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Uniquely Universal Sets

Arnold W. Miller

Abstract1

We say that X×Y satisfies the Uniquely Universal property (UU)
iff there exists an open set U ⊆ X × Y such that for every open
set W ⊆ Y there is a unique cross section of U with Ux = W .
Michael Hrus̆ák raised the question of when does X × Y satisfy
UU and noted that if Y is compact, then X must have an isolated
point. We consider the problem when the parameter space X is
either the Cantor space 2ω or the Baire space ωω. We prove the
following:

1. If Y is a locally compact zero dimensional Polish space which
is not compact, then 2ω × Y has UU.

2. If Y is Polish, then ωω × Y has UU iff Y is not compact.

3. If Y is a σ-compact subset of a Polish space which is not
compact, then ωω × Y has UU.

For any space Y with a countable basis there exists an open set U ⊆ 2ω×Y
which is universal for open subsets of Y , i.e., W ⊆ Y is open iff there exists
x ∈ 2ω with

Ux =def {y ∈ Y : (x, y) ∈ U} = W.

To see this let {Bn : n < ω} be a basis for Y . Define

(x, y) ∈ U iff ∃n (x(n) = 1 and y ∈ Bn).

More generally if X contains a homeomorphic copy of 2ω then X×Y will
have a universal open set.

In 1995 Michael Hrušák mentioned the following problem to us. Most of
the results in this note were proved in June and July of 2001.

1MSC2010: 03E15
Keywords: Universal set, Unique parameterization, Polish spaces, Cantor space, Baire

space.
Last revised January 12, 2012.



Uniquely Universal Sets 2

Hrušák ’s problem.

Let X, Y be topological spaces, call X the parameter space, and
Y the base space. When does there exists U ⊆ X × Y which is
uniquely universal for the open subsets of Y ? This means the U
is open and for every open set W ⊆ Y there is a unique x ∈ X
such that Ux = W .

Let us say that X × Y satisfies UU (uniquely universal property) if there
exists such an open set U ⊆ X × Y which uniquely parameterizes the open
subsets of Y . Note that the complement of U is a closed set which uniquely
parameterizes the closed subsets of Y .

Proposition 1 (Hrušák ) 2ω × 2ω does not satisfy UU.

proof:
The problem is the empty set. Suppose U is uniquely universal for the

closed subsets of 2ω. Then there is an x0 such that Ux0 = ∅ but all other
cross sections are nonempty. Take xn → x0 but distinct from it. Since all
other cross sections are non-empty we can choose yn ∈ Uxn . But then yn has
a convergent subsequence, say to y0, but then y0 ∈ Ux0 .
QED

More generally:

Proposition 2 (Hrušák ) Suppose X × Y has UU and Y is compact. Then
X must have an isolated point.

proof:
Suppose U ⊆ X × Y witnesses UU for closed subsets of Y and Ux0 = ∅.

For every y ∈ Y there exists Uy × Vy open containing (x0, y) and missing
U . By compactness of Y finitely many Vy cover Y . The intersection of the
corresponding Uy isolates x0.
QED

Hence, for example, 2ω × (ω+ 1), ωω × (ω+ 1), and ωω × 2ω cannot have
UU.
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Proposition 3 Let 2ω ⊕ 1 be obtained by attaching an isolated point to 2ω.
Then (2ω ⊕ 1)× 2ω has UU.

proof:
Define T ⊆ 2<ω to be a nice tree iff

(a) s ⊆ t ∈ T implies s ∈ T and

(b) if s ∈ T , then either sˆ〈0〉 or sˆ〈1〉 in T .

Let NT ⊆ P(2<ω) be the set of nice trees. Define the universal set U by

U = {(T, x) ∈ NT× 2ω : ∀n x�n ∈ T}.

Note that the empty tree T is nice and parameterizes the empty set. Also
NT is a closed subset of P(2<ω) with exactly one isolated point (the empty
tree), and hence it is homeomorphic to 2ω ⊕ 1.
QED

Question 4 Does (2ω ⊕ 1)× [0, 1] have UU?

Remark 5 2ω × ω has the UU property. Just let (x, n) ∈ U iff x(n) = 1.

Question 6 Does either R×ω or [0, 1]×ω have UU? Or more generally, is
there any example of UU for a connected parameter space?

Recall that a topological space is Polish iff it is completely metrizable and
has a countable dense subset. A set is Gδ iff it is the countable intersection
of open sets. The countable product of Polish spaces is Polish. A Gδ subset
of a Polish space is Polish (Alexandrov). A space is zero-dimensional iff it
has a basis of clopen sets. All compact zero-dimensional Polish spaces with-
out isolated points are homeomorphic to 2ω (Brouwer). A zero-dimensional
Polish space is homeomorphic to ωω iff compact subsets have no interior
(Alexandrov-Urysohn). For proofs of these facts see Kechris [5] p.13-39.

Proposition 7 Suppose Y is a zero dimensional Polish space. If Y is locally
compact but not compact, then 2ω×Y has UU. So, for example, 2ω×(ω×2ω)
has UU.
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proof:
Let B be a countable base for Y consisting of clopen compact sets. Define

G ⊆ B is good iff

G = {b ∈ B : b ⊆
⋃

G}

Let G ⊆ P(B) be the family of good subsets of B. We give the P(B) the
topology from identifying it with 2B. Since B is an infinite countable set
P(B) is homeomorphic to 2ω. A sequence Gn for n < ω converges to G iff for
each finite F ⊆ B we have that Gn ∩ F = G ∩ F for all but finitely many n.
Hence G is a closed subset of P(B) since by compactness b ⊆

⋃
G iff b ⊆

⋃
F

for some finite F ⊆ G.
There is a one-to-one correspondence between good families and open

subsets of Y : Given any open set U ⊆ Y define

GU = {b ∈ B : b ⊆ U}

and given any good G define UG =
⋃
G. (Note that the empty set is good.)

We claim that no G0 ∈ G is an isolated point. Suppose for contradiction
it is. Then there must be a basic open set N with {G0} = G ∩ N . A basic
neighborhood has the following form

N = N(F0, F1) = {G ⊆ B : F0 ⊆ G and F1 ∩G = ∅}

where F0, F1 ⊆ B are finite.
For each b ∈ F1 since G0 is good, b is not a subset of

⋃
G0, and since⋃

F0 ⊆
⋃
G0, we can choose a point zb ∈ b \

⋃
F0. Since Y is not compact,

Y \ (
⋃

(F0 ∪ F1)) is nonempty. Fix z ∈ Y \ (
⋃

(F0 ∪ F1)).
Now let U1 = Y \ {zb : b ∈ F1} and let U2 = U1 \ {z}. Then GU1 , GU2

are distinct elements of N ∩ G.
Hence G is a compact zero-dimensional metric space without isolated

points and therefore it is homeomorphic to 2ω.
To get a uniquely universal open set U ⊆ G × Y define:

(G, y) ∈ U iff ∃b ∈ G y ∈ b.

QED

Example 26 is a countable Polish space Z such that 2ω × Z has UU, but
Z is not locally compact.
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Lemma 8 Suppose f : X → Y is a continuous bijection and Y ×Z has UU.
Then X × Z has UU.

proof:
Given V ⊆ Y × Z witnessing UU, let

U = {(x, y) : (f(x), y) ∈ V }.

QED

Many uncountable standard Borel sets2 are the bijective continuous image
of the Baire space ωω. According to the footnote on page 447 of Kuratowski
[6] Sierpinski proved in a 1929 paper that any standard Borel set in which
every point is a condensation point is the bijective continuous image of ωω.
We weren’t able to find Sierpinski’s paper but we give a proof of his result
in Lemma 21.

We first need a special case for which we give a proof.

Lemma 9 There is a continuous bijection f : ωω → 2ω.

proof:
Let π : ω → ω + 1 be a bijection. It is automatically continuous. It

induces a continuous bijection π : ωω → (ω+ 1)ω. But (ω+ 1)ω is a compact
Polish space without isolated points, hence it is homeomorphic to 2ω.
QED

Remark. If C ⊆ 2ω×ωω is the graph of f−1, then C is a closed set which
uniquely parameterizes the family of singletons of ωω.

Corollary 10 If 2ω × Y has UU, then ωω × Y has UU.

Question 11 Is the converse of Corollary 10 false? That is: Does there
exist Y such that ωω × Y has UU but 2ω × Y does not have UU?

Lemma 12 Suppose X is a zero-dimensional Polish space without isolated
points. Then there exists a continuous bijection f : ωω → X.

2A standard Borel set is a Borel subset of a Polish space.
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proof:
Construct a subtree T ⊆ ω<ω and (Cs ⊆ X : s ∈ T ) nonempty clopen

sets such that:

1. C〈〉 = X,

2. if s ∈ T is a terminal node, then Cs is compact, and

3. if s ∈ T is not terminal, then sˆ〈n〉 ∈ T for every n ∈ ω and Cs is
partitioned by (Csˆ〈n〉 : n < ω) into nonempty clopen sets each of
diameter3 less than 1

|s|+1
.

For each terminal node s ∈ T choose a continuous bijection fs : [s] → Cs
given by Lemma 9. Define f : ωω → X by f(x) = fx�n(x) if there exists n
such that x�n is a terminal node of T and otherwise determine f(x) by the
formula:

{f(x)} =
⋂
n<ω

Cx�n

Checking that f is a continuous bijection is left to the reader.
QED

Remark. An easy modification of the above argument shows that any
zero-dimensional Polish space is homeomorphic to a closed subspace of ωω.
It also gives the classical result that if no clopen sets are compact, then X is
homeomorphic to ωω. A different proof of Lemma 12 is given in Moschovakis
[8] p. 12.

Definition 13 We use cl(X) to denote the closure of X.

Proposition 14 Suppose Y is Polish but not compact. Then ωω × Y has
the UU. So for example, ωω × ωω and ωω × R both have UU.

proof:
We assume that the metric on Y is complete and bounded. Let B be a

countable basis for Y of nonempty open sets which has the property that no
finite subset of B covers Y .

For s, t ∈ B define t� s iff cl(t) ⊆ s and diam(t) ≤ 1
2

diam(s).

3This is with respect to a fixed complete metric on X.
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Lemma 15 Suppose G ⊆ B has the following properties:

(1) for all t, s ∈ B if t ⊆ s ∈ G, then t ∈ G and

(2) ∀s ∈ B if (∀t� s t ∈ G), then s ∈ G,

then for any s ∈ B if s ⊆
⋃
G, then s ∈ G.

proof:
Suppose (1) and (2) hold but for some s ⊆

⋃
G we have s /∈ G.

Note that there cannot be a sequence (sn : n ∈ ω) starting with s0 = s,
and with sn+1 � sn and sn /∈ G for each n. This is because if {x} =

⋂
n∈ω sn,

then x ∈ s ⊆
⋃
G and so for some t ∈ G we have x ∈ t. But then for some

sufficiently large n we have that sn ⊆ t putting sn ∈ G by (1).
Hence there must be some t�s with t /∈ G but for all r�t we have r ∈ G.

This is a contradiction to (2).
QED

Let G ⊆ P(B) be the set of all G which satisfy the hypothesis of Lemma
15. Then we have a Gδ subset G of 2B, which uniquely parameterizes the
open sets. Hence the set U witnesses the unique universal property:

U = {(G, x) ∈ G × Y : x ∈
⋃

G}.

To finish the proof it is enough to see that no point in G is isolated. If
G has an isolated point, there must be s1, . . . , sn and t1, . . . , tm from B such
that

N = {G ∈ G : s1 ∈ G, . . . , sn ∈ G, t1 /∈ G, . . . , tm /∈ G}
is a singleton. Let W = s1 ∪ · · · ∪ sn. Since N contains the point

G = {s ∈ B : s ⊆ W}

it must be that N = {G}. For each j choose xj ∈ tj \W . Since the union of
the si and tj does not cover Y , we can choose

z ∈ Y \ (s1 ∪ · · · ∪ sn ∪ t1 ∪ · · · ∪ tm).

Take r ∈ B with z ∈ r but xj /∈ r for each j = 1, . . . ,m. Let

G′ = {s ∈ B : s ⊆ r ∪W}.
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Then G′ ∈ N but G′ 6= G which shows that N is not a singleton.
It follows from Lemma 8 and 12 that ωω × Y has the UU.

QED

Proposition 2 and 14 show that:

Corollary 16 For Y Polish:
ωω × Y has UU iff Y is not compact.

Question 17 Does 2ω × ωω have UU?

Question 18 Does 2ω × R have UU?

Our next result follows from Proposition 22 but has a simpler proof so
we give it first.

Proposition 19 If X is a countable metric space which is not compact, then
ωω ×X has UU. So, for example, ωω ×Q has UU.

proof:
We produce a uniquely universal set for the open subsets of X.
First note that there exists a countable basis B for X with the property

that it is closed under finite unions and X \B is infinite for every B ∈ B. To
see this fix {xn : n < ω} ⊆ X an infinite set without a limit point, i.e., an
infinite closed discrete set. Given a countable basis B replace it with finite
unions of sets from

{B \ {xm : m > n} : n ∈ ω and B ∈ B}.

We may assume also that B includes the empty set.
Next let

P = {(B,F ) : B ∈ B, F ∈ [X]<ω, and B ∩ F = ∅}.

Then P is a partial order determined by p ≤ q iff Bq ⊆ Bp and Fq ⊆ Fp. For
p ∈ P we write p = (Bp, Fp). For p, q ∈ P we write p ⊥ q to stand for p and
q are incompatible, i.e., there does not exist r ∈ P with r ≤ p and r ≤ q.

We will code open subsets of X by good filters on P. Define the family G
of good filters on P to be the set of all G ⊆ P such that
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1. p ≤ q and p ∈ G implies q ∈ G,

2. ∀p, q ∈ G exists r ∈ G with r ≤ p and r ≤ q,

3. ∀x ∈ X ∃p ∈ G x ∈ Bp ∪ Fp, and

4. ∀p ∈ P either p ∈ G or ∃q ∈ G p ⊥ q.

Since the poset P is countable we can identify P(P) with P(ω) and hence 2ω.
We give G ⊆ P(P) the subspace topology. Note that G is Gδ in this topology.
Note also that the sets

[p] = {G ∈ G : p ∈ G}

form a basis for G (use conditions (2) and (4) to deal with finitely many pi
in G and finitely many qj not in G).

Note that since X\Bp is always infinite, for any p ∈ P there exists r, q ≤ p
with r ⊥ q. Namely, for some x ∈ X \ (Bp∪Fp) put x into Br∩Fq. It follows
that no element of G is isolated. So G is a zero-dimensional Polish space
without isolated points. Hence by Lemma 12 there is a continuous bijection
f : ωω → G.

For G ∈ G, let

UG =
⋃
{Bp : p ∈ G}.

For any U ⊆ X open, define

GU = {p ∈ P : Bp ⊆ U and Fp ∩ U = ∅}.

The maps G→ UG and U → GU show that there is a one-to-one correspon-
dence between G and the open subsets of X.

Finally define U ⊆ G ×X by

(G, x) ∈ U iff ∃p ∈ G x ∈ Bp.

This witnesses the UU property for G ×X and so by Lemma 8, we have UU
for ωω ×X.
QED

Question 20 Does 2ω ×Q have UU?
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Our next result Proposition 22 implies Proposition 19 but needs the fol-
lowing Lemma:

Lemma 21 (Sierpinski) Suppose B is a Borel set in a Polish space for which
every point is a condensation point. Then there exists a continuous bijection
from ωω to B.

proof:
We use that every Borel set is the bijective image of a closed subset of ωω.

This is due to Lusin-Souslin see Kechris [5] p.83 or Kuratowski-Mostowski
[7] p.426.

Using the fact that every uncountable Borel set contains a perfect subset
it is easy to construct Kn for n < ω satisfying:

1. Kn ⊆ B are pairwise disjoint,

2. Kn are homeomorphic copies of 2ω which are nowhere dense in B, and

3. every nonempty open subset of B contains infinitely many Kn.

Let B0 = B \
⋃
n<ωKn. We may assume B0 is nonempty, otherwise just

split K0 into two pieces. Since it is a Borel set, there exists C ⊆ ωω closed
and a continuous bijection f : C → B0. Define

Γ = {s ∈ ω<ω : [s] ∩ C = ∅ and [s∗] ∩ C 6= ∅}

where s∗ is the unique t ⊆ s with |t| = |s| − 1. Without loss we may assume
that C is nowhere dense and hence Γ infinite. Let Γ = {sn : n < ω} be a
one-one enumeration. Note that {C} ∪ {[sn] : n < ω} is a partition of ωω.

Inductively choose ln > ln−1 with Kln a subset of the ball of radius 1
n+1

around f(xn) for some xn ∈ C ∩ [s∗n]. For each n < ω let fn : [sn]→ Kln be
a continuous bijection.

Then g = f ∪
⋃
n<ω fn is a continuous bijection from ωω to B0∪

⋃
n<ωKln .

To see that it is continuous suppose for contradiction that un → u as n→∞
and |g(un)−g(u)| > ε > 0 all n. Since C is closed if infinitely many un are in
C, so is u and we contradict continuity of f . If u ∈ [sn], then we contradict
the continuity of fn, So, we may assume that all un are not in C but u is in
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C. By the continuity of f we may find s ⊆ u with f([s] ∩C) inside a ball of
radius ε

3
around f(u). Find n with 1

n+1
< ε

3
for which there is m such that

um ∈ [sn] and sn ⊇ s. But then g(um) = fn(um) ∈ Kln and Kln is in a ball
of radius 1

n+1
around some f(xn) with xn ∈ [s∗n]∩C. This is a contradiction:

d(g(u), g(um)) ≤ d(f(u), f(xn)) + d(f(xn), fn(um)) ≤ 2

3
ε.

Next let I = ω \ {ln : n < ω}. Then there exists continuous bijection

h : I × ωω →
⋃
i∈I

Ki.

Finally g∪h is a continuous bijection from ωω⊕(I×ωω) to B0∪
⋃
n<ωKn = B.

Since ωω ⊕ (I × ωω) is a homeomorphic copy of ωω we are done.
QED

Proposition 22 ωω×Y has UU for any σ-compact but not compact subspace
Y of a Polish space. So for example, ωω × (Q× 2ω) has UU.

proof:
Let Y =

⋃
n<ωKn where each Kn is compact. Since Y is not compact it

contains an infinite closed discrete set D. Choose a countable basis B for Y
such that for any b ∈ B the closure of b contains at most finitely many points
of D. Define G ⊆ B to be good iff for every b ∈ B if cl(b) ⊆

⋃
G then b ∈ G.

Let G ⊆ P(B) be the family of good sets.
Note that G is a Π0

3 set:

G ∈ G iff ∀b ∈ B (∀n cl(b) ∩Kn ⊆
⋃

G)→ b ∈ G

Note that cl(b)∩Kn ⊆
⋃
G iff there is a finite F ⊆ G with cl(b)∩Kn ⊆

⋃
F .

To finish the proof it is necessary to see that basic open sets in G are
uncountable. Given bi, cj ∈ B for i < n and j < m suppose that

N = {G ∈ G : b0 ∈ G, . . . , bn−1 ∈ G, c0 /∈ G, . . . , cm−1 /∈ G}

is nonempty. Since it is nonempty we can choose points

uj ∈ cl(cj) \
⋃
i<n

cl(bi)
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for j < m. Note that the set

Z = D \ cl(
⋃

i<n,j<m

bi ∪ cj)

is an infinite discrete closed set. But then given any Q ⊆ Z we can find an
open set UQ with

⋃
i<n cl(bi) ⊆ UQ, uj /∈ UQ for j < m, and UQ ∩ Z = Q.

Let
GQ = {b ∈ B : cl(b) ⊆ UQ}

Since each GQ ∈ N we have that N is uncountable. By Lemma 21 and 8, we
are done.
QED

Question 23 For what Borel spaces Y does ωω × Y have UU?
For example, does ωω ×Qω have UU?

Proposition 24 For every Y a Σ1
1 set there exists a Σ1

1 set X such that
X × Y has UU.

proof:
Suppose Y ⊆ Z where Z is Polish and B is a countable base for Z. Define

G ⊆ P(B) by

G ∈ G iff ∀b ∈ B [(b ∩ Y ⊆
⋃

G)→ b ∈ G]

Note that b ∩ Y ⊆
⋃
G is Π1

1 and so G is Σ1
1.

QED

We use the next Lemma for Example 26.

Lemma 25 For any space Y
(ω × 2ω)× Y has UU iff 2ω × Y has UU.

proof:
Suppose C ⊆ (ω×2ω)×Y is a closed set uniquely universal for the closed

subsets of Y .



Uniquely Universal Sets 13

Since the whole space Y occurs as a cross section of C without loss we
may assume that Y = C(0,~0) where ~0 is the constant zero function.

For each n > 0 let

Kn = {(0nˆ〈?, x0, x1, . . .〉, y) ∈ 2ω × Y : ((n, x), y) ∈ C}

By 0nˆ〈?, x0, x1, . . .〉 we mean a sequence of n zeros followed by the special
symbol ? and then the (binary) digits of x. Note that the Kn converge to ~0.
Let

K0 = {(x, y) : ((0, x), y) ∈ C}

Let B =
⋃
n<ωKn ⊆ S × Y where

S = 2ω ∪
⋃
n>0

{0nˆ〈?, x0, x1, . . .〉 : x ∈ 2ω}.

Note that S is homeomorphic to 2ω and there is a one-to-one correspondence
between the cross sections of B and cross sections of C. Note that B is closed
in S×Y : If (xn, yn) ∈ B for n < ω is a sequence converging to (x, y) ∈ S×Y
and x is not the zero vector it is easy to see that (x, y) ∈ B. On the other
hand if x is the zero vector, then since B~0 = Y , it is automatically true that
(x, y) ∈ B.

Hence UU holds for 2ω × Y .
For the opposite direction just note that (ω + 1) × 2ω is homeomorphic

to 2ω and there is a continuous bijection from ω × 2ω onto (ω + 1)× 2ω.
QED

Next we describe our counterexample to a converse of Proposition 7. Let
Z = (ω × ω) ∪ {∞}. Let each Dn = {n} × ω be an infinite closed discrete
set and let the sequence of Dn “converge” to ∞, i.e., each neighborhood of
∞ contains all but finitely many Dn. Equivalently Z is homeomorphic to:

Z ′ = {x ∈ ωω : |{n : x(n) 6= 0}| ≤ 1}.

The point ∞ is the constant zero map, while Dn are the points in Z ′ with
x(n) 6= 0. Note that Z ′ is a closed subset of ωω, hence it is Polish. This
seems to be the simplest nonlocally compact Polish space.

Example 26 Z is a countable nonlocally compact Polish space such that
2ω × Z has the UU.
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proof:
Z =

⋃
n<ωDn ∪ {∞}. Note that X ⊆ Z is closed iff ∞ ∈ X or X ⊆⋃

i≤kDi for some k < ω. By Lemma 25 it is enough to see that (ω× 2ω)×Z
has the UU.

Let Pn = {n} × 2ω.
Use P0 to uniquely parameterize all subsets of Z which contain the point

at infinity, see Remark 5.
Use P1 to uniquely parameterize all X ⊆ D0, including the empty set.
For n = 1 + 2k−1(2l− 1) with k, l > 0 use Pn to uniquely parameterize all

X ⊆
⋃
i≤kDi such that Dk meets X and the minimal element of Dk ∩X is

the l-th element of Dk.
QED

Our next two results have to do with Question 17.

Proposition 27 Existence of UU for 2ω × ωω is equivalent to:
There exist a C ⊆ P(ω<ω) homeomorphic to 2ω such that every T ∈ C is

a subtree of ω<ω (possibly with terminal nodes) and such that for every closed
C ⊆ ωω there exists a unique T ∈ C with C = [T ].

proof:
Given C ⊆ 2ω × ωω witnessing UU for closed subsets of ωω. Let

[T ] = {(s, t) : ([s]× [t]) ∩ C 6= ∅}.

Define f : 2ω → P(ω<ω) = 2ω
<ω

by f(x)(s) = 1 iff (x�n, s) ∈ T where n = |s|.
Then f is continuous, since f(x)(s) depends only on x�n where n = |s|.

If Tx = f(x), then [Tx] = Cx. Hence f is one-to-one, so its image C is as
described.
QED

Proposition 28 Suppose ωω × Y has UU where Y is any topological space
in which open sets are Fσ. Then there exists U ⊆ 2ω×Y an Fσ set such that
all cross sections Ux are open and for every open W ⊆ Y there is a unique
x ∈ 2ω with Ux = W .
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proof:
Let ω ⊕ 1 denote the discrete space with one isolated point adjoined and

let ω+1 denote the compact space consisting of a single convergent sequence.
Then (ω ⊕ 1)ω is homeomorphic to ωω and (ω + 1)ω is homeomorphic to 2ω.

Assume that U ⊆ (ω ⊕ 1)ω × Y is an open set witnessing UU. Then U is
an Fσ set in (ω + 1)ω × Y .

To see this note that a basic clopen set in (ω ⊕ 1)ω could be defined by
some s ∈ (ω ⊕ 1)<ω by

[s] = {x ∈ (ω ⊕ 1)ω : s ⊆ x}.

But it is easy to check that [s] ⊆ (ω+1)ω is closed in the topology of (ω+1)ω.
Since U is open in (ω ⊕ 1)ω × Y there exists sn and open sets Wn ⊆ Y such
that

U =
⋃
n<ω

[sn]×Wn

Hence U is the countable union of Fσ sets and so it is Fσ in (ω + 1)<ω.
QED

Here ⊕ refers to the topological sum of disjoint copies or equivalently a
clopen separated union.

Proposition 29 Suppose Xi × Yi has UU for i ∈ I. Then

(
∏
i∈I

Xi)× (
⊕
i∈I

Yi) has UU.

So, for example, if 2ω × Y has UU, then 2ω × (ω × Y ) has UU.

proof:
Define

((xi)i∈I , y) ∈ U iff ∃i ∈ I (xi, y) ∈ Ui
where the Ui ⊆ Xi × Yi witness UU.
QED

Except for Proposition 2 we have given no negative results. The following
two propositions are the best we could do in that direction.
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Proposition 30 Suppose U ⊆ X × Y is an open set universal for the open
subsets of Y . If X is second countable, then so is Y .

proof:
U is the union of open rectangles of the form B × C with B open in X

and C open in Y . Clearly we may assume that B is from a fixed countable
basis for X. Since

⋃
iB × Ci = B ×

⋃
iCi we may write U as a countable

union:
U =

⋃
n<ω

Bn × Cn

where the Bn are basic open sets in X and the Cn are open subsets of Y .
But this implies that {Cn : n < ω} is a basis for Y since for each x ∈ X

Ux =
⋃
{Cn : x ∈ Bn}

QED

Proposition 31 There exists a partition X ∪Y = 2ω into Bernstein sets X
and Y such that for every Polish space Z neither Z ×X nor Z × Y has UU.

proof:
Note that up to homeomorphism there are only continuum many Polish

spaces. If there is a UU set for Z×X, then there is an open U ⊆ Z×2ω such
that U ∩ (Z ×X) is UU. Note that the cross sections of U must be distinct
open subsets of 2ω. Hence it suffices to prove the following:

Given Uα for α < c such that each Uα is a family of open subsets of 2ω

either

(a) there exists distinct U, V ∈ Uα with U ∩X = V ∩X or

(b) there exists U ⊆ 2ω open such that U∩X 6= V ∩X for all V ∈ Uα.

And the same for Y in place of X.
Let Pα for α < c list all perfect subsets of 2ω and let {zα : α < c} = 2ω.

Construct Xα, Yα ⊆ 2ω with

1. Xα ∩ Yα = ∅
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2. α < β implies Xα ⊆ Xβ and Yα ⊆ Yβ

3. |Xα ∪ Yα| = |α|+ ω

4. If there exists distinct U, V ∈ Uα such that U∆V is a countable set
disjoint from Xα, then there exists such a pair with U∆V ⊆ Yα+1

5. If there exists distinct U, V ∈ Uα such that U∆V is a countable set
disjoint from Yα+1, then there exists such a pair with U∆V ⊆ Xα+1

6. Pα meets both Xα+1 and Yα+1

7. zα ∈ (Xα+1 ∪ Yα+1)

First we do (4) then (5) and then take care of (6) and (7).
Let X =

⋃
α<cXα and Y =

⋃
α<c Yα.

Fix α and let us verify (a) or (b) holds. Take any point p ∈ X \Xα+1. If
(b) fails there must be U, V ∈ Uα with X = X ∩ U and X \ {p} = X ∩ V .
Then (U∆V ) ∩ Xα+1 = ∅. Since X is Bernstein and (U∆V ) ∩ X has only
one point in it, it must be that U∆V is countable. Then by our construction
we have chosen distinct U, V ∈ Uα with U∆V ⊆ Y therefore U ∩X = V ∩X,
so (a) holds.

A similar argument goes through for Y .
QED

Finally, and conveniently close to the bibliography, we note some papers
in the literature which are related to the property UU. Friedberg [3] proved
that there is one-to-one recursively enumerable listing of the recursively enu-
merable sets. This is the same as saying that there is a (light-face) Σ0

1 subset
U ⊆ ω × ω which is uniquely universal for the Σ0

1 subsets of ω. Brodhead
and Cenzer [1] prove the analogous result for (light-face) Σ0

1 subsets of 2ω.
Becker [2] considers unique parameterizations of the family of countable

sets by Borel or analytic sets. Gao, Jackson, Laczkovich, and Mauldin [4]
consider several other problems of unique parameterization.
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