Theorem 2.3 For every nontrivial compact space X, the product X

!

is not

in the class S

1

(�;O).

Proof:

If jXj � 2, then the Cantor set 2

!

embeds as a closed subset of X

!

.

Therefore it su�ces to prove the theorem for 2

!

. There exists an ! � !{

matrix (A

m

n

: m;n < !) of closed subsets of the Cantor set such that

1. for each �xed m 2 ! the sets A

m

n

for n < ! are pairwise disjoint and

2. whenever m

1

< m

2

< : : : < m

k

and n

1

; n

2

; : : : ; n

k

are given, then

A

m

1

n

1

\ : : : \A

m

k

n

k

6= ;.

To see that such a matrix exists think of the Cantor set as the homeomorphic

space 2

!�!

instead.

Let hx

n

; n < !i be a sequence of pairwise distinct elements of 2

!

. Also,

for each m, let

�

m

: 2

!�!

! 2

!

be de�ned so that for each y in 2

!�!

and for each m, �

m

(y)(n) = y(m;n).

Then �

m

is continuous. We now de�ne our matrix.

For each m and n we de�ne

A

m

n

= fy 2 2

!�!

: �

m

(y) = x

n

g

Each row of the matrix is pairwise disjoint since the x

n

's are pairwise distinct.

Each entry of the matrix is a closed set since each �

m

is continuous. We must

still verify property 2. Thus, let (m

1

; n

1

); : : : ; (m

k

; n

k

) be given such that

m

1

< : : : < m

k

. Let the element y of 2

!�!

be de�ned by y(m

i

; j) = x

n

i

(j)

i 2 ! and for each j 2 !. Then y is a member of the set A

m

1

n

1

\ : : : \ A

m

k

n

k

,

whence this intersection is nonempty.

For each m put U

m

= f2

!

nA

m

n

: n < !g. Then by property 1 we see that

each U

m

is a {cover of 2

!

.
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For each m choose a U

m

from U

m

. Then U

m

= 2

!

nA

m

n

m

. By the property

2 and the fact that all the A

m

n

's are compact, we see that the intersection

\

m<!

A

m

n

m

is nonempty. But then fU

m

: m < !g not a cover of 2

!�!

.

�

It follows from theorems 2.2 and 2.3 that the Cantor set C must lie exactly

in those classes indicated in �gure 3 in our introduction.

Theorem 2.4 No uncountable F

�

set of reals is in S

1

(�;�).

Proof:

Such a set contains an uncountable compact perfect set. The Cantor set

is a continuous image of such perfect sets.

�

The special Lusin set L

Recall that a set L of real numbers is said to be a Lusin set i� it is

uncountable but its intersection with every �rst category set of real numbers

is countable. Sierpi�nski [17] showed that assuming CH there exists a Lusin

set L such that L + L is the irrationals (see also Miller [13] Thm 8.5).

We will construct similarly a Lusin set L � Z

!

with the property that

L + L = Z

!

. Here Z

!

is the in�nite product of the ring of integers and

addition is the usual pointwise addition, i.e, (x+ y)(n) = x(n) + y(n). Our

construction is based on the following simple fact:

Lemma 2.5 If X is a comeager subset of Z

!

, then for every x 2 Z

!

there

are elements a and b of X such that a+ b = x.

Proof:

Since multiplication by �1 and translation by x are homeomorphisms,

the set

x�X = fx� y : y 2 Xg

is also comeager. But then X \ (x�X) is non{empty. Let z be an element

of this intersection. Then z = a for some a in X, and z = x� b for some b

in X. The Lemma follows.

�
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Lemma 2.6 (CH) There is a Lusin set L � Z

!

such that L+ L = Z

!

.

Proof:

Let (M

�

: � < !

1

) bijectively list all �rst category F

�

{subsets of Z

!

. Let

(r

�

: � < !

1

) bijectively list Z

!

. Using Lemma 2.5, choose elements x

�

; y

�

from Z

!

subject to the following rules:

1. For each �, r

�

= x

�

+ y

�

, and

2. x

�

and y

�

are not elements of [

���

M

�

[ fx

�

; y

�

: � < �g:

Letting L be the set fx

�

: � < !

1

g [ fy

�

: � < !

1

g completes the proof.

�

For a proof of the following result see Rothberger [14].

Theorem 2.7 (Rothberger) Every Lusin set has property S

1

(O;O) = C

00

.

Theorem 2.8 If L is our special Lusin set (i.e., L + L = Z

!

), then L does

not satisfy U

fin

(�;
).

Proof:

Let fU

n

: n 2 !g be the sequence of open covers de�ned by

U

n

= fU

n;k

: k 2 !g

where

U

n;k

= ff 2 Z

!

: jf(n)j � kg:

Then each U

n

is a -cover of L. Let fV

n

: n 2 !g be a sequence such that

V

n

2 [U

n

]

<!

, and let h 2 !

!

be such that

h(n) > 2 �maxfk : U

n;k

2 V

n

g

for all n 2 !. Let f; g 2 L be such that h = f + g. Then

maxfjf(n)j; jg(n)jg �

1

2

h(n)

for all n 2 !, and hence ff; gg 6� [V

n

for any n 2 !.

�
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The special Sierpi�nski set S

A Sierpi�nski set is an uncountable subset of the real line which has count-

able intersection with every set of Lebesgue measure zero. In Theorem 7 of

Fremlin and Miller [4] it was shown that every Sierpi�nski set belongs to the

class U

fin

(�;�). Sets with the property that every Borel image in the Baire

space is bounded were called A

2

{sets in Bartoszynski and Scheepers [1].

Theorem 2.9 Every Sierpi�nski set is an A

2

{set.

Proof:

Let X be a subset of the unit interval, and assume that X is a Sierpinski

set. We may assume that X has outer measure one (else, replace it with the

set of points in the unit interval which are rational translations of elements

of X). Let a Borel function 	 from X to

!

! be given. Extend it a a Borel

function � from the unit interval to

!

!.

For each m and n, de�ne S

m

n

= fx : �(x)(j) < n whenever j � mg. Then

each S

m

n

is a Borel set and thus Lebesgue measurable. Moreover, for each m,

if j < k then S

m

j

� S

m

k

, and [0; 1] = [

1

n=1

S

m

n

.

Choose for each m an n

m

such that the measure of [0; 1] n S

m

n

m

is at

most (

1

10

)

m

. Then the set S

k

= \

1

m�k

S

m

n

m

has measure at least 1 � 9 � (

1

10

)

k

.

Consequently the set S = [

1

k=1

S

k

has measure 1. Then X n S is a countable

set. For each x in X \ S, for all but �nitely many m, 	(x)(m) < n

m

. For

the remaining countable set X n S we can �nd a single sequence g such that

for all m, n

m

< g(m), and for each x 2 X n S, for all but �nitely many m,

	(x)(m) < g(m). Then g witnesses that 	[X] is bounded.

�

Theorem 2.10 Every A

2

{set (hence every Sierpi�nski set) belongs to the

class S

1

(�;�).

Proof:

Let X be an A

2

{set, and let (U

n

: n 2 !) be a sequence of {covers of it.

Enumerate each U

n

bijectively as (U

n

m

: m 2 !).

De�ne a function 	 from X to !

!

so that for each x 2 X and for each n,

	(x)(n) = minfm : (8k � m)(x 2 U

n

k

)g:

13



Then 	 is a Borel function. Choose a strictly increasing function g from

!

!

which eventually dominates each element of 	[X]. Then the sequence

(U

n

g(n)

: n 2 !) is a {cover of X.

�

Clearly no Sierpi�nski set is of measure zero. Since every S

1

(O;O) set is

of measure zero, X fails to be S

1

(O;O). Therefore we have established the

following theorem:

Theorem 2.11 If X is a Sierpi�nski set of reals, then X is S

1

(�;�) but not

S

1

(O;O).

We call a Sierpi�nski set S special i� S + S is the set of irrationals. (Here

we are using ordinary addition in the reals.) Using an argument similar to

Lemma 2.6 one can show that assuming CH there exists a special Sierpi�nski

set.

Theorem 2.12 A special Sierpi�nski set is not in the class S

fin

(
;
).

Proof:

By Theorem 3.1 all our classes are closed under continuous images. Note

that S+S is the continuous image of S�S. Also !

!

is not in U

fin

(�;O) (see

proof of Theorem 2.8). Hence !

!

is not in S

fin

(
;
) and therefore S � S is

not in S

fin

(
;
). But by Theorem 3.5 the class S

fin

(
;
) is closed under

�nite products and therefore S is not in the class S

fin

(
;
).

�

These results show that the special Sierpi�nski set (denoted S) is in exactly

the classes indicated in �gure 3 of the introduction.

The generic Lusin set H

The fact that no Lusin set satis�es U

fin

(�;�) follows from Theorem 4.3.

Theorem 2.13 (CH) There exists a Lusin set H which is S

1

(
;
).

Proof:

To construct an S

1

(
;
) Lusin set in the reals enumerate all countable

sequences of countable open families as f(U

�

n

)

n<!

: � < !

1

g. Also enumerate

14



all dense open subsets of the reals as (D

�

)

�<!

1

. We construct X recursively

as fx

�

: � < !

1

g as follows. At stage � of the construction we have

fx

�

: � < �g and f(U

�

n

)

n<!

: � < �g

satisfying for each � < �:

(i) x

�

2 \fD

�

: � < �g,

(ii) fU

�

n

: n < !g is an !-cover of fx

�

: � < �g [ Q,

(iii) if (U

�

n

)

n<!

was a sequence of !-covers of fx

�

: � < �g[Q, then U

�

n

2 U

�

n

for every n.

To see how to choose x

�

and (U

�

n

)

n<!

consider the �'th sequence of open

families: if (U

�

n

)

n<!

is a sequence of !-covers of fx

�

: � < �g[Q �rst extract

an !-cover (U

�

n

)

n<!

so that U

�

n

2 U

�

n

for each n < ! (countable sets are

S

1

(
;
)). If (U

�

n

)

n<!

is not a sequence of !-covers of fx

�

: � < �g [ Q let

U

�

n

= R for each n < !.

Enumerate the �nite subsets of fx

�

: � < �g [ Q as fA

k

: k < !g. For

each k and each � � � let

O

k;�

=

[

fU

�

n

: A

k

� U

�

n

g:

Then O

k;�

is dense and open. We choose

x

�

2

\

���

D

�

\

\

k<!;���

O

k;�

di�erent from all x

�

with � < �. To see that (U

�

n

)

n<!

is an !-cover of

fx

�

: � � �g [ Q for each � � � it su�ces to show that each A

k

[ fx

�

g is

covered by some U

�

n

for some n < !. But x

�

2 O

k;�

implies that there is an

n such that x

�

2 U

�

n

and A

k

� U

�

n

. We let H = fx

�

: � < !

1

g [ Q. To see

that H is S

1

(
;
), �x a sequence of !-covers (U

n

)

n<!

. There is an � such

that (U

n

)

n<!

= (U

�

n

)

n<!

. Then at stage � of the construction we extracted

an appropriate !-cover of fx

�

: � � �g and inductive hypothesis (ii) assures

that it is also an !-cover of H.

�

The proof of Theorem 2.13 only requires that the covering number of the

meager ideal is equal to the continuum (cov(M) = c). This requirement is

equivalent to Martin's Axiom for countable posets. Adding Cohen reals over

any model yields an S

1

(
;
) Lusin set and hence our name - generic Lusin

set.
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3 Preservation of the properties.

Each of the properties in the diagram is inherited by closed subsets and

continuous images. The preservation theory is more complicated for other

topological constructions.

Theorem 3.1 Let G be one of S

1

, S

fin

, or U

fin

and let A and B range over

the set fO;
;�;�g. If X has property G(A;B) and C is a closed subset of

X, then C has property G(A;B). If f : X ! Y is continuous and onto and

X has the property G(A;B), then so does Y .

Proof:

The closure under taking closed subspaces is clear since if U is a cover of

C in one of the classes fO;
;�;�g for C, then

V = fU [ (X n C) : U 2 Ug

is in the same class for X.

To prove the closure under continuous images use that if U is a cover of

Y in one of the classes fO;
;�;�g for Y , then

V = ff

�1

(U) : U 2 Ug

is in the same class for X.

�

Finite powers

We show that the classes S

1

(
;
), S

fin

(
;
), and S

1

(
;�) are the only

ones closed under �nite powers.

Lemma 3.2 Let X be a space and let n be a positive integer. If U is an

!{cover of X, then fU

n

: U 2 Ug is an !{cover of X

n

.

Proof:

Observe that if F is a �nite subset of X

n

, then there is a �nite subset G

of X such that F � G

n

.

�
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Lemma 3.3 Let X be a topological space and let n be a positive integer. If

U is an !{cover for X

n

, then there is an !{cover V of X such that the open

cover fV

n

: V 2 Vg of X

n

re�nes U .

Proof:

Let U be an !{cover of X

n

. Let F be a �nite subset of X. Then F

n

is a �nite subset of X

n

. Since U is an !{cover of X, choose an open set

U 2 U such that F

n

� U . For any n{tuple (x

1

; : : : ; x

n

) in F

n

, �nd for each

i 2 f1; : : : ; ng an open set U

i

(x

1

; : : : ; x

n

) � X such that x

i

2 U

i

(x

1

; : : : ; x

n

),

and

Q

n

i=1

U

i

(x

1

; : : : ; x

n

) � U . Then, for each x in F , let U

x

be the intersection

of all the U

i

(x

1

; : : : ; x

n

) which have x as an element. Finally, choose V

F

to

be the set [

x2F

U

x

, an open subset of X which contains F , and which has

the property that F

n

� V

n

F

� U . Put

V = fV

F

: F 2 [X]

<!

g:

Then V is as required.

�

While Lemma 3.2 is also true of {covers, Lemma 3.3 is not. The latter

follows from the proofs of Theorems 3.4 and 3.7.

Theorem 3.4 Let n be a positive integer. If a space X has property S

1

(
;
),

so does X

n

.

Proof:

Let n be a positive integer and let (U

m

: m = 1; 2; 3; : : :) be a sequence of

!{covers of X

n

. By Lemma 3.3 for each m, we can choose V

m

an !{cover of

X such that

fV

n

: V 2 V

m

g

is an !{cover of X

n

which re�nes U

m

.

Now apply the fact that X is in S

1

(
;
) to select from each V

m

a set V

m

such that fV

m

: m = 1; 2; 3; : : :g is an !{cover of X. Then, since for each m

the set fV

n

: V 2 V

m

g re�nes U

m

, we see that we can select from each U

m

a set U

m

such that V

n

m

� U

m

. But then the set fU

n

: n = 1; 2; 3; : : :g is an

!{cover for X.

�
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Theorem 3.5 Let n be a positive integer and let X be a space. If X has

property S

fin

(
;
), then X

n

also has this property.

Proof:

Let (U

m

: m = 1; 2; 3; : : :) be a sequence of !{covers of X

n

. For each m,

choose an !{cover V

m

of X such that fV

n

: V 2 V

m

g re�nes U

m

. Now apply

the fact that X satis�es S

fin

(
;
): For each m we �nd a �nite subset W

m

of V

m

such that the collection [

1

m=1

W

m

is an !{cover of X. For each m,

choose a �nite subset Z

m

of U

m

such that there is for each W in W

m

a Z in

Z

m

such that W

n

� Z. Then [

1

m=1

Z

m

is an !{cover of X

n

.

�

Theorem 3.6 Let n be a positive integer and let X be a space. If X has

property S

fin

(
;�), then X

n

also has this property.

Proof:

This is similar to the last two proofs.

�

Theorem 3.7 [CH] None of the other classes (see �gure 3) are closed under

�nite powers.

Proof:

Note the examples L and S are such that there sum L+L and S + S are

homeomorphic to the irrationals.

The function � from L�L which assigns to (x; y) the point �(x; y) = x+y

is continuous. But the space of irrationals does not have property U

fin

(�;O).

Since U

fin

(�;O) is closed under continuous images (see Theorem 3.1) L� L

does not have property U

fin

(�;O).

Similarly, S�S does not have property U

fin

(�;O). So none of the classes

containing either one of them is closed under �nite powers.

�

We have seen that the inclusion S

1

(
;
) � S

1

(O;O) may be proper, e.g.

the special Lusin set L is in S

1

(O;O) but not in S

1

(
;
). The following

theorem, which characterizes S

1

(
;
) as a subset of S

1

(O;O), is due to M.

Sakai [15].

Theorem 3.8 Let X be a space. Then the following are equivalent:

18



1. X satis�es S

1

(
;
).

2. Every �nite power of X satis�es S

1

(O;O) (Rothberger property C

00

).

The Borel Conjecture, that every strong measure zero set is countable,

implies that the two classes S

1

(
;
) and S

1

(O;O) coincide. The Borel Con-

jecture was proved consistent by Laver.

Problem 4 Is it true that if there is an uncountable set of real numbers

which has property S

1

(
;
), then there is a set of real numbers which has

property S

1

(O;O) but does not have property S

1

(
;
)?

We shall now prove the analogue of Theorem 3.8 for S

fin

(O;O) and

S

fin

(
;
).

Theorem 3.9 For a space X the following are equivalent:

1. Every �nite power of X has property S

fin

(O;O).

2. X has property S

fin

(
;
).

Proof:

The implication 2) 1: This follows from Theorem 3.5.

We now work on the implication 1) 2: Let (U

n

: n 2 !) be a sequence of

!{covers of X. Let (Y

k

: k 2 !) be a partition of the set of positive integers

into in�nite sets. For each m and for each k in Y

m

, put V

k

= fU

m

: U 2 U

k

g.

Then for each m, Lemma 3.3 implies that the sequence (V

k

: k 2 Y

m

) is a

sequence of !{covers of X

m

.

Applying 1 for each m, we �nd for each m a sequence (W

k

: k 2 Y

m

) such

that

� for each k 2 Y

m

, W

k

is a �nite subset of U

k

, and

� [

k2Y

m

fU

m

: U 2 W

k

g is an open cover of X

m

.

But then [

1

k=1

W

k

is an !{cover of X.

�

None of our classes are closed under �nite products. Todorcevic [19]

showed that there exist two (nonmetrizable) topological spaces X and Y

19



that satisfy S

1

(
;�) (-set), but whose product does not satisfy U

fin

(�;O)

(Menger). Thus none of our properties are closed under �nite products.

If we restrict our attention to separable metric spaces it also is the case

assuming CH that none of our classes are closed under �nite products. For

the class S

1

(
;�) note that Galvin-Miller [5] using a result of Todorcevic

showed that there are -sets whose product is not a -set. For the classes

S

1

(
;
) and S

fin

(
;
) construct a pair of generic Lusin sets H

0

and H

1

such

that H

0

+H

1

= Z

!

Remark The special Lusin set L gives a partial answer to a problem of Lelek

(see [11]). It shows that it is relatively consistent with ZFC that there exists a

separable metrizable space L that has property U

fin

(�;O), but does not have

property U

fin

(�;O) in each �nite power. In Lelek, U

fin

(�;O) is referred to as

the \Hurewicz property" in contrast to our naming it the \Menger property."

Remark It is relatively consistent with ZFC that for every n � 1 there exists

a separable metric space X such that X

n

has property U

fin

(�;O), but X

n+1

does not have property U

fin

(�;O) (see Just [10] and Stamp [18]).

Remark It was shown in Just [9] that preservation of U

fin

(�;
) under direct

sums is independent of ZFC.

Finite or countable unions

It is well-known and easy to prove that each of the classes

� S

fin

(O;O) (Rothberger property C

00

),

� U

fin

(�;�) (Hurewicz property), and

� U

fin

(�;O) (Menger property)

are closed under taking countable unions. It also easy to prove that S

1

(�;�)

is closed under taking countable unions. The class S

1

(
;�) (-sets) is not

closed under taking �nite unions (see Galvin-Miller [6]).

Problem 5 Which of the remaining classes are closed under taking �nite or

countable unions?
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Figure 4: Cardinals non(P )

4 Cardinal equivalents

We now consider the connection between the properties and some well known

cardinal invariants of P (!)=F in. See Vaughan [20] for the de�nitions, but

briey:

p is least cardinality of a family of sets in [!]

!

with the �nite intersection

property but no pseudo intersection,

d is the minimal cardinality of a dominating family in !

!

,

b the minimal cardinality of an unbounded family in !

!

, and

cov(M) is the minimal cardinality of a covering of the real line by meager

sets.

In particular, if P is one of the eleven properties in the diagram (�g-

ure 3) or is one of the splitting properties Split(
;
) or Split(�;�), we will

determine:
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non(P ):=

the minimum cardinality of a set of reals that fails to have property P .

Note obviously that if P ! Q, then non(P ) � non(Q). Some of these

cardinals are well known and we simply state the results and refer the reader

to the appropriate sources.

Theorem 4.1 (Galvin-Miller [5]) non(S

1

(
;�)) = p.

Theorem 4.2 (Fremlin-Miller [4]) non(S

1

(O;O)) = cov(M).

Theorem 4.3 (Hurewicz [8]) A set X is U

fin

(�;�) if and only if every con-

tinuous image of X in !

!

is bounded. Hence non(U

fin

(�;�)) = b.

Theorem 4.4 (Hurewicz [8]) A set X is U

fin

(�;O) if and only if every

continuous image of X in !

!

is not dominating. Hence non(U

fin

(�;O)) = d.

Next we determine non(P ) for all the other properties in �gure 3 in the

introduction.

Theorem 4.5 non(S

1

(�;
)) = d.

Proof:

Since S

1

(�;
) � U

fin

(�;O) we have that

non(S

1

(�;
)) � non(U

fin

(�;O)):

Also by Theorem 4.4 we have non(U

fin

(�;O)) = d, so non(S

1

(�;
)) � d.

Conversely, suppose that X is a set of reals that fails to be S

1

(�;
).

Fix a sequence of -covers (U

n

)

n2!

witnessing the failure of S

1

(�;
): Fix an

enumeration of each cover U

n

= fU

i

n

: i 2 !g. For each �nite set F � X

de�ne f

F

2 !

!

by

f

F

(n) = minfi : 8j > i; F � U

i

n

g:

As each U

n

is a -cover, if i > f

F

(n), then F � U

i

n

. Therefore,

ff

F

: F 2 [X]

<!

g

must be a dominating family. Otherwise there is a g not dominated by

any such f

F

. I.e., for each �nite F � X, there is an integer n such that

g(n) > f

F

(n). This implies that fU

g(n)

n

: n 2 !g is an !-cover, contradicting

the failure of S

1

(�;
). So non(S

1

(�;
)) � d.

�
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Theorem 4.6 non(S

fin

(
;
)) = d.

Proof:

Identical to the proof of 4.5. One only needs to modify the de�nition of

f

F

to

f

F

(n) = minfi : F � U

i

n

g

and take V

n

= fU

i

n

: i � g(n)g.

�

Theorem 4.7 non(S

1

(�;�)) = b.

Proof:

Using S

1

(�;�) � U

fin

(�;�) and Theorem 4.3 it follows that

non(S

1

(�;�)) � b:

Conversely, suppose that X is a set of reals and that (U

n

)

n2!

is a sequence

of -covers witnessing the failure of S

1

(�;�). For each x 2 X de�ne f

x

2 !

!

by

f

x

(n) = minfi : 8j � i; x 2 U

j

n

g:

If g were to dominate each f

x

, then (U

g(n)

n

)

n2!

would be a -cover, a contradic-

tion. Therefore ff

x

: x 2 Xg is an unbounded family. Hence non(S

1

(�;�)) �

b.

�

Theorem 4.8 non(S

1

(
;
)) = cov(M).

Proof:

The inclusion S

1

(
;
) � S

1

(O;O) and Theorem 4.2 give us the inequality

non(S

1

(
;
)) � cov(M).

Conversely �x X a set of reals and (U

n

)

n2!

a sequence of !-covers wit-

nessing the failure of S

1

(
;
). For each �nite F � X let

K

F

= ff 2 !

!

: (8n 2 !)(F 6� U

f(n)

n

)g:
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Since for each f 2 !

!

there is a �nite F � X such that F 6� U

f(n)

n

, we have

that !

!

=

S

fK

F

: F 2 [X]

<!

g. Furthermore, each K

F

is closed and nowhere

dense. Hence non(S

1

(
;
)) � cov(M).

�

Our results are summarized in �gure 4. Classical results about the rela-

tionships between the cardinals p, b, d and cov(M) give alternative proofs

that many of the implications in our diagram cannot be reversed.

Split(�;�) and Split(
;
)

These properties were de�ned in Scheepers [16]: for classes of covers A

and B, a space has property Split(A;B) i� every open cover U 2 A can be

partitioned into two subcovers U

0

and U

1

both in B. Recall that a family

R � [!]

!

is said to be a reaping family if for each x 2 [!]

!

there is a

y 2 R such that either y �

�

x or y �

�

! n x. The minimal cardinality

of a reaping family is denoted by r, and the minimal cardinality of a base

for a nonprincipal ultra�lter is denoted by u. In the proofs of the next two

theorems we will use the families

U = fB

1

n

: n 2 !g and V = fB

0

n

: n 2 !g

where

B

1

n

= fx 2 [!]

!

: n 2 xg and B

0

n

= fx 2 [!]

!

: n 62 xg:

Note that U and V are large covers of any subset of [!]

!

and U [ V is a

subbase for the topology. We will refer to U as the canonical large cover.

Theorem 4.9 non(Split(�;�)) = r.

Proof:

Suppose that X � [!]

!

is a reaping family. Therefore the cover U cannot

be partitioned into two large subcovers. Conversely, suppose that X is a set

of reals and fU

n

: n 2 !g is a large cover of X. For each x 2 X let

A

x

= fn 2 ! : x 2 U

n

g:

If F is the collection of all such A

x

's, then F is a reaping family. For if A � !

is such that for all x 2 X both A

x

\A and A

x

nA are in�nite, then

fU

n

: n 2 Ag [ fU

n

: n 62 Ag
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is a splitting of fU

n

: n 2 !g into disjoint large subcovers.

�

The proof yields a bit more.

Theorem 4.10 A set of reals X is Split(�;�) with respect to clopen covers

if and only if every continuous image of X in [!]

!

is not a reaping family.

Proof:

Suppose that X is a set of reals, f : X ! [!]

!

is continuous and that

f(X) is a reaping family. The canonical large cover is in fact a clopen family.

Therefore the collection f

�1

(U) = ff

�1

(B

1

n

) : n 2 !g is a large clopen

cover of X. Suppose f

�1

(U) = V

0

[ V

1

is a partition. Then we have the

corresponding partition of ! = A

0

[ A

1

where V

i

= ff

�1

(U

n

) : n 2 A

i

g. As

f(X) is a reaping family, there is an x 2 X such that for either i = 0 or 1,

f(x) �

�

A

i

. Then V

i

is not large at x. Therefore X is not Split(�;�) with

respect to the clopen cover f

�1

(U).

Conversely, suppose that X is not Split(�;�) with respect to some large

clopen cover fU

n

: n 2 !g. For each x 2 X de�ne f

x

2 [!]

!

by n 2 f

x

i� x 2 U

n

. Since the cover is large, each f

x

is in�nite. As above, since

fU

n

: n 2 !g cannot be split, ff

x

: x 2 Xg is a reaping family. Therefore

it su�ces to check that the mapping f : x ! f

x

is continuous. But the

collection of fB

i

n

: n 2 !; i = 0; 1g forms a subbase for [!]

!

, and clearly

f

�1

(B

1

n

) = U

n

and f

�1

(B

0

n

) = X n U

n

therefore f is continuous (this is the

only place where we need the restriction to clopen covers).

�

Theorem 4.11 non(Split(
;
)) = u.

Proof:

Suppose that X � [!]

!

is a �lter-base. Then the canonical large cover

in [!]

!

is in fact an !-cover of X. If X is a base for an ultra�lter, then this

cover cannot be partitioned into two !-subcovers.

Conversely, suppose that X is a set of reals and W is an !-cover of X. For

each x 2 X let

W

x

= fU 2 W : x 2 Ug:
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If F is the collection of all such W

x

's, then F forms a �lterbase on W and

if W cannot be split into two !-covers, then F generates a nonprincipal

ultra�lter.

�

Analogously to Theorem 4.10 we can prove:

Theorem 4.12 A set of reals X is Split(
;
) with respect to clopen covers

if and only if every continuous image of X in [!]

!

does not generate an

ultra�lter.

Note that a base for an ultra�lter is a reaping family, and therefore r � u.

In [2] it is proven consistent that this inequality may be strict. Therefore

Split(�;�) 6) Split(
;
). Similarly neither r nor u are comparable to d,

therefore there are no implications between either Split(�;�) or Split(
;
)

and any of the six classes in �gure 4 whose `non' is equivalent to d. In

Scheepers [16] it is shown that

� U

fin

(�;�) ) Split(�;�) (Cor 29), and

� S

1

(O;O)) Split(�;�) (Thm 15).

Note that while both b � r and cov(M) � r, it is consistent that these

inequalities are strict (see Vaughan [20]). So neither of these implications

can be reversed.

Problem 6 Does Split(
;
)) Split(�;�)?

5 The Hurewicz Conjecture and the Borel

Conjecture.

Every �{compact space belongs to U

fin

(�;�). It is also well-known that not

every space belonging to U

fin

(�;�) need be �{compact. We now look at

the traditional examples of sets of reals belonging to U

fin

(�;�), and show

that some of these belong to S

1

(�;�), while others do not. Since S

1

(�;�) is

contained in S

1

(�;�), and the unit interval is not an element of S

1

(�;�), we

see that the �{compact spaces do not in general belong to the class S

1

(�;�).

On page 200 of [7], W. Hurewicz conjectures:
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[Hurewicz] A set of real numbers has property U

fin

(�;�) if, and only if, it is

�{compact.

5

The existence of a Sierpi�nski set violates this conjecture. As we have seen

earlier, Sierpi�nski sets are elements of S

1

(�;�).

The following result shows that Hurewicz's conjecture fails in ZFC.

Theorem 5.1 There exists a separable metric space X such that jXj = !

1

,

X is not �-compact and X has property U

fin

(�;�). This X also has property

S

1

(�;
) and S

fin

(
;
).

Proof:

Case 1. b > !

1

.

In this case every X of size !

1

is in S

1

(�;�) and S

fin

(
;
), hence in both

U

fin

(�;�) and S

1

(�;�). (by Theorems 4.6 and 4.7 ).

Case 2. b = !

1

.

In this case we will use a construction similar to one in [5]. Build an !

1

-

sequence (x

�

: � < !

1

) of elements of [!]

!

such that � < � implies x

�

�

�

x

�

and if f

�

: ! ! x

�

is the increasing enumeration of x

�

, then for every g 2 !

!

there exists � such that for in�nitely many n we have g(n) < f

�

(n).

Claim 5.2 For any S 2 [!]

!

there exists � < !

1

such that there exists

in�nitely many n such that j[f

�

(n); f

�

(n+ 1)) \ Sj � 2.

To prove Claim 5.2 suppose not and let g eventually dominate all the increas-

ing enumerations of sets S

�

such that S

�

=

�

S. Then g eventually dominates

the f

�

's, contradiction. This completes the proof of Claim 5.2.

Claim 5.3 Let X = [!]

<!

[ fx

�

: � < !

1

g. Then for every sequence (U

n

:

n 2 !) of !{covers of X (or even just of [!]

<!

) there exists an A 2 [!]

!

,

(V

n

2 U

n

: n 2 A) and � < !

1

such that for all � � � we have x

�

2 V

n

for

all but �nitely many n 2 A.

To prove Claim 5.3 construct a sequence (k

n

: n 2 !) in !, such that there

exists V

n

2 U

n

with the property that

f x � ! : x \ (k

n

; k

n+1

) = ; g � V

n

:

5

\Es entsteht nun die Vermutung dass durch die (warscheinlich sch�arfere) Eigenschaft

E

��

die halbkompakten Mengen F

�

allgemein charakterisiert sind."
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To do this use that U

n

is a !{cover to pick V

n

� [k

n

+1]

<!

and then for each

s 2 [k

n

+ 1]

<!

�x a basic open set V

s

such that s 2 V

s

� V

n

and let n

s

be

the maximum of the support of V

s

. Then k

n+1

= maxfn

s

: s 2 [k

n

+ 1]

<!

g

su�ces. It follows from Claim 5.2 that there exist � < !

1

, A 2 [!]

!

and an

increasing sequence (m

n

: n 2 A) such that for every n 2 A

f x � ! : x \ (f

�

(m

n

); f

�

(m

n

+ 1)) = ; g � V

n

:

It follows x

�

2 V

n

for all � � � for all but �nitely many n 2 A. This

completes the proof of Claim 5.3.

Now we show that our setX in this case is in both U

fin

(�;�) and S

1

(
;
)

(and hence S

1

(�;�)). First we show that it satis�es a property we might call

S

1

(�;�)

�

.

Given any sequence (U

n

: n 2 !) of {covers of X, there exist

(V

n

2 U

n

: n 2 !) and a countable Y � X such that (V

n

: n 2 !)

is a {cover of X n Y .

If S

fin

(�;�)

�

is de�ned analogously, then it is easy to see using the same

proof as for Theorem 1.1 that S

fin

(�;�)

�

is equivalent to S

1

(�;�)

�

. Clearly

Claim 5.3 implies S

fin

(�;�)

�

.

S

1

(�;�)

�

implies U

fin

(�;�) because we may �rst pick a {cover (V

n

2

U

n

: n 2 !) of X n Y and then pick a {cover (W

n

2 U

n

: n 2 !) of Y . Then

(V

n

[W

n

: n 2 !) is a {cover of X.

�

To see that X is in S

1

(
;
) we need the following claim:

Claim 5.4 For every B 2 [!]

!

, sequence (U

n

: n 2 B) of !{covers of X, and

countable Y � X there exist A 2 [B]

!

, (V

n

2 U

n

: n 2 A) and a countable

Z � X such that Y and Z are disjoint and (V

n

2 U

n

: n 2 A) is a -cover of

X n Z.

Proof:

Let Y = fy

n

: n 2 !g and apply Claim 5.3 to the !{covers de�ned by

U

0

n

= fU 2 U

n

: fy

i

: i < ng � Ug

for n 2 B. This completes the proof of Claim 5.4.

Using Claim 5.4 for every sequence (U

n

: n 2 !) of !{covers of X induc-

tively construct A

i

2 [!]

!

, (V

n

2 U

n

: n 2 A

i

) and Y

i

� X countable such

that
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� A

i

\A

j

= ; for i 6= j.

� Y

i

\ Y

j

= ; for i 6= j.

� (V

n

2 U

n

: n 2 A

i

) is a {cover of X n Y

i

.

(At stage n take Y = [fY

i

: i < ng and B = ! n ([fA

i

: i < ng). Apply

Claim 5.3 and let Y

n

= Z and cut down A

n

, if necessary, to ensure that

[fA

i

: i � ng is coin�nite.)

Since the fY

i

: i < !g and the fA

i

: i < !g are pairwise disjoint families,

letting A =

S

i2!

A

i

, (V

n

: n 2 A) is an !-cover of X. Hence X has property

S

1

(
;
). This completes the proof of Theorem 5.1.

�

Problem 7 Is the set X constructed in Case 2 of Theorem 5.1 a -set, i.e.,

S

1

(
;�)?

The Borel conjecture implies that every set in S

1

(O;O) is countable

(hence every set in S

1

(
;
) or S

1

(
;�) is countable). Theorem 5.1 and

the Cantor set along with the last example rules out an analogous conjecture

for all except S

1

(�;�). So we ask:

Problem 8 Is it consistent, relative to the consistency of ZF, that every set

in S

1

(�;�) is countable?

One may also ask if all the pathological examples of sets having property

U

fin

(�;�) occur because of the presence of such sets in S

1

(�;�); here is one

formalization of this question.

Problem 9 Let X be a set of real numbers which does not contain a perfect

set of real numbers but which does have the Hurewicz property. Does X then

belong to S

1

(�;�)?

U

fin

(�;�) and perfectly meager sets.
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We now prove a theorem which implies that the S

1

(�;�){sets are con-

tained in another class of sets that were introduced in the early parts of this

century. Recall that a set X of real numbers is perfectly meager (also called

\always of �rst category") if, for every perfect set P of real numbers, X \ P

is meager in the relative topology of P .

Theorem 5.5 If a set of reals X is in U

fin

(�;�) and contains no perfect

subset, then X is perfectly meager.

Proof:

Let P be a perfect set of real numbers. Since X contains no perfect set,

P nX is a dense subset of P . Let D be a countable dense subset of P which

is contained in P nX, and enumerate D bijectively as (d

n

: n = 1; 2; 3; :::).

Fix k. For each x in X choose open intervals I

k

x

and J

k

x

such that

1. I

k

x

is centered at x,

2. J

k

x

is centered at d

k

, and

3. the closures of these intervals are disjoint.

Let fI

k

x

k

n

: n = 1; 2; 3; :::g be a countable subset of fI

k

x

: x 2 Xg which

covers X. Then for each n de�ne I

k

n

= [

j�n

I

k

x

k

j

, and J

k

n

= \

j�n

J

k

x

k

j

. Then

U

k

= fI

k

n

: n = 1; 2; 3; :::g is a {cover of X.

Apply U

fin

(�;�) to the sequence (U

k

: k = 1; 2; 3; ::). For each k we �nd

an n

k

such that (I

k

n

k

: k = 1; 2; 3; ::) is a  cover for X. For each j put

G

j

= [

k�j

J

k

n

k

. Then each G

j

\P is a dense open subset of P (as it contains

all but a �nite piece of D). The intersection of these sets is a dense G

�

subset

of P , and is disjoint from X \ P . Thus, X \ P is a meager subset of P .

�

Corollary 5.6 Every element of S

1

(�;�) is perfectly meager.

Proof:

We have seen (Theorem 2.4) that sets in S

1

(�;�) do not contain perfect

sets of real numbers. But S

1

(�;�) � U

fin

(�;�).

�

In Theorem 2 of Galvin-Miller [5] it was shown that if a subset X of the

real line is in S

1

(
;�), then for every G

�

{set G which contains X, there is
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an F

�

{set F such that X � F � G. In fact, this property characterizes

U

fin

(�;�).

Theorem 5.7 For a set X of real numbers, the following are equivalent:

1. X has property U

fin

(�;�).

2. For every G

�

{set G which contains X, there is a F

�

{set F such that

X � F � G.

Proof:

1 ) 2: Write G = \

1

n=1

G

n

, where each G

n

is open. Fix n, and choose

for each x in X an open interval I

n

x

which contains x, and whose closure is

contained in G

n

. Choose a countable subcover fI

n

x

n

j

: j = 1; 2; 3; :::g of X

from the cover fI

n

x

: x 2 Xg. For each n and k de�ne I

n

k

= [

j�k

I

n

x

n

j

.

Then U

n

= fI

n

k

: k = 1; 2; 3; :::g is a {cover of X such that for each k

the closure of I

n

k

is contained in G

n

.

Apply the fact that X is a U

fin

(�;�)-set to the sequence

(U

n

: n = 1; 2; 3; :::):

For each n choose a k

n

such that (I

n

k

n

: n = 1; 2; 3; :::) is a {cover of X. For

each n let F

n

be the intersection of the closures of the sets I

m

k

m

; m � n. For

each n we have the closed set F

n

contained in G. But then the union of the

F

n

's is an F

�

{ set which contains X and is contained in G.

2) 1: Let (U

n

: n < !) be a sequence such that each U

n

is a cover of X

by open subsets of the real line. By assumption there exists closed sets F

n

such that

X �

[

n<!

F

n

�

\

n<!

([U

n

):

Since the real line is �-compact we may assume that the F

n

are compact.

For each n choose V

n

2 [U

n

]

<!

such that ([

m<n

F

m

) � [V

n

for each n. Either

there exists n such that [V

n

= X or f[V

n

: n 2 !g is in�nite and hence a

-cover of X.

�
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6 Ramseyan theorems and other properties

Other classes of spaces motivated by diagonalization of open covers are re-

lated to Q-point ultra�lters, P -point ultra�lters and Ramsey-like partition

relations. IfA and B are classes of open covers, then a space has the property

1. Q(A;B) i� for every open cover U 2 A and for every partition of

this cover into countably many pairwise disjoint nonempty �nite sets

F

0

; F

1

; F

2

; : : :, there is a subset V � U which belongs to B such that

jV \ F

n

j � 1 for each n and

2. P(A;B) i� for every sequence fU

n

: n 2 !g of open covers of X from

A such that U

n+1

� U

n

, for each n, there is an open cover V which

belongs to B such that V �

�

U

n

for each n.

In Scheepers [16] the partition relation 
! (
)

2

2

was de�ned: a space X

is said to satisfy 
! (
)

2

2

i� for every !{cover U of X, if

f : [U ]

2

! f0; 1g

is any coloring, then there is an i 2 f0; 1g and an !{cover V � U such that

f(fA;Bg) = i for all A and B from V. It is customary to say that V is

homogeneous for f .

Also in [16] it was shown that for a set X of real numbers, the following

statements are equivalent:

1. X is both S

1

(
;
) and Q(
;
).

2. 
, the collection of !{covers of X, satis�es the following partition re-

lation: 
! (
)

2

2

.

The next theorem shows that indeed, the partition relation characterizes the

property of being a S

1

(
;
){set.

Theorem 6.1 S

1

(
;
) � Q(
;
).

Proof:

Let X be a S

1

(
;
){set and let U be an !{cover of it. Let (P

n

: n < !)

be a partition of this cover into pairwise disjoint �nite sets. Enumerate the

cover bijectively as (U

n

: n < !) such that, letting for each n the set I

n

be
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the j's such that U

j

2 P

n

. We get a partition (I

n

: n < !) of ! into disjoint

intervals such that if m is less than n, then each element of I

m

is less than

each element of I

n

. For each `, let m

`

=

P

j�`

jI

j

j. Now de�ne an !{cover V

of X such that V is in V i�

V = U

k

0

\ : : : \ U

k

r

where

1. r = m

`

0

and

2. `

0

< : : : < `

r

are such that for each j, k

j

is in I

`

j

, and

3. V is nonempty.

Since S

1

(
;
) implies Split(
;
) (see Corollary 22 of [16]), we may

choose a partition (V

n

: n < !) such that each V

n

is an !{cover of X,

and V is the union of these sets. Then, discard from each V

n

all sets of the

form

U

k

0

\ : : : \ U

k

r

where k

0

is an element of I

0

[ : : : [ I

n

; let W

n

denote the resulting family.

Observe that each W

n

is still an !{cover.

Since X is an S

1

(
;
){set, we �nd for each n a W

n

in W

n

such that the

set fW

n

: n 2 !g is an !{cover of X. For each n we �x a representation

W

n

= U

k

n

0

\ : : : \ U

k

n

r(n)

where k

n

0

< : : : < k

n

r(n)

. On account of the way W

n

was obtained from V

n

,

we see that n < k

n

0

and n < r(n). Now choose recursively sets

U

k(0)

; U

k(1)

; : : : ; U

k(n)

; : : :

so that U

k(0)

= U

k

1

0

� W

1

. Suppose that U

k(0)

; : : : ; U

k(n)

have been chosen

such that for i � n we have

� k(i) 2 fk

i

0

; : : : ; k

i

r(i)

g and

� W

i

� U

k(i)

, and

� the k(i)'s belong to distinct I

j

's,
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To de�ne U

k(n+1)

we consult W

n+1

= U

k

n+1

0

\ : : : \ U

k

n+1

r(n+1)

. Since we have so

far selected only n + 1 numbers and since r(n+ 1) is larger than n+ 1, and

since the k

n+1

j

come from r(n + 1) disjoint intervals I

j

, we can �nd one of

these intervals which is disjoint from fk(0); : : : ; k(n)g, and select k(n+1) to

be the k

n+1

j

from that interval. This then speci�es U

k(n+1)

.

Because the sequence of W

n

's re�nes fU

k(n)

: n < !g, the latter is an

!{cover of X, and by construction it contains no more than one element per

P

n

.

�

In Scheepers [16] it was shown that if X satis�es S

fin

(
;
), then its

family of !{covers, 
, satis�es the partition relation


! d
e

2

2

:

Satisfying this partition relation means that for every !{cover U of X, if

f : [U ]

2

! f0; 1g

is any coloring, then there are i 2 f0; 1g, an !{cover V � U and a �nite{to{

one function q : V ! ! such that for all A and B from V, if q(A) 6= q(B),

then f(fA;Bg) = i. It is customary to say that V is eventually homogeneous

for f .

We now show that these two properties are equivalent.

Theorem 6.2 For any space X, 
! d
e

2

2

is equivalent to S

fin

(
;
).

Proof:

It is shown in [16] that S

fin

(
;
) implies 
! d
e

2

2

. To prove the other

direction suppose that U

n

= fU

n

m

: m 2 !g is an !{cover for each n 2 !. Let

U = fU

0

k

\ U

k

l

: k; l 2 !g:

U is an !{cover, since given a �nite F � X we can �rst pick k with F � U

0

k

and then pick l with F � U

k

l

. For each element of U we pick a pair as above

and de�ne f : [U ]

2

! f0; 1g by

f(fU

0

k

0

\ U

k

0

l

0

; U

0

k

1

\ U

k

1

l

1

g) =

(

0 if k

0

= k

1

1 if k

0

6= k

1
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By applying 
! d
e

2

2

there exist a sequence (k

i

; l

i

) and a �nite{to{one

function q : ! ! ! such that

V = fU

0

k

i

\ U

k

i

l

i

: i 2 !g

is an !{cover of X and either

(a) q(i) 6= q(j) implies k

i

= k

j

or

(b) q(i) 6= q(j) implies k

i

6= k

j

.

In case (a), since q is �nite{to{one, we get that k

i

= k

j

for every i; j 2 !.

This would mean that every element of V re�nes U

0

k

0

, but this contradicts

the fact that V is an !{cover. Thus this case cannot occur.

In case (b), let

W = fU

k

i

l

i

: i < !g:

Since V re�nes W and X =2 W, W is an !{cover of X. De�ne

W

n

= fU

k

i

l

i

: k

i

= ng � U

n

:

To �nish the proof it is enough to see that each W

n

is �nite. If not, there

would be an in�nite A � ! such that k

i

= n for each i 2 A. Since q is

�nite{to{one, there would be i 6= j 2 A with q(i) 6= q(j). But k

i

= k

j

= n

contradicts the assumption of case (b).

�

References

[1] T. Bartoszynski and M. Scheepers, A{sets, Real Analysis Exchange

19(2) (1993{1994), 521 { 528.

[2] Murray Bell and K. Kunen, On the � character of ultra�lters, C.R.

Math. Acad. Sci. Canada 3 (1981), 351{365.

[3] P. Daniels, Pixley-Roy spaces over subsets of the reals, Topology and

its Applications 29 (1988), 93-106.

[4] D.H. Fremlin and A.W. Miller, On some properties of Hurewicz, Menger

and Rothberger, Fundamenta Mathematicae 129 (1988), 17 { 33.

35



[5] F. Galvin and A.W.Miller, {sets and other singular sets of reals, Topol-

ogy and its Applications 17 (1984), 145{155.

[6] J. Gerlits and Zs. Nagy, Some properties of C(X), I, Topology and its

Applications 14 (1982), 151 { 161.

[7] W. Hurewicz,

�

Uber eine Verallgemeinerung des Borelschen Theorems,

Mathematische Zeitschrift 24 (1925), 401 { 421.

[8] W. Hurewicz,

�

Uber Folgen stetiger Funktionen, Fundamenta Mathe-

maticae 9 (1927), 193 { 204.

[9] W. Just, On direct sums of 

7

spaces, handwritten notes.

[10] W. Just, 

2

does not imply 

7

, handwritten notes.

[11] A. Lelek, Some cover properties of spaces, Fundamenta Mathemati-

cae 64 (1969), 209 { 218.

[12] K. Menger, Einige

�

Uberdeckungss�atze der Punktmengenlehre, Sitzungs-

berichte. Abt. 2 a, Mathematik, Astronomie, Physik, Meteorolo-

gie und Mechanik (Wiener Akademie) 133 (1924), 421 { 444.

[13] A. Miller, Special subsets of real line, Handbook of Set Theoretic

Topology, North Holland, (1984), 201-233.

[14] F. Rothberger, Eine Versch�arfung der Eigenschaft C, Fundamenta

Mathematicae 30 (1938), 50 { 55.

[15] M. Sakai, Property C and function spaces, Proceedings of the Amer-

ican Mathematical Society 104 (1988), 917-919.

[16] M. Scheepers, Combinatorics of open covers (I): Ramsey theory, Topol-

ogy and its Applications 69 (1996), 31 { 62.

[17] S. Sierpi�nski, Sur le produit combinatoire de deux ensembles joissant de

la propri�et�e C, Fundamenta Mathematicae 24 (1935), 48{50.

[18] William Stamp, Details supporting \

2

does not imply 

7

" and \On

direct sums of 

7

spaces ", notes.

36



[19] S. Todor�cevi�c, Aronszajn orderings, preprint.

[20] Jerry E. Vaughan, Small uncountable cardinals and topology from Open

Problems in Topology, J. van Mill and G.M. Reed, eds., North Holland

(1990), 195{218.

Addresses

Winfried Just

Ohio University

Department of Mathematics

Athens, OH 45701-2979 USA

e-mail: just@ace.cs.ohiou.edu

Arnold W. Miller

University of Wisconsin-Madison

Department of Mathematics Van Vleck Hall

480 Lincoln Drive

Madison, Wisconsin 53706-1388, USA

e-mail: miller@math.wisc.edu

home page: http://www.math.wisc.edu/

�

miller/

Marion Scheepers

Department of Mathematics

Boise State University

Boise, Idaho 83725 USA

e-mail: marion@math.idbsu.edu

Paul J. Szeptycki

Ohio University

Department of Mathematics

Athens, OH 45701-2979 USA

e-mail: szeptyck@oucsace.cs.ohiou.edu

August 1995

37


