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Uniquely Universal Sets
Arnold W. Miller
Abstract!

We say that X xY satisfies the Uniquely Universal property (UU)
iff there exists an open set U C X x Y such that for every open
set W C Y there is a unique cross section of U with U, = W.
Michael Hrusak raised the question of when does X x Y satisfy
UU and noted that if Y is compact, then X must have an isolated
point. We consider the problem when the parameter space X is
either the Cantor space 2¥ or the Baire space w”. We prove the
following;:

1. If Y is a locally compact zero dimensional Polish space which
is not compact, then 2 x Y has UU.

2. If Y is Polish, then w* x Y has UU iff Y is not compact.

3. If Y is a o-compact subset of a Polish space which is not
compact, then w* x Y has UU.

For any space Y with a countable basis there exists an open set U C 2“xY
which is universal for open subsets of Y, i.e., W C Y is open iff there exists
x € 2¥ with

U, =""{yecY : (x,y) €U} =W.

To see this let {B,, : n <w} be a basis for Y. Define
(x,y) € U iff In (z(n) =1 and y € B,).

More generally if X contains a homeomorphic copy of 2¢ then X x Y will
have a universal open set.

In 1995 Michael Hrusak mentioned the following problem to us. Most of
the results in this note were proved in June and July of 2001.
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Hrusak ’s problem.

Let X, Y be topological spaces, call X the parameter space, and
Y the base space. When does there exists U C X x Y which is
uniquely universal for the open subsets of Y7 This means the U
is open and for every open set W C Y there is a unique z € X
such that U, = W.

Let us say that X x Y satisfies UU (uniquely universal property) if there
exists such an open set U C X X Y which uniquely parameterizes the open
subsets of Y. Note that the complement of U is a closed set which uniquely
parameterizes the closed subsets of Y.

Proposition 1 (Hrusdk ) 2 x 2 does not satisfy UU.

proof:

The problem is the empty set. Suppose U is uniquely universal for the
closed subsets of 2¢. Then there is an zy such that U,, = 0 but all other
cross sections are nonempty. Take x,, — xy but distinct from it. Since all
other cross sections are non-empty we can choose y,, € U,,,. But then y, has

a convergent subsequence, say to o, but then yo € U,,.
QED

More generally:

Proposition 2 (Hrusdk ) Suppose X XY has UU and Y is compact. Then
X must have an isolated point.

proof:

Suppose U C X x Y witnesses UU for closed subsets of Y and U,, = 0.
For every y € Y there exists U, x V, open containing (x¢,y) and missing
U. By compactness of Y finitely many V,, cover Y. The intersection of the
corresponding U, isolates x.

QED

Hence, for example, 2 x (w+1), w* x (w+ 1), and w* x 2¥ cannot have
UU.
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Proposition 3 Let 2¥ & 1 be obtained by attaching an isolated point to 2.
Then (2 @& 1) x 2 has UU.

proof:
Define T' C 2<% to be a nice tree iff

(a) s Ct e T implies s € T and
(b) if s € T', then either s(0) or s"(1) in T
Let NT C P(2<“) be the set of nice trees. Define the universal set U by
U={(T,z) e NT x2* : ¥n x[n € T}.

Note that the empty tree T is nice and parameterizes the empty set. Also
NT is a closed subset of P(2<%) with exactly one isolated point (the empty
tree), and hence it is homeomorphic to 2¥ @ 1.

QED

Question 4 Does (2¥ & 1) x [0, 1] have UU?
Remark 5 2¥ x w has the UU property. Just let (z,n) € U iff x(n) = 1.

Question 6 Does either R x w or [0, 1] X w have UU? Or more generally, is
there any example of UU for a connected parameter space?

Recall that a topological space is Polish iff it is completely metrizable and
has a countable dense subset. A set is Gy iff it is the countable intersection
of open sets. The countable product of Polish spaces is Polish. A G subset
of a Polish space is Polish (Alexandrov). A space is zero-dimensional iff it
has a basis of clopen sets. All compact zero-dimensional Polish spaces with-
out isolated points are homeomorphic to 2 (Brouwer). A zero-dimensional
Polish space is homeomorphic to w* iff compact subsets have no interior
(Alexandrov-Urysohn). For proofs of these facts see Kechris [5] p.13-39.

Proposition 7 Suppose Y is a zero dimensional Polish space. IfY is locally
compact but not compact, then 2° xY has UU. So, for example, 2% X (w x 2¥)
has UU.
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proof:
Let B be a countable base for Y consisting of clopen compact sets. Define
G C B is good iff
G={peB:bC|JG}

Let G C P(B) be the family of good subsets of 5. We give the P(B) the
topology from identifying it with 25. Since B is an infinite countable set
P(B) is homeomorphic to 2. A sequence G,, for n < w converges to G iff for
each finite F' C B we have that G,, N F' = G N F for all but finitely many n.
Hence G is a closed subset of P(B) since by compactness b C |JG iff b C | F
for some finite F' C G.

There is a one-to-one correspondence between good families and open
subsets of Y: Given any open set U C Y define

Gy={beB : bCU}

and given any good G define Ugs = |JG. (Note that the empty set is good.)

We claim that no Gy € G is an isolated point. Suppose for contradiction
it is. Then there must be a basic open set N with {Go} = GN N. A basic
neighborhood has the following form

N:N<F0,F1):{GQB : FOQGandFlﬂG:@}

where Fy, F7 C B are finite.

For each b € F) since Gy is good, b is not a subset of |J Gy, and since
U Fo € U Go, we can choose a point z, € b\ |J Fy. Since Y is not compact,
Y\ (U(Fp U Fy)) is nonempty. Fix z € Y\ (U(Fo U FY)).

Now let Uy =Y \ {2, : b€ Fi} and let Uy = U; \ {z}. Then Gy,, Gy,
are distinct elements of N N G.

Hence G is a compact zero-dimensional metric space without isolated
points and therefore it is homeomorphic to 2¢.

To get a uniquely universal open set U C G x Y define:

(G,y) eUif e G yeb.
QED

Example 26 is a countable Polish space Z such that 2¢ x Z has UU, but
Z is not locally compact.
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Lemma 8 Suppose f: X — Y s a continuous bijection and Y x Z has UU.
Then X x Z has UU.

proof:
Given V C Y x Z witnessing UU, let

U={(z,y) : (f(x),y) € V}.
QED

Many uncountable standard Borel sets? are the bijective continuous image
of the Baire space w”. According to the footnote on page 447 of Kuratowski
[6] Sierpinski proved in a 1929 paper that any standard Borel set in which
every point is a condensation point is the bijective continuous image of w®.
We weren’t able to find Sierpinski’s paper but we give a proof of his result
in Lemma 21.

We first need a special case for which we give a proof.

Lemma 9 There is a continuous bijection f : w* — 2¢.

proof:
Let # : w — w + 1 be a bijection. It is automatically continuous. It
induces a continuous bijection 7 : w* — (w+1)¥. But (w+ 1) is a compact

Polish space without isolated points, hence it is homeomorphic to 2¢.
QED

Remark. If C' C 2% x w¥ is the graph of f~!, then C is a closed set which
uniquely parameterizes the family of singletons of w®.

Corollary 10 If2“ x Y has UU, then w* xY has UU.

Question 11 Is the converse of Corollary 10 false? That is: Does there
exist Y such that w* XY has UU but 2 x Y does not have UU?

Lemma 12 Suppose X is a zero-dimensional Polish space without isolated
points. Then there exists a continuous bijection f :w* — X.

2A standard Borel set is a Borel subset of a Polish space.
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proof:
Construct a subtree 7' C w<* and (Cs € X : s € T') nonempty clopen
sets such that:

1. C<> =X,
2. if s € T is a terminal node, then Cy is compact, and

3. if s € T is not terminal, then s”(n) € T for every n € w and Cj is
partitioned by (Cs~ny @ n < w) into nonempty clopen sets each of
1

diameter® less than ——.
[s|+1

For each terminal node s € T choose a continuous bijection fs : [s] — Cj
given by Lemma 9. Define f : w* — X by f(z) = fun(x) if there exists n
such that x[n is a terminal node of 7" and otherwise determine f(z) by the
formula:

{f@)} =) Conm

nw

Checking that f is a continuous bijection is left to the reader.
QED

Remark. An easy modification of the above argument shows that any
zero-dimensional Polish space is homeomorphic to a closed subspace of w®.
It also gives the classical result that if no clopen sets are compact, then X is
homeomorphic to w”. A different proof of Lemma 12 is given in Moschovakis
8] p. 12.

Definition 13 We use cl(X) to denote the closure of X.

Proposition 14 Suppose Y 1is Polish but not compact. Then w* XY has
the UU. So for example, w* X w* and w* x R both have UU.

proof:
We assume that the metric on Y is complete and bounded. Let B be a
countable basis for Y of nonempty open sets which has the property that no
finite subset of B covers Y.
For s,t € B define t < s iff cl(t) C s and diam(t) <

5 diam(s).

3This is with respect to a fixed complete metric on X.
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Lemma 15 Suppose G C B has the following properties:
(1) forallt,s € Bift Cs e G, thent € G and
(2) Vse B if (Vt<ds teG), thens € G,

then for any s € B if s C|JG, then s € G.

proof:

Suppose (1) and (2) hold but for some s C | JG we have s ¢ G.

Note that there cannot be a sequence (s, : n € w) starting with sy = s,
and with s,41 <'s, and s,, ¢ G for each n. This is because if {x} = (1, ¢, Sn.
then x € s C |JG and so for some t € G we have z € t. But then for some
sufficiently large n we have that s, C ¢ putting s,, € G by (1).

Hence there must be some t<s with ¢ ¢ G but for all r <t we have r € G.
This is a contradiction to (2).

QED

Let G C P(B) be the set of all G which satisfy the hypothesis of Lemma
15. Then we have a Gy subset G of 28, which uniquely parameterizes the
open sets. Hence the set U witnesses the unique universal property:

U={(Gx)egxY :ze| ]G}

To finish the proof it is enough to see that no point in G is isolated. If
G has an isolated point, there must be sq,...,s, and t,...,t, from B such
that
N={GeG :s1€G,....;s, €G, t1 ¢G,... . t,, ¢ G}

is a singleton. Let W = s, U--- U s,. Since N contains the point
G={seB :sCW}

it must be that N = {G}. For each j choose x; € t; \ W. Since the union of
the s; and ¢; does not cover Y, we can choose

ZGY\(81UUSnUt1UUtm>
Take r € B with z € r but z; ¢ r for each j =1,...,m. Let

G={seB:sCruwh
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Then G' € N but G’ # G which shows that N is not a singleton.
It follows from Lemma 8 and 12 that w“ x Y has the UU.
QED

Proposition 2 and 14 show that:

Corollary 16 ForY Polish:
w¥ XY has UU iff Y is not compact.

Question 17 Does 2 x w* have UU?
Question 18 Does 2 x R have UU?

Our next result follows from Proposition 22 but has a simpler proof so
we give it first.

Proposition 19 If X is a countable metric space which is not compact, then

w* X X has UU. So, for example, w* x Q has UU.

proof:

We produce a uniquely universal set for the open subsets of X.

First note that there exists a countable basis B for X with the property
that it is closed under finite unions and X \ B is infinite for every B € B. To
see this fix {z, : n <w} C X an infinite set without a limit point, i.e., an
infinite closed discrete set. Given a countable basis B replace it with finite
unions of sets from

{B\{zm:m >n} : n €wand B € B}.

We may assume also that B includes the empty set.
Next let

P={(B,F):BeB, Fel[X]|* and BNF = 0}.

Then P is a partial order determined by p < ¢ iff B, C B, and F, C F,. For
p € P we write p = (B,, F},). For p,q € P we write p L ¢ to stand for p and
g are incompatible, i.e., there does not exist r € P with r < p and r < ¢.

We will code open subsets of X by good filters on P. Define the family G
of good filters on P to be the set of all G C P such that
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1. p<qand p e G implies q € G,

2. Vp,q € G exists r € G with r < p and r < ¢,
3. Vee XdpeG xe€ B,UF, and

4. Vp e Peitherpe Gordge G p Lg.

Since the poset P is countable we can identify P(P) with P(w) and hence 2¢.
We give G C P(PP) the subspace topology. Note that G is G5 in this topology.
Note also that the sets

P ={Ge€gG : peG}

form a basis for G (use conditions (2) and (4) to deal with finitely many p;
in G and finitely many ¢; not in G).

Note that since X \ B, is always infinite, for any p € PP there exists 7,q < p
with 7 L ¢. Namely, for some z € X\ (B,UF),) put = into B, N F,. It follows
that no element of G is isolated. So G is a zero-dimensional Polish space
without isolated points. Hence by Lemma 12 there is a continuous bijection
fw =G

For G € G, let

Ue=|J{B, : peG}.
For any U C X open, define
Gu={peP : B,CUand F,NU = 0}.

The maps G — Ug and U — Gy show that there is a one-to-one correspon-
dence between G and the open subsets of X.
Finally define i/ C G x X by

(G,x)eUiff Jpe G v e B,
This witnesses the UU property for G x X and so by Lemma 8, we have UU

for w¥ x X.
QED

Question 20 Does 2 x Q have UU?
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Our next result Proposition 22 implies Proposition 19 but needs the fol-
lowing Lemma:

Lemma 21 (Sierpinski) Suppose B is a Borel set in a Polish space for which
every point s a condensation point. Then there exists a continuous bijection
from w* to B.

proof:

We use that every Borel set is the bijective image of a closed subset of w*.
This is due to Lusin-Souslin see Kechris [5] p.83 or Kuratowski-Mostowski
[7] p.426.

Using the fact that every uncountable Borel set contains a perfect subset
it is easy to construct K, for n < w satisfying:

1. K,, C B are pairwise disjoint,
2. K, are homeomorphic copies of 2 which are nowhere dense in B, and
3. every nonempty open subset of B contains infinitely many K.

Let By = B\ U, ., Kn- We may assume B, is nonempty, otherwise just
split K into two pieces. Since it is a Borel set, there exists C' C w* closed
and a continuous bijection f : C' — By. Define

'={scew™ : [s|NnC=0and [s"|NC # 0}

where s* is the unique t C s with |t| = |s| — 1. Without loss we may assume
that C' is nowhere dense and hence I' infinite. Let I' = {s,, : n < w} be a
one-one enumeration. Note that {C'} U {[s,] : n < w} is a partition of w*.
Inductively choose l,, > [,,_; with K; a subset of the ball of radius n+r1
around f(xz,) for some x,, € C'N[sk]. For each n < w let f, : [s,] = K, be
a continuous bijection.
Then g = fUJ

fn is a continuous bijection from w* to ByUJ K.

n<w n<w

To see that it is continuous suppose for contradiction that w, — v as n — oo
and |g(u,) —g(u)| > € > 0 all n. Since C is closed if infinitely many w,, are in
C, so is u and we contradict continuity of f. If u € [s,], then we contradict
the continuity of f,, So, we may assume that all u,, are not in C' but u is in
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C'. By the continuity of f we may find s C u with f([s] N C) inside a ball of
radius § around f(u). Find n with —= < & for which there is m such that
Um € [sp] and s, D s. But then g(u,,) = fu(uy,) € K, and K, is in a ball

of radius —= around some f(z,) with z,, € [s;]NC. This is a contradiction:

d(g(u), g(um)) < d(f(u), f(xn)) + d(f(2n); f(um)) < ;6'

Next let I =w\ {l, : n <w}. Then there exists continuous bijection

h:[xw‘“—>UKi.

icl

Finally gUh is a continuous bijection from w* @ (I xw*) to BoUlJ, ., Kn = B.
Since w* @ (I x w*) is a homeomorphic copy of w*” we are done.
QED

Proposition 22 w“ xY has UU for any o-compact but not compact subspace
Y of a Polish space. So for example, w* x (Q x 2¥) has UU.

proof:

Let Y =, ., K where each K, is compact. Since Y is not compact it
contains an infinite closed discrete set D. Choose a countable basis B for Y
such that for any b € B the closure of b contains at most finitely many points
of D. Define G C B to be good iff for every b € B if ¢l(b) C |JG then b € G.
Let G C P(B) be the family of good sets.

Note that G is a I3 set:

GegGiff beB (vn db)nK,C|JG)—»bed

Note that cl(b) N K,, C |J G iff there is a finite F' C G with cl(b)NK,, C |J F.
To finish the proof it is necessary to see that basic open sets in G are
uncountable. Given b;,c; € B for ¢« < n and j < m suppose that

N:{GGQ : boGG,...,bn_lgG, 60¢G,...,Cm_1¢G}

is nonempty. Since it is nonempty we can choose points

uj € cl(e;) \ | el(bi)

<n
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for 7 < m. Note that the set

Z=D\d( |J bug)

<n,j<m

is an infinite discrete closed set. But then given any () C Z we can find an
open set Ug with J,_, cl(b;) C Ug, u; ¢ Ug for j < m, and UpNZ = Q.
Let

GQ = {b eB: Cl(b) C UQ}

Since each Gg € N we have that /N is uncountable. By Lemma 21 and 8, we
are done.

QED
Question 23 For what Borel spaces Y does w* XY have UU?
For example, does w* x Q¥ have UU?
Proposition 24 For every Y a X1 set there erists a X1 set X such that

X XY has UU.

proof:
Suppose Y C Z where Z is Polish and B is a countable base for Z. Define
G C P(B) by

GegiffvbeB [bnY €| JG) = bed]

Note that bNY C |JG is I} and so G is X].
QED

We use the next Lemma for Example 26.
Lemma 25 For any space Y

(wWx2¥) xY has UU iff 2* XY has UU.

proof:
Suppose C' C (w x 2¥) x Y is a closed set uniquely universal for the closed
subsets of Y.
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Since the whole space Y occurs as a cross section of C' without loss we
may assume that ¥ = 0(0,6) where 0 is the constant zero function.
For each n > 0 let

K, ={(0" (x,z9,21,...),y) €2 XY : ((n,x),y) € C}

By 0" (%, zg, x1,...) we mean a sequence of n zeros followed by the special
symbol * and then the (binary) digits of . Note that the K, converge to 0.
Let

Ko ={(z,y) : ((0,2),y) € C}

Let B=J, _ K, CS xY where

nw
S=2U U{OHA<*,JZ’0,ZC1,...> A 2w}

n>0

Note that S is homeomorphic to 2* and there is a one-to-one correspondence
between the cross sections of B and cross sections of C'. Note that B is closed
in SxY: If (x,,y,) € B for n < w is a sequence converging to (z,y) € SxY
and z is not the zero vector it is easy to see that (z,y) € B. On the other
hand if z is the zero vector, then since Bz =Y, it is automatically true that
(z,y) € B.

Hence UU holds for 2¥ x Y.

For the opposite direction just note that (w + 1) x 2¥ is homeomorphic
to 2¢ and there is a continuous bijection from w x 2¢ onto (w + 1) x 2¢.
QED

Next we describe our counterexample to a converse of Proposition 7. Let
Z = (w x w)U{oo}. Let each D,, = {n} x w be an infinite closed discrete
set and let the sequence of D,, “converge” to oo, i.e., each neighborhood of
oo contains all but finitely many D,,. Equivalently Z is homeomorphic to:

Z'={zrew’ : {n : xz(n) #0} <1}

The point oo is the constant zero map, while D,, are the points in Z’ with
x(n) # 0. Note that Z’ is a closed subset of w“, hence it is Polish. This
seems to be the simplest nonlocally compact Polish space.

Example 26 Z is a countable nonlocally compact Polish space such that
2% X Z has the UU.
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proof:

Z = U<y Dn U {oo}. Note that X C Z is closed iff co € X or X C
U<, D; for some k < w. By Lemma 25 it is enough to see that (w x 2¥) x Z
has the UU.

Let P, = {n} x 2v.

Use P, to uniquely parameterize all subsets of Z which contain the point
at infinity, see Remark 5.

Use P; to uniquely parameterize all X C Dy, including the empty set.

For n = 1+2%1(2 — 1) with k,1 > 0 use P, to uniquely parameterize all
X C U<, Di such that Dy meets X and the minimal element of Dy N X is
the [-th element of Dy.

QED

Our next two results have to do with Question 17.

Proposition 27 Ezistence of UU for 2¥ x w* s equivalent to:

There exist a C C P(w<*) homeomorphic to 2¥ such that every T' € C is
a subtree of w<* (possibly with terminal nodes) and such that for every closed
C C w* there exists a unique T € C with C = [T].

proof:
Given C' C 2¥ x w* witnessing UU for closed subsets of w®. Let

[T ={(s, 1) : ([s] x [ty nC # 0}

Define f : 2 — P(w<¥) = 2*~" by f(z)(s) = 1iff (xn, s) € T where n = |s|.
Then f is continuous, since f(z)(s) depends only on z[n where n = |s|.

If T, = f(z), then [T,] = C,. Hence f is one-to-one, so its image C is as
described.
QED

Proposition 28 Suppose w* XY has UU where Y is any topological space
i which open sets are F,. Then there exists U C 2° XY an F, set such that
all cross sections U, are open and for every open W C'Y there is a unique
r €2¥ withU, =W.
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proof:

Let w @ 1 denote the discrete space with one isolated point adjoined and
let w41 denote the compact space consisting of a single convergent sequence.
Then (w @ 1)“ is homeomorphic to w* and (w + 1)* is homeomorphic to 2.

Assume that U C (w @ 1)¥ x Y is an open set witnessing UU. Then U is
an I, set in (w+ 1) x Y.

To see this note that a basic clopen set in (w @ 1)“ could be defined by
some s € (w @ 1)<¥ by

[s]={z€(wd1)” : sCua}.

But it is easy to check that [s] C (w+1)“ is closed in the topology of (w+1)“.
Since U is open in (w @ 1) x Y there exists s, and open sets W,, C Y such
that

U= Jlsa] x W,

n<w

Hence U is the countable union of F, sets and so it is Fj, in (w + 1)<¥.
QED

Here @ refers to the topological sum of disjoint copies or equivalently a
clopen separated union.

Proposition 29 Suppose X; x Y; has UU fori € I. Then
(J]x:) x (@ Y:) has UU.
icl i€l

So, for example, if 2° XY has UU, then 2¥ x (w X Y') has UU.

proof:
Define
((xi)l-el,y) eUiff i el (:cl,y) eU;

where the U; C X; x Y, witness UU.
QED

Except for Proposition 2 we have given no negative results. The following
two propositions are the best we could do in that direction.
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Proposition 30 Suppose U C X XY is an open set universal for the open
subsets of Y. If X 1is second countable, then so is'Y .

proof:

U is the union of open rectangles of the form B x C' with B open in X
and C open in Y. Clearly we may assume that B is from a fixed countable
basis for X. Since |J;, B x C; = B x |J; C; we may write U as a countable
union:

U=JB.xC
nw
where the B, are basic open sets in X and the C),, are open subsets of Y.
But this implies that {C,, : n < w} is a basis for Y since for each x € X

U, = J{Cn : 2€ B}

QED

Proposition 31 There exists a partition X UY = 2% into Bernstein sets X
and Y such that for every Polish space Z neither Z x X nor Z XY has UU.

proof:

Note that up to homeomorphism there are only continuum many Polish
spaces. If there is a UU set for Z x X, then there is an open U C Z x 2 such
that U N (Z x X) is UU. Note that the cross sections of U must be distinct
open subsets of 2. Hence it suffices to prove the following:

Given U, for o < ¢ such that each U, is a family of open subsets of 2¢
either

(a) there exists distinct U,V € U, with UNX =V NX or
(b) there exists U C 2“ open such that UNX # VNX forall V € U,.

And the same for Y in place of X.
Let P, for o < ¢ list all perfect subsets of 2* and let {2z, : o < ¢} =2%.
Construct X,,Y, C 2¥ with

1. X,nY, =10
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2. a < B implies X, € X3 and Y, C Y}
3. [ X UY,| =|a|+w

4. If there exists distinct U,V € U, such that UAV is a countable set
disjoint from X, then there exists such a pair with UAV C Y, 14

5. If there exists distinct U,V € U, such that UAV is a countable set
disjoint from Y, 1, then there exists such a pair with UAV C X,

6. P, meets both X1 and Y,
7. Za € (Xa+1 U Ya+1)

First we do (4) then (5) and then take care of (6) and (7).

Let X =, . Xaand Y =, Ya-

Fix a and let us verify (a) or (b) holds. Take any point p € X \ X,11. If
(b) fails there must be U,V € U, with X = X NU and X \ {p} = X NV.
Then (UAV) N X441 = 0. Since X is Bernstein and (UAV) N X has only
one point in it, it must be that UAV is countable. Then by our construction
we have chosen distinct U,V € U, with UAV C Y therefore UNX =V NX,
so (a) holds.

A similar argument goes through for Y.

QED

Finally, and conveniently close to the bibliography, we note some papers
in the literature which are related to the property UU. Friedberg [3] proved
that there is one-to-one recursively enumerable listing of the recursively enu-
merable sets. This is the same as saying that there is a (light-face) 39 subset
U C w X w which is uniquely universal for the ¥¢ subsets of w. Brodhead
and Cenzer [1] prove the analogous result for (light-face) X9 subsets of 2.

Becker [2] considers unique parameterizations of the family of countable
sets by Borel or analytic sets. Gao, Jackson, Laczkovich, and Mauldin [4]
consider several other problems of unique parameterization.
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