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Abstract: A classical theorem of Luzin is that the separation
principle holds for the Π0

α sets but fails for the Σ0
α sets. We show

that for every Σ0
α set A which is not Π0

α there exists a Σ0
α set

B which is disjoint from A but cannot be separated from A by a
∆0

α set C. Assuming Π1
1-determancy it follows from a theorem of

Steel that a similar result holds for Π1
1 sets. On the other hand

assuming V=L there is a proper Π1
1 set which is not half of a

Borel inseparable pair. These results answer questions raised by
F.Dashiell.

The separation principle is a classical property of point classes in descrip-
tive set theory. For every countable ordinal α and every pair of disjoint sets
A,B ⊆ 2ω in the multiplicative class α (Π0

α) there exists a set C in ambigu-
ous class α (∆0

α) which separates them, i.e., A ⊆ C and C ∩ B = ∅. It is
also a classical result of Luzin that the separation principle must fail for the
dual classes Σ0

α. For proofs, see Kechris [15] §22.

For Γ a class of subsets of ωω, define the dual class Γ̃ = {ωω \A : A ∈ Γ},
∆ = Γ ∩ Γ̃, and

Sep(Γ) ≡ ∀A,B ∈ Γ A ∩B = ∅ → ∃C ∈ ∆ A ⊆ C and A ∩B = ∅.
Γ is continuously closed iff for all continuous f : ωω → ωω if A ∈ Γ then
f−1(A) ∈ Γ. Γ is nonselfdual iff Γ 6= Γ̃.

Van Wesep and Steel [34] [35] [32] proved that for continuously closed

nonselfdual Γ in the Borel subsets of ωω either (¬Sep(Γ) and Sep(Γ̃)) or

(¬Sep(Γ̃) and Sep(Γ)), i.e., separation holds on one side and fails on the
other. This result is true for all continuously closed nonselfdual classes, if
the Axiom of Determinacy holds.

In Dashiell [8], Luzin’s theorem on the failure of separation for Σ0
α is

used to prove that the Banach space, Bα, of Baire class α-functions is not
isomorphic to the space Bω1 of Baire functions.

1Thanks to Jindrich Zapletal who organized the SEALS meeting at the University of
Florida, Gainesville in March 2004 during which part of these results were obtained.
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The following Theorem settles a question raised by F. Dashiell. He al-
ready knew the result for Σ0

1 and Σ0
2. It was also asked by Luzin [19] in 1930,

see the top of page 73, “Un autre problème . . . ” and the last paragraph on
page 76. Henryk Torunczyk informs me that Theorem 1 follows from the
results in the paper Louveau and Saint-Raymond [18].

Theorem 1 Suppose X is a Polish space and A ⊆ X is Σ0
α but not Π0

α.
Then there exists A∗ ⊆ X which is Σ0

α such that A ∩ A∗ = ∅ but there does
not exist a ∆0

α set C which separates A and A∗, i.e., A ⊆ C and C ∩A∗ = ∅.

Proof
For α = 1, if A is any open set which is not closed, then it cannot be
separated from the interior of X \A. So we may assume α ≥ 2. By Theorem
4 of Kunen-Miller [16], there exists a set P ⊆ X such that P is homeomorphic
to a closed subset of 2ω and P ∩A is Σ0

α \∆0
α. So without loss of generality

we may assume A ⊆ 2ω.
For subsets B,C ⊆ 2ω define B ≤W C (Wadge reducible) iff there exists

a continuous map f : 2ω → 2ω such that f−1(C) = B. Associated with
Wadge reducibility is the Wadge game whose payoff set is of roughly the
same complexity as B and C. It follows from Borel determinacy, see Martin
[23], that for every pair of Borel sets B and C that either B ≤W C or
C ≤W (2ω \B), see for example Van Wesep [34]. It follows from this that for
any B ⊆ 2ω which is Σ0

α we have that B ≤W A, since otherwise A ≤W (2ω\B)
would make A a Π0

α and hence ∆0
α, which is contrary to our assumption.

Now assume α = 2. LetD,D∗ ⊆ 2ω be countable dense and disjoint. Note
that they are Σ0

2 sets which cannot be separated, since dense Π0
2, i.e., Gδ, sets

must intersect by the Baire Category Theorem. Since D ≤W A there exists
a continuous map f : 2ω → 2ω with f−1(A) = D. Let A∗ = f(D∗). Since it
is countable, A∗ is a Σ0

2 set. It cannot be separated from A, because if C is
a ∆0

2 with A ⊆ C and A∗ ∩ C = ∅, then D ⊆ f−1(C) and D∗ ⊆ f−1(2ω \ C)
would separate D and D∗.

Now assume α > 2. By a result of Harrington, see Steel [31] or Van
Engelen, Miller, Steel [33], for any B which is Σ0

α there exists a one-to-one
continuous map f : 2ω → 2ω such that f−1(A) = B. By a classical theorem
of descriptive set theory (see Kechris [15]) there exists disjoint B,B∗ ⊆ 2ω

Σ0
α sets which cannot be separated by a ∆0

α set. Let f be one-to-one and
continuous with f−1(A) = B. Let A∗ = f(B∗). Since f is one-to-one, it is
a homeomorphism onto its range and hence A∗ is a Σ0

α set disjoint from A.
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The set A∗ cannot be separated from A because the preimage of a separating
set would separate B and B∗.
QED

Dashiell’s proof of Theorem 1 for α = 2 is as follows. Suppose X is
a Polish space and A ⊆ X is some Fσ set which is not a Gδ. By Baire’s
theorem on functions of the first class, there exists a closed F ⊆ X on which
the characteristic function of A has no point of continuity relative to F . That
is, both A ∩ F and A \ F are dense in F. Let A∗ be a countable dense set in
A \F (hence an Fσ). Clearly now A and A∗ can not be separated by disjoint
Gδ sets of X, because intersecting with F would give two dense Gδ subsets
of the complete metric space F , which must meet.

Dashiell pointed out that for a fixed countable ordinal α if we let Xα be
the Stone space of the Boolean algebra of ∆0

α subsets of the reals, then the
cozero sets in Xα whose closures are not open (i.e., not clopen) correspond to
the proper Σ0

α sets. (Recall that a zero set is a closed set which the preimage
of singleton zero under a real-valued continuous map and a cozero set is the
complement of a zero set.) Hence, by Theorem 1, we know that every cozero
set A whose closure is not open has an inseparable disjoint sibling, i.e., a
cozero set B disjoint from A but the closures of A and B must meet.

Dashiell tells us that the question from [8] of whether Bα and Bβ can be
isomorphic Banach spaces for some 1 < α < β < ω1 is still open.

Dashiell also raised the same question for the coanalytic sets, Π1
1. The

classic result (see Kechris [15] §34,35) is that any pair of disjoint analytic sets
(Σ1

1) can be separated by a Borel set (∆1
1), but separation fails for Π1

1. Luzin
proved this by applying the reduction principle to a pair of doubly universal
sets.

Theorem 2 Suppose Π1
1-determinacy holds, then for any Π1

1 set A in a
Polish space X, if A is not Σ1

1, then there exists A∗ ⊆ X a Π1
1 set disjoint

from A which cannot be separated from A by a Borel set (∆1
1).

Theorem 3 Suppose V = L, then there exists a Π1
1 set A ⊆ 2ω which is not

Σ1
1 with the property that for any B ⊆ 2ω a Π1

1 set disjoint from A there
exists a Borel set C with A ⊆ C and C ∩B = ∅.

Proof
For Theorem 2 note that since there is a Borel bijection between X and
2ω we may assume that X = 2ω. Theorem 2 is an immediate corollary of
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a Theorem of Steel [31], who showed that Π1
1-determinacy implies that for

any two properly Π1
1 subsets A1, A2 of 2ω there exists a Borel automorphism

f : 2ω → 2ω such that f(A1) = A2. Hence if we take C,C∗ ⊆ 2ω to be any
disjoint pair of Π1

1 sets which are not Borel separable and f : 2ω → 2ω a
Borel automorphism with f(A) = C, then f−1(C∗) = A∗ will be the required
set.

For Theorem 3 we use for A the self-constructible reals studied by Guas-
pari, Kechris, and Sacks, see Kechris [14] §2, where the self-constructible
reals A are denoted C1.

Define
A = {x ∈ 2ω : x ∈ Lωx

1
}

where ωx
1 is the least ordinal which is not the order type of a relation recursive

in x. It is also the least ordinal α such that Lα[x] is an admissible set.
Suppose that B is a Π1

1 set disjoint from A. Then we may assume that B is
Π1

1(x0) for some x0 ∈ A since by Kechris [14] 2A, every real in L is recursive
in some x0 ∈ A.

Let γ < ωx0
1 be the least ordinal so that x0 ∈ Lγ. For any y ∈ 2ω define

γ+(y) to be the least α > γ such that Lα[y] is an admissible set.

Lemma 4 For any C ⊆ 2ω a nonempty Π1
1(x0) set there exists y ∈ C such

that y ∈ Lγ+(y).

Proof
The proof is a slight generalization of Sacks [27] III Lemma 9.3 p. 82.

Recall that a binary relation (X,R) is well-founded iff every nonempty
subset of X has an R-minimal element. A map f : X → Ordinals is called a
rank function iff

∀s, t ∈ X sRt→ f(s) < f(t).

Then (X,R) is well-founded iff it has a rank function on it. For (X,R)
well-founded the canonical rank function on X is defined inductively by

f(s) = sup{f(t) + 1 : tRs}.

The range of the canonical rank function is called the rank of (X,R). Fur-
thermore, if (X,R) ∈ A is a well-founded relation in an admissible set A,
then its rank and its canonical rank function are in A. See Barwise [3] V.3.1
p.159.
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Claim 4.1. Suppose δ1 an ordinal and T ⊆ δ<ω
1 is a subtree, T ∈ Lδ2 where

δ2 > ω is a limit ordinal. For each s ∈ T define Ts = {t ∈ T : s ⊆ t}. For
each ordinal α < δ2 if rank(Ts) = α then the canonical rank function, on Ts,
i.e., t 7→ rank(Tt) is an element of Lδ2+α+1.
Proof
Note that (T×α) ∈ Lδ2 since α is small. Fix α and s ∈ T with rank(Ts) = α.
For each δ < δ1 if sδ ∈ T and rank(Tsδ) = β, then the canonical rank
function on Tsδ is in Lδ2+β+1 ⊆ Lδ2+α and is uniformly definable from Tsδ,
hence the canonical rank function on Ts is in Lδ2+α+1.
QED

Claim 4.2. Suppose T , δ1 and δ2 satisfy the hypothesis of Claim 1. For any
ordinal α define

T (α) = {s ∈ T : rank(Ts) < α}.

Then T (α) ∈ Lδ2+α+1.
Proof
This follows from the previous claim since the canonical rank functions are
elements of Lδ2+α.
QED

By the Addison-Kondo Theorem we may assume that C is a Π1
1(x0) sin-

gleton, i.e. C = {y0}.
Now by standard arguments there exists a tree T ⊆ ∪n<ω(ωn× 2n) which

is recursive in x0 such that for every y ∈ 2ω we have that

y = y0 iff T 〈y〉 =def {s : (s, y � |s|) ∈ T} ⊆ ω<ω is well-founded.

Now since the tree (T 〈y0〉,⊃) is well-founded and it is an element of the
admissible set Lγ+(y)[y], its rank δ0 is strictly less than γ+(y) and its canonical
rank function R : T 〈y0〉 → δ0 is in Lγ+(y)[y].

Now define a tree
T ∗ ⊆ ∪n<ω(δn

0 × 2n)

which basically consists of attempts at a rank function into δ0 for T 〈y0〉.
More formally, suppose {ti : i < ω} is a reasonable recursive listing of ω<ω,
e.g., it should have the properties that |si| ≤ i and if si ⊂ sj then i < j.

Define (r, s) ∈ T ∗ ∩ (δn × 2n) iff for each i, j < n
if (ti, s � |ti|), (tj, s � |tj|) ∈ T and ti ⊂ tj then r(j) < r(i).
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Let R∗ : ω → δ0 be the corresponding map to R, i.e.,

R∗(i) =

{
R(ti) if ti ∈ T 〈y0〉
0 otherwise

Note that T ∗ is an element of Lγ+(y0) and (y0, R
∗) is an infinite branch thru

it. We claim that (y0, R
∗) is the lexicographically least infinite branch thru

T ∗. To see this, note that if (y, S) is an infinite branch in T ∗, then y = y0,
since S will be a rank function for T 〈y〉, hence T 〈y〉 is well-founded and so
y = y0. On the other hand R assigns to any s ∈ T 〈y0〉 the smallest possible
ordinal for any rank function, and so R∗ will be lexicographically less than
S.

Let

LF = {σ ∈ T ∗ : σ is lexicographically left of (y0, R
∗)}.

Then (LF,⊃) is a well-founded relation and it is an element of the admissible
set Lγ+(y0)[y0]. Hence its rank δ1 is strictly smaller than γ+(y0). By identify-
ing the tree T ∗ with a tree on (δ0 + δ0)

<ω, i.e., by mapping (i, α) ∈ 2× δ0 to
δ0 · i+ α we may apply Claim 2. Hence the tree T ∗ \ T ∗(δ1) and its leftmost
branch (y0, R

∗) (which is ∆1 in it) are elements of Lγ+(y0).
Hence y0 ∈ Lγ+(y0) as was to be shown. This proves Lemma 4.

QED
Now we prove Theorem 3. The relation

{(u, v) : u ∈ ∆1
1(v)}

is Π1
1. Hence the set

C = {y ∈ B : x0 ∈ ∆1
1(y)}

is Π1
1(x0). If it is nonempty, then there exists y ∈ C with y ∈ Lγ+(y). But

since x0 ∈ ∆1
1(y) we know that ωy

1 ≥ ωx0
1 > γ hence y ∈ Lωy

1
which contradicts

A ∩B = ∅. It follows that

B ⊆ {y : x0 /∈ ∆1
1(y)} ⊆ {y : ωy

1 < γ}

The second inclusion is true since every element of Lωy
1

is in ∆1
1(y). It is well

known that for any countable γ the set D = {y ∈ 2ω : ωy
1 < γ} is Borel. For

example, a Σ1
1 definition and Π1

1 definition are given by:

1. y ∈ D iff there exists α < γ such that ∀e ∈ ω if {e}y is characteristic
function of a well-ordering (ω,≤y

e), then order-type(ω,≤y
e) < α.
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2. y ∈ D iff there does not exist e ∈ ω and f : (ω,≤y
e) → (γ,<) an

isomorphism where {e}y is the characteristic function of the relation
(ω,≤y

e).

But note that D ∩ A ⊆ Lγ is countable and B ⊆ D, so A and B can be
separated by a Borel set. This proves Theorem 3.
QED

Martin and Solovay [22] have shown that assuming Martin’s Axiom, not
CH, and ω1 = ωL

1 that every set of reals of cardinality ω1 is Π1
1. This result

also appears in Fremlin [11] 23J. Henryk Torunczyk informs me that under
these assumptions any set of reals of cardinality ω1 cannot be half of an
inseparable pair of Π1

1 sets.

Question 5 If every non Borel Π1
1 set is half of an inseparable pair, then is

Π1
1-determinacy true?

See Harrington [12] for some properties of coanalytic sets which imply
Π1

1-determinacy.
Cliff Weil raised the question of whether we can get a large number of

examples in Theorem 3, e.g.,

Question 6 Assuming V=L, does there exist continuum many coanalytic
sets which are pairwise non Borel isomorphic and each of which is not half
of an inseparable pair?

In Cenzer and Mauldin [7] it is shown that assuming V=L there are
continuum many coanalytic sets no two of which are Borel isomorphic.

Separation for subsets of ω.

We could also consider the failure of separation for (lightface) classes of
subsets of ω. Addison [1] shows that separation holds for the class of Π0

n and
fails for the class Σ0

n subsets of ω. However, not every proper Σ0
1 subset of

ω is half of an inseparable pair. A set A ⊆ ω is simple iff it is recursively
enumerable (equivalently Σ0

1), coinfinite, but its complement does not contain
an infinite recursively enumerable subset. Simple sets were first constructed
by Post [26] (or see Soare [29]), and clearly a simple set cannot be half of an
inseparable pair. We are not sure exactly which recursively enumerable sets
are half of inseparable pair, perhaps just the complete ones.
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Post also showed that a subset of ω is Σ0
n+1 iff it is Σ0

1(0
(n)) (see Soare[29]

IV 2.2). By relativizing his construction of a simple set to the oracle 0(n) we
get a properly Σ0

n+1 subset of ω which is not half of an inseparable pair.
Classically, separation holds for the class of Σ1

1 subsets of ω and fails for
Π1

1. A proof analogous to the simple set type construction will give a proper
Π1

1 subset of ω which is not half of an inseparable pair (see the proof of Sacks
[27] VI Theorem 2.1 or 2.4). Another “natural” example of such a Π1

1-set
can be given as follows. Let (ω,�) be a recursive linear ordering whose well-
ordered initial segment is isomorphic to ωCK

1 , the first non recursive ordinal.
The existence of such a linear ordering is due to Feferman [10] or perhaps
Harrison [13] see also Ash and Knight [2] 8.11. Now let A be the initial
well-ordered segment of �, i.e.,

A = {n ∈ ω : {m : m ≺ n} is well-ordered by �}.

Then A is a proper Π1
1 set. It cannot be half of an inseparable pair because

if B ⊆ ω is Π1
1 and disjoint from A then there must exists some n0 /∈ A such

that k � n0 for every k ∈ B. Otherwise

ω \ A = {m ∈ ω : ∃k ∈ B k � m}

but A is not a ∆1
1 set.

Another light-face question one might ask is the following. Suppose A
and B are disjoint Π1

1 subsets of ωω which cannot be separated by a ∆1
1-set,

then can they be separated by a ∆1
1-set? Here is a counterexample. Let

A,B ⊆ ω be disjoint Π1
1 sets which cannot be separated by ∆1

1 subset of ω.
Define A∗ = {f ∈ ωω : f(0) ∈ A} and B∗ = {f ∈ ωω : f(0) ∈ B}. Then A∗

and B∗ are disjoint Π1
1 which are clopen and hence separable by clopen sets.

But they cannot be separated by a ∆1
1 subset of ωω. Suppose C ⊆ ωω is ∆1

1

and A∗ ⊆ C and B∗ ∩ C = ∅. For each n < ω let xn ∈ ωω be the constant
function n. Then

C∗ = {n < ω : xn ∈ C}

is a ∆1
1 set separating A and B.

Natural pairs of inseparable sets.

A number of authors have given natural examples of inseparable pairs of
Π1

1 sets.
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Luzin [20] p.263 gives the following example. Let

φ : ωω × ωω → ωω

be a Borel function such that for every f : ωω → ωω continuous there exists
x such that ∀y φ(x, y) = f(y). Let

E = {(x, z) : ∃!y φ(x, y) = z}

E0 = {(x, z) ∈ E : ∃!y φ(x, y) = z and y(0) is even }

E1 = {(x, z) ∈ E : ∃!y φ(x, y) = z and y(0) is odd }

Then E0 and E1 are disjoint inseparable Π1
1 sets.

Sierpinski [28] gives the following pair of inseparable Π1
1 sets. Let U ⊆ R3

be a universal Gδ set for subsets of the plane, i.e., U is Gδ and for every Gδ

set V ⊆ R2 there exists an x ∈ R with Ux = V . Then
S1 = {(x, y) : ¬∃z (x, y, z) ∈ U}
S2 = {(x, y) : ∃! z (x, y, z) ∈ U}

are a pair of inseparable Π1
1 subsets of the plane.

Dellacherie and Meyer [9] give the following pair of inseparable Π1
1 sets (or

perhaps the analogous families of trees): Let LO be the space of linear or-
derings on ω which we can regard as a closed subspace of P (ω × ω) ≡ 2ω×ω.
Let WO ⊆ LO be the well-orderings. For two linear orderings let L1 6↪→ L2

mean that L1 cannot be order embedded into L2. The following two sets
cannot be separated by a Borel set:

D1 = {(L1, L2) ∈ LO2 : L1 ∈ WO and L2 6↪→ L1}
D2 = {(L1, L2) ∈ LO2 : L2 ∈ WO and L1 6↪→ L2}

To see that these sets are not separable by a Borel set, first note that for
any Π1

1 set A ⊆ 2ω there exists a continuous map f : 2ω → LO such that
f−1(WO) = A. (Such a map can be obtained by using the Kleene-Brouwer
ordering on a possible well-founded tree T ⊆ ω<ω and mapping ω<ω \ T to
and ω sequence at the end.) Similar, for any Π1

1 set B ⊆ 2ω there exists a
continuous map g : 2ω → LO such that g−1(WO) = B. Now if A and B
happen to be an inseparable disjoint pair, then the map h(x) = (f(x), g(x))
has the property that h(A) ⊆ D1 and h(B) ⊆ D2. Hence if C separated D1

and D2, then h−1(C) would separate A and B.

Maitra [21] uses an open game G(x) on ωω due to Blackwell and shows that
I = {x ⊆ ω<ω : G(x) is won by player I }
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II = {x ⊆ ω<ω : G(x) is won by player II }
are disjoint inseparable Π1

1 sets. They are not complementary sets because
in the game considered there may be ‘ties’.

Becker [4],[5] contains several examples of inseparable Π1
1 sets, for example,

B1 = {f ∈ C([0, 1]) : f is nowhere differentiable }
B2 = {f ∈ C([0, 1]) : ∃!x f ′(x) exists }

are inseparable Π1
1 sets. He gives other examples in the compact subsets of

the plane:
C1 = {K ∈ K(R2) : K is path-connected and simply connected}
C2 = {K ∈ K(R2) : K is path-connected and has exactly one hole}

Milewski [24] shows that the following pair of Π1
1 sets in the space of compact

subsets of the Hilbert cube, [0, 1]ω, are inseparable:
M1 = {K ∈ K([0, 1]ω) : all components of K are finite dimensional }
M2 = {K ∈ K([0, 1]ω) : exactly one component of K is ∞-dim }

Camerlo and Darji [6] give several families of pairwise inseparable coanalytic
sets. For any compact set K ⊆ ωω let

CD(K) = {T ⊆ ω<ω : {x ∈ ωω : ∀n x � n ∈ T} is homeomorphic to K}
Then for any two nonhomeomorphic compact set K1 and K2 the sets CD(K1)
and CD(K2) are inseparable Π1

1 sets.

One schema for obtaining natural disjoint inseparable pairs is to take a nat-
urally defined filter F on ω and its dual ideal F ∗ = {ω \X : X ∈ F}. Note
that F and F ∗ have the same complexity since there exists a recursive home-
omorphism taking one to other, i.e., X 7→ ω \ X. The cofinite filter COF
and its dual ideal FIN are naturally inseparable Σ0

2 sets in P (ω). Louveau’s
filter GN [17] is an example of a Π1

1 filter which cannot be separated from its
dual ideal by a Borel set. This filter is on the subsets of ω<ω and is defined
as follows:

A ∈ GN iff Player I has a winning strategy in the game J(A).

where J(A) is the game:

Player I: n0 n1 n2 · · ·
Player II: m0 ≥ n0 m1 ≥ n1 m2 ≥ n2 · · ·

Player I wins iff for some k all s ⊇ (mi : i < k) are not in A. (We use
⊇ to denote end extension of sequences.) This can also be described as
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follows: A ∈ GN iff ∃σ : ω<ω → ω ∀x ∈ ωω if ∀n x(n) ≥ σ(x � n) then
∃n ∀s ⊇ x � n s /∈ A. Although superficially it seems as if GN is Σ1

2,
Louveau proves it is Π1

1 by using the fact that open games are determined
and noting that Player I has a winning strategy iff Player II does not.

Louveau proves that any Borel real valued function on a compact metric
space is the GN -limit of a sequence of continuous functions. Hence GN is a
kind of ultimate generalization of the cofinite filter.

Proposition 7 GN cannot be separated from its dual ideal GN ∗ by a Borel
set.

Proof
This follows easily from Corollaire 8 (ii) in Louveau [17] which states that for
any separable metric space X and disjoint Π1

1 sets C1 and C2, there exists a
sequence, (Hu)u∈ω<ω of closed subsets of X such that

C1 ⊆ lim inf
GN

Hu ⊆ lim sup
GN

Hu ⊆ X \ C2.

where
x ∈ lim inf

GN
Hu iff {u : x ∈ Hu} ∈ GN

and
x ∈ lim sup

GN
Hu iff {u : x ∈ Hu} /∈ GN ∗.

Now take X = 2ω and let C1 and C2 be any two disjoint inseparable Π1
1

sets and take Hu ⊆ 2ω to be the closed sets as in Louveau’s Corollaire 8.
Suppose for contradiction that B ⊆ P (ω<ω) is a Borel set with GN ⊆ B and
GN ∗ ∩B = ∅. Define

Q = {x ∈ 2ω : {u : x ∈ Hu} ∈ B}.

Since B is Borel the set Q is Borel. Note that

lim inf
GN

Hu ⊆ Q ⊆ lim sup
GN

Hu

and so C1 ⊆ Q and Q ⊆ 2ω \C2 which contradicts that C1 and C2 cannot be
separated.
QED
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There are plenty of natural examples of proper Π1
1 filters which can be

separated from their duals by Borel sets.
W1 = {A ⊆ ω<ω : ¬∃f ∈ ωω ∃∞n f � n ∈ A}
W2 = {A ⊆ ω<ω : ¬∃f ∈ ωω ∃∞n ∃s ⊇ f � n s ∈ A}

W1 is the ideal of well-founded subrelations, W2 is the ideal generated by
well-founded subtrees. However, note that W1 ⊆ W2 ⊆ NWD where NWD
is the Borel ideal of nowhere dense subsets of ω<ω defined by

A ∈ NWD iff ∀s ∃t ⊇ s ∀r ⊇ t r /∈ A.
Similarly,

W3 = {A ⊆ Q : A is well-ordered }
W4 = {A ⊆ Q : cl(A) ⊆ Q is compact }

we have that W3 ⊆ W4 ⊆ NWDQ where NWDQ is the Borel ideal of
nowhere dense subsets of the rationals Q.

Hence, it is the case that each of W1,W2,W3,W4 can be separated from
their duals by a Borel set.

In Solecki [30] it is shown that for any Π0
3 filter F there exists a Σ0

2 set B
with F ⊆ B and F ∗ ∩ B = ∅. He leaves open whether the analogous result
holds for Π0

4 filters. Let F be the cofinite × cofinite filter on ω × ω, i.e., for
each A ⊆ ω × ω we have that

A ∈ F iff ∀∞n ∀∞m (n,m) ∈ A

Then F is a proper Σ0
4 set (see Kechris [15] §23) and so is its dual ideal F ∗.

In Solecki [30] Example 1.7, it is shown that F cannot be separated from F ∗

by a Σ0
2 set. Also according to [30] Corollary 1.5, they cannot be separated

by a ∆0
3 sets. They can however be separated by a Σ0

3 set. Let

Q = {A ⊆ ω × ω : ∀∞n ∃∞m (n,m) ∈ A}

Then Q is Σ0
3 and F ⊆ Q and F ∗ ∩Q = ∅.

Question 8 Is there a Σ0
3 filter F which cannot be separated from its dual

ideal F ∗ by a ∆0
3 set? In fact, is there a Σ0

3 filter F which is not Σ0
2?

Question 9 For F the cofinite × cofinite filter does there exist a natural Σ0
4

set G such that F and G are a disjoint inseparable pair. (How would you
prove there isn’t a natural one?)
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There is an easy way to generate examples of inseparable Σ0
n sets.

Proposition 10 Suppose that Q ⊆ 2ω is a complete Π0
n set. Let

Q0 = {(xn : n < ω) : ∃n even xn ∈ Q and ∀m < n xm /∈ Q}
Q1 = {(xn : n < ω) : ∃n odd xn ∈ Q and ∀m < n xm /∈ Q}

Then Q0 and Q1 are Σ0
n+1 sets which cannot be separated by a ∆0

n+1 set.

Proof
Let A,B ⊆ 2ω be a disjoint inseparable pair of Σ0

n+1 sets. Write them
as unions of Π0

n sets, A = ∪n<ωU
0
n and B = ∪n<ωU

1
n. Since Q is complete,

there are continuous maps f2n+i : 2ω → 2ω with f−1
2n+i(Q) = U i

n. Then the
map x 7→ (fm(x) : m < ω) shows that Q0 and Q1 are inseparable.
QED

Similarly there is a natural pair of inseparable Σ0
3 sets:

Proposition 11 Let
E = {x ∈ ωω : lim infn x(n) is even }
O = {x ∈ ωω : lim infn x(n) is odd }

Then E and O are disjoint inseparable Σ0
3 sets.

Proof
The set A = {x ∈ ωω : lim infn x(n) < ∞} is known to be a complete Σ0

3,
see Kechris [15] p.180. This means the given any Σ0

3 set B ⊆ 2ω there exists
a continuous map f : 2ω → ωω with f(A) = B. Now suppose that B1 and B2

are a disjoint inseparable pair of Σ0
3 sets and fi continuous with f−1

i (A) = Bi.
Define h : 2ω → ωω by h(x)(n) = 2f1(x(n) if f1(x)(n) ≤ f2(x)(n) and
h(x)(n) = 2f2(x(n) + 1 otherwise. Then h is continuous and h(B1) ⊆ E and
h(B2) ⊆ O and so E and O cannot be separated.
QED
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Appendix A

This is not intended for publication but only for the electronic version.

Details of the proof of Lemma 4.

Claim. Every nonempty Π1
1(x)-set contains a Π1

1(x) singleton.
Proof
Most proofs of the Addison-Kondo Theorem that every Π1

1 set contains a Π1
1

singleton relativizes, e.g., Kechris [15]. It is also follows from Π1
1 Uniformiza-

tion property (Addison-Kondo Theorem.) Namely let U ⊆ ω × 2ω × 2ω be
Π1

1 set such that for every x ∈ 2ω and for every set C which is Π1
1(x) there

exists n < ω such that C = U(n, x). By the Addison-Kondo Theorem there
exists V ⊆ U such for every (n, x) if there exists y with (n, x, y) ∈ U , then
there exists a unique y with (n, x, y) ∈ V .)
QED

Claim. If (X,R) ∈ A is a well-founded relation in an admissible set A, then
its rank and its canonical rank function are in A.
Proof
Define ψ(r,D, α) iff

1. r : D → α is onto the ordinal α,

2. D ⊆ X,

3. ∀x ∈ D ∀y ∈ X (yRx→ y ∈ D), and

4. ∀x ∈ D r(x) = sup{r(y) + 1 : yRx}.

Then ψ is a ∆0 formula. Also for any D ⊆ X which is closed under R both
r and α are unique and this uniqueness is provable in KP. Let

Q = {(r,D, α) : A |= ψ(r,D, α)}

First note that for any (r1, D1, α1), (r2, D2, α2) ∈ Q that

(r1 ∪ r2, D1 ∪D2, sup(α1, α2)) ∈ Q,

since canonical rank functions must agree on their common domain. Now
define F (x, β) iff there exists (r,D, α) ∈ Q with x ∈ D and r(x) = β. Then
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F is Σ1 predicate on A which is the graph of a (possibly partial) function
which we also denote F . By the Σ1-replacement axiom of KP there exist
δ0 ∈ A such that for all x ∈ X and β ∈ A F (x, β) → β < δ0. First we show
that the domain of F is X. We are assuming that (X,R) is well-founded, so
there exists an R-least x ∈ X such that x is not in the domain of F . Let
R(x) be the smallest subset of X which contains {y : yRx} and is closed
downward with respect to R. Then R(x) ∈ A (of course this is obvious if we
assume that R is a strict partial order). Now F � R(x) ∈ A since its graph
is a ∆1 subset of R(x) × δ0. This yields a contradiction since we can then
assign map x to the sup{F (y) + 1 : yRx} and get an element of Q with
x ∈ D. It follows that the domain of F is all of X and by a similar argument
that F ∈ A.

Here is a direct proof of the following result of Solecki.

Claim. Let F be the cofinite × cofinite filter. Then F and F ∗ cannot be
separated by a ∆0

3 set.
Proof

First we prove:

Lemma. Suppose A and B are disjoint Σ0
3 subsets of 2ω. Then there exists

a continuous map h : 2ω → P (ω × ω) such that h(A) ⊆ F and h(B) ⊆ F ∗.
Proof
The set

C = {x ∈ 2ω×ω : ∀∞n ∃m x(n,m) = 1}

is a complete Σ0
3 set, see Kechris [15] §23. Hence using the theory of Wadge

games there exists a super Lipschitz continuous map f : 2ω → 2ω×ω such that
f−1(C) = A. By super Lipschitz continuity of f we mean that f(x) � (n×n) is
determined by x � n. Let’s use f ∗ to denote this, i.e., f(x) � (n×n) = f ∗(x �
n). The same is true for the set B and let g and g∗ be the corresponding
maps.

Now we use f ∗ and g∗ to construct the map h∗ which we think of as
a strategy in a Wadge game. Fix n0. Given any s ∈ 2n0 assume we have
already determined h∗(s � (n0 − 1)) ⊆ (n0 − 1)× (n0 − 1). First of all

h∗(s) ∩ (n0 × (n0 − 1)) = h∗(s � (n0 − 1))

18



Given any n < n0 let in1 ≤ n be the minimal i such that for all k with
i < k < n there exists m < n0 such that f ∗(s)(n,m) = 1. (If there isn’t
any such k then in1 = n. Analogously but using g∗ define in2 . Now put
(n, n0) ∈ h∗(s) iff in1 ≤ in2 . In other words, what we are doing is looking at
the nth column and seeing when we look back at whether f(x) or g(x) is
more likely to be in C.

The continuous function h is just given by

h(x) = ∪n<ωh
∗(x � n).

Now we verify that h(A) ⊆ F and h(B) ⊆ F ∗. Suppose x ∈ A. Since A and
B are disjoint we know that f(x) ∈ C and g(x) /∈ C. This means there exists
a N0 so that for all n > N0 we have that there exists m with f(x)(n,m) = 1
and there is N1 > N0 so that g(x)(N1,m) = 0 for all m. (There are infinitely
many such columns N1 so just choose the smallest one bigger than N0.)

We claim that for all n > N1 the set h(x)∩{n}×ω is cofinite in {n}×ω.
This is because for a sufficiently large stage n0 > n in the game the witnesses
m will have shown up, i.e. be less than n0 and so in1 will be less than or equal
to N0 but in2 will never be less than N1 and so we will always put (n, n0) into
h∗(x � n0).

The proof that h(B) ⊆ F ∗ is analogous.
QED

The Lemma implies that F and F ∗ cannot be separated by a ∆0
3 set,

since separation fails for Σ0
3.

QED
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Appendix B

This is not intended for publication but only for the electronic version.

Lecture notes from
Slippery Rock conference

Summer Symposium XXVIII June 2004

For X a Polish space, i.e., separable completely metrizable, define the
Borel classes Σ0

α, Π0
α, and ∆0

α inductively for countable ordinals α as follows:

• Σ0
1 is the family of open sets in X

• Σ0
α is the family of all countable unions of sets from

⋃
β<α Π0

β

• Πα = {X \ A : A ∈ Σ0
α}

• ∆α = Σ0
α ∩Π0

α

The Borel subsets of X are those in
⋃

α<ω1
Σ0

α. Lebesgue proved that for
any uncountable Polish X that Σ0

α 6= Π0
α for any α < ω1. For Γ = Σ0

α or
Γ = Π0

α define the classical separation principle:

Sep(Γ) ≡ ∀A,B ∈ Γ A ∩B = ∅ → ∃C ∈ ∆ A ⊆ C and A ∩B = ∅.

Luzin [19] proved that Sep(Π0
α) holds for 1 < α < ω1 (also Sep(Π0

1) if X is
zero dimensional). He also proved that ¬Sep(Σ0

α). He gets an inseparable
pair by applying the reduction principle to a pair of a doubly universal sets,
see Kechris [15] §22 p.171.

The following result answers a question of Dashiell. It came up when he
was studying Banach spaces of Baire classes of functions [8] although the
question does not appear there.

Theorem 1 Suppose X is a Polish space and A ⊆ X is Σ0
α but not Π0

α.
Then there exists A∗ ⊆ X which is Σ0

α such that A ∩ A∗ = ∅ but there does
not exist a ∆0

α set C which separates A and A∗, i.e., A ⊆ C and C ∩A∗ = ∅.

Define Σ1
1 (or analytic) subsets of X to be the smallest family of subsets

of X which contains the Borel sets and is closed under continuous images. Π1
1

is the family of coanalytic sets or complements of analytic. Suslin showed
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that disjoint analytic subsets of X can be separated by Borel sets and so
Sep(Σ1

1) holds and ∆1
1 =Borel. Luzin’s argument goes thru to show that

¬Sep(Π1
1). Dashiell also raised the same question for the coanalytic sets Π1

1.
In this case the answer is independent.

Theorem 2 Suppose Π1
1-determinacy holds, then for any Π1

1 set A in a
Polish space X, if A is not Σ1

1, then there exists A∗ ⊆ X a Π1
1 set disjoint

from A which cannot be separated from A by a Borel set.

Theorem 3 Suppose V = L, then there exists a A ⊆ 2ω and Π1
1 set which

is not Σ1
1 with the property that for any B ⊆ 2ω a Π1

1 set disjoint from A
there exists a Borel set C with A ⊆ C and C ∩B = ∅.

Theorem 2 is an easy corollary of a result of Steel [31]:

Theorem 4 (Harrington [12], Steel [31]) The following are equivalent:
(a) Π1

1-determinacy
(b) For all A ⊆ X and B ⊆ Y if X and Y are Polish and A and B are

properly analytic, then there exists a Borel bijection f : X → Y such that
f(A) = B.

Theorem 3 uses the self-constructible reals A studied by Guaspari, Sacks,
and Kechris, see [14].

A = {x ∈ 2ω : x ∈ Lωx
1
}

where ωx
1 is the smallest ordinal not recursive in x.

Question 5 If every non Borel Π1
1 set is half of an inseparable pair, then is

Π1
1-determinacy true?

Cliff Weil raised the question after the talk of whether we can get a large
number of examples in Theorem 3, e.g.,

Question 6 Assuming V=L, does there exist continuum many coanalytic
sets which are pairwise non Borel isomorphic and each of which is not half
of an inseparable pair?
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A number of authors have given natural examples of inseparable pairs of
Π1

1 sets, Luzin [20], Novikov [25], Sierpinski [28], Dellacherie and Meyer [9],
Maitra [21], Becker [4],[5], Milewski [24], and Camerlo and Darji [6].

Another method for obtaining a disjoint inseparable pair is to take a filter
F on ω and its dual ideal F ∗ = {ω \X : X ∈ F}. Note that F and F ∗ have
the same complexity since there exists a recursive homeomorphism taking
one to other, i.e., X 7→ ω \X. This was suggested by the results in Solecki
[30].

The cofinite filter COF and its dual ideal FIN are naturally inseparable
Σ0

2 sets in P (ω). Louveau’s filter GN [17] is an example of a proper Π1
1 filter.

Louveau proves that the Borel real valued function on a compact metric space
are exactly the GN -limits of sequences of continuous functions. Hence GN
is a kind of ultimate generalization of the cofinite filter.

Proposition 7 GN cannot be separated from its dual ideal GN ∗ by a Borel
set.
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