Annals of Mathematical Logic 16 (1979) 233-267. © North-Holland Publishing Company

ON THE LENGTH OF BOREL HIERARCHIES

Arnold W. MILLER* Madison, WI 53706, U.S.A.

Received 31 March 1978

0. Introduction

For any separable metric space X and α with $1 \le \alpha \le \omega_1$ define the Borel classes Σ_{α}^0 and Π_{α}^0 . Let Σ_1^0 be the class of open sets and for $\alpha > 1$ Σ_{α}^0 is the class of countable unions of elements of $\bigcup \{\Pi_{\beta}^0 : \beta < \alpha\}$ where $\Pi_{\beta}^0 = \{X - A : A \in \Sigma_{\beta}^0\}$. Hence $\Sigma_1^0 = \text{open} = G$, $\Pi_1^0 = \text{closed} = F$, $\Sigma_2^0 = F_{\sigma}$, $\Pi_2^0 = G_{\delta}$, etc. Note that $\Sigma_{\alpha_1}^0 = \Pi_{\omega_1}^0 =$ set of all Borel in X subsets of X. The Baire order of X (ord (X)) is the least $\alpha \le \omega_1$ such that every Borel in X subset of X is Σ_{α}^0 in X. Since the Borel subsets of X are closed under complementation we could equally well have defined ord (X) in terms of Π_{α}^0 in X or $\Delta_{\alpha}^0 = \Pi_{\alpha}^0 \cap \Sigma_{\alpha}^0$ in X. Note also that for $X \subseteq \mathbb{R}$ (the real numbers) ord (X) is the least α such that for every Borel set A in \mathbb{R} there is a Σ_{α}^0 in \mathbb{R} set B such that $A \cap X = B \cap X$. Also note that ord (X) = 1 iff X is discrete, ord (Q) = 2 where Q is the space of rationals, and in general for X a countable metric space ord $(X) \le 2$ since every subset of X is $\Sigma_2^0(F_{\sigma})$ in X.

It is a classical theorem of Lebesgue (see [11]) that for any uncountable Polish (separable and completely metrizable) space ord $(X) = \omega_1$. The same is true for any uncountable analytic (Σ_1^1) space X since X has a perfect subspace (see [11]) and Borel hierarchies relativize.

The Baire order problem of Mazurkiewicz (see [19]) is: for what ordinals α does there exist $X \subseteq \mathbb{R}$ such that ord $(X) = \alpha$. Banach conjectured (see [29]) that for any uncountable $X \subseteq \mathbb{R}$ the Baire order of X is ω_1 . In Section 3 we review the classically known results of Sierpinski, Szpilrajn, and Poprougenko. We show that it is consistent with ZFC that for each $\alpha \leq \omega_1$ there is an $X \subseteq \mathbb{R}$ with ord $(X) = \alpha$. In fact, we prove a theorem of Kunen's that CH implies this. We also show that Banach's conjecture is consistent with ZFC.

Given a set X and R a family of subsets of X $(R \subseteq P(X))$ define for every $\alpha \leq \omega_1 R_{\alpha} \subseteq P(X)$ as follows. Let $R_0 = R$ and for each $\alpha > 0$ if α is even (odd) let R_{α} be the family of countable intersections (unions) of elements of $\bigcup \{R_{\beta}: \beta < \alpha\}$. Generalizing Mazurkiewicz's question Kolmogorov (see [8]) asked: for what ordinals α does there exist X and $R \subseteq P(X)$ such that α is the least such

^{*} This paper appeared as Part I of my doctoral dissertation. I would like to thank Professor J.W. Addison for supervising this work.

that $R_{\alpha} = R_{\omega_1}$. Kolmogorov's question can be generalized by replacing P(X) by an arbitrary σ -algebra (a countably complete boolean algebra). In Section 2 we prove that for any $\alpha \leq \omega_1$ there is a complete boolean algebra with the countable chain condition which is countably generated in exactly α steps. This answers a question of Tarski who had noticed that the boolean algebras Borel(2^{ω}) modulo the ideal of meager sets and Borel(2^{ω}) modulo the ideal of measure zero sets are countably generated in exactly one and two steps respectively (see [4]). Theorem 12 which is due to Kunen shows that the same answer to Kolmogorov's problem (every $\alpha \leq \omega_1$) follows from the solution of Tarski's problem.

Let $R = \{A \times B : A, B \subseteq 2^{\omega}\}$. In Section 4 we show that for any α . $2 \le \alpha < \omega_1$, it is consistent with ZFC that α is the least ordinal such that R_{α} is the set of all subsets of $2^{\omega} \times 2^{\omega}$. This answers a question of Mauldin [1].

For $\alpha \leq \omega_1$ a set $X \subseteq 2^{\omega}$ is a Q_{α} set iff every subset of X is Borel in X and ord $(X) = \alpha$. It is shown that it is consistent with ZFC that for every $\alpha < \omega_1$ there is a Q_{α} set. In Section 4 we also show that there are no Q_{ω_1} sets. However, we do show that it is consistent with ZFC that there is an $X \subseteq 2^{\omega}$ with ord $(X) = \omega_1$ and every X-projective set is Borel in X. This answers a question of Ulam [31, p.10].

Also in Section 4 we show that it is relatively consistent with ZFC that the universal Σ_1^1 set is not in R_{ω_1} confirming a conjecture of Mansfield [13] who had shown that the universal Σ_1^1 set is never in the σ -algebra generated by the rectangles with Σ_1^1 sides.

Given $R \subseteq P(X)$ let K(R) (the Kolmogorov number of R) be the least α such that $R_{\alpha} = R_{\omega_1}$. It is an exercise to show that for $\alpha = 0, 1$, or 2 there is an $R \subseteq P(\{0, 1\})$ with $K(R) = \alpha$.

Proposition 1. Given $R \subseteq P(X)$ then (a) if R is finite or X is countable, then $K(R) \leq 2$, and (b) there exists $S \subseteq P(Y)$ such that cardinality of S and Y is $\leq 2^{\aleph_0}$ and K(R) = K(S).

Proof. (a) Note

$$\bigcup_{\alpha \leq \alpha_0} \bigcap_{\beta \leq \beta_0} \bigcup_{\gamma \leq \gamma_0} A_{\alpha,\beta,\gamma} = \bigcap_{f:\alpha_0 \to \beta_0} \bigcup_{\alpha \leq \alpha_0} \bigcup_{\gamma \leq \gamma_0} A_{\alpha,f(\alpha),\gamma}$$

If R is finite or X countable, then $\bigcap_{f:\alpha_0\to\beta_0}$ can always be taken to be a countable intersection.

(b) Let V_{α} be the sets of rank less than α . Choose α a limit ordinal of uncountable cofinality so that $R, X \in V_{\alpha}$. Let (M, ε) be an elementary substructure of $(V_{\alpha}, \varepsilon)$ containing R and X such that $M^{\omega} \subseteq M$ and $|M| \leq 2^{\aleph_{\alpha}}$. Now let $Y = X \cap M$ and $S = \{A \cap Y : A \in R \cap M\}$.

Mazurkiewicz's problem is equivalent to Kolmogorov's problem for R a countable field of sets (that is closed under finite intersection and complementation).

Proposition 2. (Sierpinski [23] also in [30]). Given $R \subseteq P(X)$ a countable field of sets there exists $Y \subseteq 2^{\omega}$ such that K(R) = ord(Y). (That is we may reduce to considering subsets Y of 2^{ω} and relativizing the usual Borel hierarchy on 2^{ω} to Y.)

Proof. Let $R = \{A_n : n \in \omega\}$ and define $F: X \to 2^{\omega}$ by F(x)(n) = 1 iff $x \in A_n$. Put Y = F''X.

Define $K = \{\beta : 2 \le \beta \le \omega_1 \text{ and there is } X \subseteq \omega^{\omega} \text{ uncountable with ord } (X) = \beta \}$. What can K be?

Proposition 3. K is a closed subset of ω_1 .

Proof. Given $A \subseteq \omega^{\omega}$ and $n \in \omega$ define $nA = \{x \in \omega^{\omega} : x(\beta) = n \text{ and } \exists y \in A \forall n (x(n+1) = y(\beta))$. If $X = \bigcup_{n \in \omega} nX_n$, then it is readily seen that $\operatorname{ord} (X) = \sup \{\operatorname{ord} (X_n) : n \in \omega\}$.

Note that K is the same set of ordinals if we replace ω^{ω} by \mathbb{R} the real numbers or 2^{ω} . This is true for \mathbb{R} because if $X \subseteq \mathbb{R}$ and $\mathbb{R} - X$ is not dense, then X contains a nonempty interval, hence ord $(X) = \omega_1$; but $\mathbb{R} - X$ dense means we may as well assume $X \subseteq$ irrationals $\cong \omega^{\omega}$.

In the definition of $K(R) = \omega$ for $R \subseteq P(X)$ we ignored the possibility that the hierarchy on R might have exactly ω levels, i.e. $R_{\omega_1} = \bigcup \{R_n : n < \omega\}$ but for all $n < \omega \ R_n \neq R_{\omega_1}$. In fact a Borel hierarchy of length less than ω_1 must have a top level.

Proposition 4. If $R \subseteq P(X)$ is a field of sets, λ is a countable limit ordinal, and $R_{\omega_1} = \bigcup \{R_{\alpha} : \alpha < \lambda\}$, then there is $\alpha < \lambda$ such that $R_{\alpha} = R_{\omega_1}$.

Proof. Using the proof of Proposition 2 we can assume $X \subseteq 2^{\kappa}$ for some κ and $R = \{[s] \cap X : \exists D \in [\kappa]^{<\omega} (s \in 2^{D})\}$ where $[s] = \{(f \in 2^{\kappa} : f \text{ extends } s\}$. For each A in R_{ω_1} there is $T \subseteq \kappa$ countable such that for any f and g in X if $f \upharpoonright T = g \upharpoonright T$, then $f \in A$ iff $g \in A$. In this case we say T supports A. Choose $T \subseteq \kappa$ countable so that for any $D \subseteq T$ finite and $s: D \to 2$ if ord $(X \cap [s]) = \lambda$, then for any $\alpha < \lambda$ there is an $A \subseteq [s]$ in $R_{\alpha+1} - R_{\alpha}$ such that T supports A. By taking an autohomeomorphism of 2^{κ} we may assume $T = \omega$. Define L to be $\{s \in 2^{<\omega} : \text{ord} ([s] \cap X) = \lambda\}$.

Claim. For any s in L there are t and \hat{t} in L incompatible extensions of s.

Proof. Without loss of generality assume $s = \emptyset$ and there is $f \in 2^{\omega}$ such that for every $s \in L$ $s \subseteq f$. For each $n < \omega$ define t_n in 2^{n+1} by $t_n(m) = f(m)$ for m < n and $t_n(n) = 1 - f(n)$. Then $[f] \cup \bigcup \{[t_n]: n < \omega\}$ is a disjoint union covering 2^{κ} . If there is a $\beta_0 < \lambda$ such that for all $n < \omega$ ord $([t_n] \cap X) < \beta_0$, then for all A in R_{ω_1} supported by ωA is in R_{β_0+1} . This is because $A \cap [f] = \emptyset$ or $X \cap [f] \subseteq A$. But this contradicts the choice of ω .

On the other hand, if there is no such bound β_0 , choose $Z_n \subseteq [t_n]$ with $Z_n \in R_{\omega_n}$ so that for every $\beta < \lambda$ there is $n < \omega$ with $Z_n \notin R_{\beta}$. But then $\bigcup \{Z_n : n < \omega\}$ is not in $\bigcup \{R_{\beta} : \beta < \lambda\}$. This proves the claim and this last argument also proves the proposition from the claim.

Remark. If $R \subseteq P(X)$ and $R_{\omega_1} = \bigcup \{R_n : n < \omega\}$ and there is $n_0 < \omega$ such that $\{X - A : A \in R\} \subseteq R_{n_0}$, then there is $n_1 < \omega$ such that $R_{n_1} = R_{\omega_1}$. Willard [32] shows that for any $\alpha < \omega_1$ there are R and X with $R \subseteq P(X)$ such that α is the least ordinal such that $\{X - A : A \in R\} \subseteq R_{\alpha}$.

1. Some basic definitions and lemmas

For $T \subseteq \omega^{<\omega} T$ is a well-founded tree iff T is a tree (if $t \supseteq s \in T$, then $t \in T$) and is well-founded (for any $f \in \omega^{\omega}$ there is an $n < \omega$ such that $f \upharpoonright n \notin T$). For $s \in T$ define $|s|_T$ (the rank of s in T) by $|s|_T = \sup \{|t|_T + 1 : s \subseteq t \in T\}$. Often we drop Tand let $|s| = |s|_T$. T is normal of rank α means that:

(a) T is a well-founded tree;

(b) $|\emptyset| = \alpha$ (\emptyset is the empty sequence);

(c) $(s \in T \text{ and } |s| > 0) \rightarrow (\forall i < \omega (s \cap i \in T));$

(d) $(s \in T \text{ and } |s| = \beta + 1) \rightarrow (\forall i < \omega (|s^{-}i| = \beta));$

(e) $(s \in T \text{ and } |s| = \lambda \text{ where } \lambda \text{ is a limit ordinal}) \rightarrow (\forall \beta < \lambda \{i : |s^i| < \beta\} \text{ is finite and } \forall i < \omega |s^i| \ge 2).$

Note that for any $n < \omega$ the tree $\omega^{\leq n}$ is normal of rank *n*. If α_n for $n < \omega$ are strictly increasing to α (or $\alpha_n = \beta$ where $\alpha = \beta + 1$) and for each $n < \omega$ T_n is normal of rank $\alpha_n \ge 2$, then $T = \{\emptyset\} \cup \{n \cap s : n < \omega \text{ and } s \in T_n\}$ is normal of rank α . We often use T_α to denote some fixed normal tree of rank α . Let *M* be the ground model of ZFC. Working in *M* for any $\alpha < \omega_1$ and $Y \subseteq X \subseteq \omega^{\omega}$ define the partial order $\mathbb{P}_{\alpha}(Y, X)$ (the order is given by inclusion). Fix some *T* normal of rank α . $p \in \mathbb{P}_{\alpha}(Y, X)$ iff $p \subseteq (T - \{\emptyset\}) \times (X \cup \omega^{<\omega})$ and (1) through (5) hold.

(1) p is finite.

(2) |s|=0 implies that if $(s, x) \in p$, then $x \in \omega^{<\omega}$ and if $(s, y) \in p$, then x = y. (So if $T^* = \{s \in T : |s|=0\}$, then $p \upharpoonright (T^* \times (X \cup \omega^{<\omega}))$ is a function from a finite subset of T^* into $\omega^{<\omega}$.)

(3) If |s| > 0 and $(s, x) \in p$, then $x \in X$.

(4) If s and $s \cap i \in T$ and $x \in X$, then not both (s, x) and $(s \cap i, x)$ are in p, or if $|s \cap i| = 0$, there is no $k \in \omega$ such that both (s, x) and $(s \cap i, x \upharpoonright k)$ are in p.

(5) If s of length one and $(s, x) \in p$, then x is not in Y.

Let G be $\mathbb{P}_{\alpha}(Y, X)$ -generic over M. Working in M[G] define for each $s \in T$, $\bigcirc_s \subseteq \omega^{\omega}$. For |s| = 0, let

$$G_{s} = \{x \in \omega^{\omega} : \exists t \in \omega^{<\omega} t \subseteq x \text{ and } \{(s, t)\} \in G\}.$$

For |s| > 0, let $G_s = \bigcap \{ \omega^{\omega} - G_{s \leq i} : i < \omega \}$. Note that for each $s \in T$, $G_s \in \Pi^0_{|s|}$.

Lemma 5. For each x in X and s in $T - \{\emptyset\}$ with |s| > 0 [$x \in G_s$ iff $\{(s, x)\} \in G$].

Proof. Case 1. |s| = 1. (This is the argument from almost-disjoint-sets forcing.)

If $x \in G_s$, then $x \notin G_{s^{-i}}$ for all $i \in \omega$. Hence for all k and i in ω $(s^{-i}, x \upharpoonright k) \notin G$. Let $D = \{p: (s, x) \in p \text{ or there exist } k$ and i such that $(s^{-i}, x \upharpoonright k) \in p_i^r$. D is dense since if $(s, x) \notin p$ if we let $\{x_1, x_2, \ldots, x_n\} \subseteq X$ be all the elements of ω^{ω} mentioned in p other than x, we can choose k sufficiently large so that $x \upharpoonright k \neq x_i \upharpoonright k$ for all $i \leq n$. Also we can choose j sufficiently large so that (s^{-j}) is not mentioned in pand then $p \cup \{(s^{-j}, x \upharpoonright k)\} \in (\mathbb{P}_{\alpha}(Y, X) \cap D)$. Since $G \cap D$ is non-empty and $x \notin G_{s^{-i}}$ all i; we conclude that $(s, x) \in G$.

If $x \notin G_s$, then $x \in G_{s^{-i}}$ for some *i*. Hence there exist *k* such that $(s^{-i}, x \upharpoonright k) \in G$ so $(s, x) \notin G$ by clause (4).

Case 2. |s| > 1.

If $x \in G_s$, then $x \notin G_{s^{-i}}$ for all *i*, and hence by induction $(s^{-i}, x) \notin G$ for all *i*. Let $D = \{p: (s, x) \in p \text{ or there exist } i \text{ such that } (s^{-i}, x) \in p\}$. D is dense hence $(s, x) \in G$.

If $x \notin G_s$, then $(s \cap i, x) \in G$ for some *i* (by induction). Hence $(s, x) \notin G$ by clause (4).

Corollary 6. $G_{\emptyset} \cap X = Y \ (\alpha \ge 2).$

Proof. If $x \in Y$, then for every n, $((n), x) \notin G$ (by clause 5). Hence by Lemma 5 for every $n, x \notin G_{(n)}$ and so $x \in G_{\emptyset}$. If $x \notin Y$, then $\{p: \text{ there exists } n \text{ such that } ((n), x) \in p\}$ is dense hence there exists n such that $x \in G_{(n)}$ (by Lemma 5) so $x \notin G_{\emptyset}$.

Remarks: (1) $\mathbb{P}_0(Y, X)$ is trivial (the empty set).

(2) $\mathbb{P}_1(Y, X)$ has nothing to do with X and Y and is isomorphic as a partial order to the usual Cohen partial order for adding a map from ω to ω .

(3) $\mathbb{P}_2(Y, X)$ is another way of viewing Solovay's "almost-disjoint-sets forcing" (see [6]).

Lemma 7. $\mathbb{P}_{\alpha}(Y, X)$ has the countable chain condition.

Proof. Suppose by way of contradiction that there exist F included in $\mathbb{P}_{\alpha}(Y, X)$ of cardinality \aleph_1 of pairwise incompatible conditions. Since there are only countably many finite subsets of T, we may assume there exist $H \subseteq T - \{\emptyset\}$ finite so that every $p \in F$ is included in $H \times (X \cup \omega^{<\omega})$. We may also assume that for every $p \in F$ and $q \in F$ and $s \in H$ with |s| = 0 and $t \in \omega^{<\omega}$ that $[(s, t) \in p]$ iff $(s, t) \in q]$. Now let

A.W. Miller

 $(x_{\beta}:\beta < \aleph_1)$ be all the elements of X occurring in members of F. For each p in F let $p^*: G_p \to P(H)$ be defined by $G_p = \{\beta : \text{there exists } s, (s, x_{\beta}) \in p\}$ and for $\beta \in G_p$ $p^*(\beta) = \{s : (s, x_{\beta}) \in p\}$. $\{p^*: p \in F\}$ is a family of \aleph_1 incompatible conditions in the partial order \mathbb{Q} , where $\mathbb{Q} = \{p : \text{domain of } p \text{ is a finite subset of } \aleph_1$ and range of p is $P(H)\}$, ordered by inclusion. Since it is well-known that \mathbb{Q} has the countable chain condition we have a contradiction.

Remarks: (1) If $\mathbb{P} = \mathbb{P}_{\alpha}(Y, X)$ for any α , X, and Y, then \mathbb{P} is absolutely c.c.c. That is to say if $\mathbb{P} \in M \models$ "ZFC", then $M \models$ " \mathbb{P} has c.c.c.". It follows that the direct sum of any combination of the \mathbb{P}_{α} 's has the c.c.c.

(2) We assume the fact that i.erated c.c.c. forcing is c.c.c. (Solovay-Tennenbaum [26]) and occasionally use notation and facts from [26].

I would like to prove next an heuristic proposition. Roughly, if we add a generic Π_2^0 set, then it will not be Σ_2^0 . This is a special case of more difficult arguments later with generic Π_{α}^0 sets.

Define \mathbb{P} a partial order: $p \in \mathbb{P}$ iff p is a finite consistent set of sentences of the form " $[s] \subseteq G_n$ ", " $x \notin G_n$ ", or " $x \in \bigcap_{n \in \omega} G_n$ " (where $s \in \omega^{<\omega}$ and $x \in \omega^{\omega}$). Order \mathbb{P} by inclusion. Any G \mathbb{P} -generic determines a Π_2^1 set $\bigcap_{n \in \omega} G_n$.

Proposition. If G is \mathbb{P} -generic over M (transitive countable model of ZFC), then

$$M[G] \models ``\forall F \in F_{\sigma} \Big(F \cap M \neq \bigcap_{n \in \omega} G_n \cap M \Big) ``.$$

Proof. Suppose not and let $p \in G$ and C_n be names such that $p \Vdash "C_n$ is closed" and such that

$$p \Vdash \bigcup_{n \in \omega} C_n \cap M = \bigcap_{n \in \omega} G_n \cap M^{\vee}.$$

It is easily seen that \mathbb{P} has c.c.c. (see the proof of Lemma 7). Thus working in M we can find $Q \subseteq \mathbb{P}$ countable such that for any $\hat{G} \mathbb{P}$ -generic, $n \in \omega$, and $s \in \omega^{<\omega}$, if $M[\hat{G}] \models ``[s] \cap C_n = \emptyset$ '', then $\exists q \in Q \cap \hat{G}$ such that $q \Vdash ``[s] \cap C_n = \emptyset$ ''. Since Q is countable, we can find $z \in \omega^{\omega} \cap A$ not mentioned in p or any condition in Q. Since

$$p \cup \left\{ z \in \bigcap_{n \in \omega} G_n \right\} \Vdash "z \in \bigcup_{n \in \omega} C_n"$$

we can find $\bar{n} \in \omega$ and $\hat{p} \ge p$ and not mentioning z so that

$$\hat{p} \cup \left\{ z \in \bigcap_{n \in \omega} G_n \right\} \Vdash "z \in C_{\bar{n}} ",$$

because the only other way to mention z is " $z \notin G_n$ ". By taking \overline{m} large enough $\hat{p} \cup \{z \notin G_{\overline{m}}\}$ will be consistent, and since it extends p it forces " $z \notin C_{\overline{n}}$ ". Let G be \mathbb{P} -generic with $\hat{p} \cup \{z \notin G_{\overline{m}}\}$ in G. Let $k \in \omega$ and $q \in G \cap Q$ be so that $q \Vdash [z \upharpoonright k] \cap C_{\overline{n}} = \emptyset$ ". But $\hat{p} \cup q \cup \{z \in \bigcap_{n \in \omega} G_n\}$ is consistent because $q \in Q$ and so doesn't mention z. This is a contradiction since $q \Vdash [z \notin C_n]$ " and

$$\hat{p} \cup \left\{ z \in \bigcup_{n \in \omega} G_n \right\} \models z \in C_{\bar{n}}.$$

Define for $F \subseteq \omega^{\omega}$ and $p \in \mathbb{P} = \mathbb{P}_{\alpha}(Y, X)$,

$$|p|(F) = \max (\{|s|: \text{there is } x \notin F \text{ with } (s, x) \in p\}).$$

This is called the rank of p over F.

Lemma 8. For all $\beta \ge 1$ and $p \in \mathbb{P}$ there is $\hat{p} \in \mathbb{P}$ compatible with p and $|\hat{p}|(F) < \beta + 1$ so that for any $q \in \mathbb{P}$ with $|q|(F) < \beta$, if \hat{p} and q are compatible, then p and q are compatible.

Proof. First find an extension $p_0 \ge p$ so that for all $(s, x) \in p$ and $i < \omega$ if $|s| = \lambda$ is a limit ordinal and $|s^{-}i| \le \beta + 1 < \lambda$ (there are only finitely many such $s^{-}i$), then there is a $j < \omega$ such that $(s^{-}i^{-}j, x) \in p_0$. Now let $\hat{p} = \{(s, x) \in p_0 : |s| < \beta + 1 \text{ or } x \in F\}$. We check that \hat{p} has the requisite property. Suppose p and q are incompatible, \hat{p} and q are compatible, and $|q| (F) < \beta$. Since $\beta \ge 1$ for all $(s, x) \in p$ if $|s| \le 1$, then $(s, x) \in \hat{p}$, hence since \hat{p} and q are compatible there are $s, t \in \omega^{<\omega}$, $i < \omega$, and $x \in \omega^{\omega}$ such that $(s, x) \in p, (t, x) \in q$, and $s = t^{-}i$ or $t = s^{-}i$.

Case 1. If $x \in F$ or $|s| < \beta + 1$, then $(s, x) \in \hat{p}$ and so \hat{p} and q are incompatible.

Case 2. If $x \notin F$ and $|z| \ge \beta + 1$, then by definition of $|q|(F) < \beta$, $|t| < \beta$. So $t = s \cap i$. If $|s| = \gamma + 1$ for some γ , then $|t| = \gamma \ge \beta$, contradiction. If $|s| = \lambda$ is an infinite limit ordinal, then by the construction of p_0 there is $j < \omega$ with $(t \cap j, x) \in p_0$ and hence $(t \cap j, x) \in \hat{p}$ and so q and \hat{p} are incompatible.

2. Boolean algebras

For \mathbb{B} a complete boolean algebra, C included in \mathbb{B} , and $\alpha \ge 1$ define $\Sigma_{\alpha}(C)$, $\Pi_{\alpha}(C)$:

$$\Sigma_1(C) = \left\{ \sum S : S \subseteq C \right\},$$

$$\Sigma_\alpha(C) = \left\{ \sum S : S \subseteq \bigcup_{\beta < \alpha} \Pi_\beta(C) \right\} \text{ for } \alpha > 1,$$

and

$$\Pi_{\alpha}(C) = \{-a : a \in \Sigma_{\alpha}(C)\}$$

Define $K(\mathbb{B})$ to be the least ordinal α such that there exists a countable C included in \mathbb{B} with $\Sigma_{\alpha}(C) = \mathbb{B}$.

Theorem 9. For each $\alpha \leq \omega_1$ there exists a complete boolean algebra \mathbb{B} with countable chain condition and $K(\mathbb{B}) = \alpha$.

Proof. For $\alpha = 0$ take \mathbb{B} to be any finite boolean algebra. For $\alpha = 1$ use \mathbb{B} to be $(P(\omega), \cap, \cup)$ (or more appropriately the regular open subsets of ω^{ω} since this corresponds to Cohen real forcing).

For $\alpha, 2 \le \alpha < \omega_1$, \mathbb{B} will be the complete boolean algebra associated with Π_{α}^0 -forcing. Let $\mathbb{P} = \mathbb{P}_{\alpha}(\emptyset, X)$. Given a partial order \mathbb{P} there is a canonical way of constructing a complete boolean algebra \mathbb{B} in which \mathbb{P} is densely embedded (see [5]). Let [p] denote the image of $p \in \mathbb{P}$ under this embedding. If $p \ge q$, then $[p] \le [q]$. For every $a \in \mathbb{B}$ if $a \ne 0$, then there is a $p \in \mathbb{P}$ such that $[p] \le a$.

Lemma 10. Suppose $F \subseteq X$ and $C = \{[p]: p \in \mathbb{P} \text{ and } |p|(F) = 0\}$. For any $\beta \ge 1$, $p \in \mathbb{P}$, and a in $\Sigma_{\beta}(C)$, if $[p] \le a$, then there is $q \in \mathbb{P}$ such that $|q|(F) < \beta$, q and p are compatible, and $[q] \le a$.

Proof. The proof is by induction on β .

Case 1. $\beta = 1$. Suppose $a = \sum \{[q]: q \in \Gamma\}$ for some $\Gamma \subseteq C$. If $[p] \le a$, then for some $q \in \Gamma$, p and q are compatible.

Case 2. β a limit ordinal. Suppose $a = \sum \{b : b \in \Gamma\}$ for some $\Gamma \subseteq \bigcup \{\Sigma_{\alpha}(C) : \alpha < \beta\}$. Then there is $\hat{p} \ge p$ and $b \in \Gamma \cap \Sigma_{\alpha}(C)$ for some $\alpha < \beta$ so that $[\hat{p}] \le b$. Now apply the inductive hypothesis to \hat{p} .

Case 3. $\beta + 1$. Suppose $[p] \leq \sum \{b : b \in \Gamma\}$ for some $\Gamma \subseteq \Pi_{\beta}(C)$. Choose $\hat{p} \leq p$ so that for some $b \in \Gamma$, $[\hat{p}] \leq b$. By Lemma 8 of Section 1, there exists q compatible with \hat{p} with $|q|(F) < \beta + 1$ and for any r with $|r|(F) < \beta$, if r and q are compatible, then r and \hat{p} are compatible. This q works since if $[q] \not\leq b$, then there exists $q_0 \geq q$ with $[q_0] \leq -b$. Since $-b \in \Sigma_{\beta}(C)$ by induction there is q_1 compatible with q_0 with

 $|q_1|(F) < \beta$ and $[q_1] \le -b$. But then q_1 would be compatible with \hat{f} , contradicting $[\hat{p}] \le b$.

Now if $X = \omega^{\omega}$, for example, the lemma shows that \mathbb{B} cannot be generated by a set of size less than the continuum in fewer than α steps. For suppose $D \subseteq \mathbb{B}$ has cardinality less than $|\omega^{\omega}|$, then there exists $F \supseteq \omega^{\omega}$ with $X - F \neq \emptyset$ and $D \subseteq \Sigma_1\{[p]: |p|(F) = 0\}$. Let $\beta < \alpha$, $z \in X - F$, and $s \in T - \{\emptyset\}$ with $|s|_T = \beta$ (where T is the normal α -tree used in the definition of $\mathbb{P}_{\alpha}(\emptyset, X)$). [{(s, z)}] is not in $\Sigma_{\beta}(D)$. Because if it were it would be in $\Sigma_{\beta}(C)$ and so by the lemma there exists q with $|q|(F) < \beta$ and $[q] \subseteq [\{(s, z)\}]$. But since $|s|_T = \beta$ and $z \notin F$ we know $(s, z) \notin q$. Thus there are n (and m) such that $q \cup \{(s \cap n, z)\}$ $(q \cup \{(s \cap n, z \mid m) \text{ in case } |s|_T = 1)$ is in \mathbb{P} , but this is a contradiction.

Next we show B is countably generated in α steps. Let $\hat{C} = \{[p]: |p| (\emptyset) = 0\}$.

Claim. For all $x \in X$ and $s \in T - \{\emptyset\}$ if $|s|_T = \beta \ge 1$, then $[\{(s, x)\}]$ is in $\Pi_{\beta}(\hat{C})$.

Proof. If $|s|_T = 1$, then

$$[\{(s, x)\}] = \prod \{-[\{(s \cap n, x \upharpoonright m)\}]: n, m \in \omega\}.$$

If |s| > 1, then

$$[\{(s, x)\}] = \prod \{-[\{(s \cap n, x)\}]: n \in \omega\}.$$

For $A \in \mathbb{B}$, $-A = \{p \in \mathbb{P} : [p] \cap A = \emptyset\}$. If $(s, x) \in p$, then $[p] \cap [\{(s \cap n, x)\}] = \emptyset$ all n. On the other hand if $[p] \cap [\{(sn, x)\}] = \emptyset$ for all n, then easily $(s, x) \in p$.

Now for any $p \in \mathbb{P}[p] = \prod\{\{(s, x)\}\}: (s, x) \in p\}$, so $[p] \in \Sigma_{\alpha}(\hat{C})$. For any $A \in B$ $A = \sum\{[p]: p \in A\}$ so $A \in \Sigma_{\alpha}(\hat{C})$. Thus $K(\mathbb{B}) \leq \alpha$.

We are now ready to consider the case of $\alpha = \omega_1$. Let $\mathbb{P} = \sum_{\alpha < \omega_1} \mathbb{P}_{\alpha}(\emptyset, \omega^{\omega})$. Now the complete boolean algebra associated with \mathbb{P} does take ω_1 steps to close (for suitable generators), however, \mathbb{P} is not countably generated. So we do as follows: Let $(x_{\alpha} : \alpha < \omega_1)$ be any set of ω_1 distinct elements of ω^{ω} . Let $*: \omega^{<\omega} \times \omega^{<\omega} \rightarrow \omega$ be a 1-1 map. Let T_{α} be the normal tree of rank α used in the construction of $\mathbb{P}_{\alpha} = \mathbb{P}_{\alpha}(\emptyset, \omega^{\omega})$. Any G which is \mathbb{P}_{α} -generic is determined by $G \cap \{(s, t) \in \mathbb{P}_{\alpha} : |s|_{T_{\alpha}} = 0 \text{ and } t \in \omega^{<\omega}\}$. That is a map y from $T_{\alpha}^* = \{s \in T_{\alpha} : |s|_{T_{\alpha}} = 0\}$ to $\omega^{<\omega}$. Now imagine G \mathbb{P} -generic and let $y_{\alpha} : T_{\alpha}^* \rightarrow \omega^{<\omega}$ be the maps determined by G. Let $Y = \{(*(s, t)) \cap x_{\alpha} : y_{\alpha}(s) = t \text{ and } \alpha < \omega_1\}$. Form in the generic extension $\mathbb{P}_2(\omega^{\omega} - Y, \omega^{\omega}) = Q$ (in both cases we mean ω^{ω} formed in the ground model). The partial order we are interested in is $R = \mathbb{P} * Q$. $\mathbb{P} * Q = \{(p, q) : p \in \mathbb{P} \text{ and } p \Vdash "q \in Q"\}$. $(\hat{p}, \hat{q}) \ge (p, q)$ iff $(\hat{p} \ge p \text{ and } \hat{q} \ge q)$. Now let \mathbb{B} be the complete boolean algebra associated with R. Since R has the countable chain condition so does \mathbb{B} . **Claim.** \mathbb{B} is countably generated.

Proof. The idea is that once you know what the real is gotten by Q you know all the reals gotten by \mathbb{P} — and hence everything. Let $C = \{[\langle \emptyset, q \rangle] : |q| \ (\emptyset) = 0\}$. Then C is countable and generates \mathbb{B} .

For $C \subseteq \omega^{\omega}$ and $(p, q) \in \mathbb{R}$ define

 $|(p,q)|(C) = \max \{|s|_{T_{\alpha}} : \text{there exists } x \notin C, (s,x) \in p(\alpha) \text{ and } \alpha < \omega_1 \}$

Lemma 11. Given $F \subseteq \omega^{\omega} \forall p \in R \forall \beta \ge 1 \exists \hat{p} \in R$ compatible with p, $|\hat{p}|(F) < \beta + 1$ and $\forall q |q|(F) < \beta$ (if \hat{p} , q compatible, then p, q are compatible).

Proof. This is proved similarly to Lemma 8. Given $p = \langle p_0, p_1 \rangle$ extend each $p_0(\alpha) \leq p_0^1(\alpha)$ as in Lemma 8, then take $\hat{p} = \langle \hat{p}_0, \hat{p}_1 \rangle$, $\hat{p}_1 = p_1$, $\hat{p}_0(\alpha) = \{\langle s, x \rangle \in p_0^1(\alpha) : |s| < \beta + 1 \text{ or } x \in C\}$. Note that $\hat{p}_0 \Vdash \hat{p}_1 \in Q$ " because requirements in Q are decided by rank zero condition in \mathbb{P} .

From this lemma it is easily shown as before that $K(\mathbb{B}) \ge \omega_1$. Since \mathbb{B} is countably generated and has the countable chain condition we have $K(\mathbb{B}) \le \omega_1$, hence $K(\mathbb{B}) = \omega_1$.

For any σ -complete boolean algebra \mathbb{B} the Sikorski-Loomis theorem [25, p. 93] says that \mathbb{B} is isomorphic to a σ -field of subsets of some X modulo a σ -ideal of subsets of X.

Theorem 12 (Kunen). $\forall \alpha \leq \omega_1 \exists X, R \text{ with } R \subseteq P(X) \text{ such that } K(R) = \alpha$.

Proof. By the Sikorski-Loomis theorem and Theorem 9 we can find \hat{R} , X, and I with $\hat{R} \subseteq P(X)/I$ where I is a σ -ideal and α is the least ordinal such that $\hat{R}_{\alpha} = \hat{R}_{\omega_1}$. Define $R \subseteq P(X)$ by $(A \in R \text{ iff } A/I \in \hat{R})$. It is easily shown by induction on $\beta \leq \omega_1$ that $(A \in R_{\beta} \text{ iff } A/I \in \hat{R}_{\beta})$. Hence we have $K(R) = \alpha$.

Let \mathbb{B}_M be the complete boolean algebra Borel(2^{ω}) modulo the ideal of meager sets.

Theorem 13. For any α , $1 \le \alpha < \omega_1$, there is a countable $C \subseteq \mathbb{B}_M$ which is closed under finite conjunction and complementation so that α is the least ordinal such that $\Sigma_{\alpha}(C) = \mathbb{B}_M$.

Proof. Let $x \in \omega^{\omega}$ be arbitrary and \mathbb{B} be the complete boolean algebra associated with $\mathbb{P}_{\alpha}(\emptyset, \{x\})$. Note that if $|p|(\emptyset) = 0$, then $-[p] = \sum \{[q]: |q|(\emptyset) = 0 \text{ and } q$ is incompatible with p}. Let C be the closure of $\{[p]: |p|(\emptyset) = 0\} = \hat{C}$ under finite boolean combinations. Note that since \hat{C} is closed under finite intersections and

-[p] is in $\Sigma_1(\hat{C})$ for any p in \hat{C} , we have that $\Sigma_{\beta}(C) = \Sigma_{\beta}(\hat{C})$ for all $\beta \ge 1$. By Lemma 10 α is the least such that $\Sigma_{\alpha}(\hat{C}) = \mathbb{B}$. Since $\mathbb{P}_{\alpha}(\emptyset, \{x\})$ is countable and separative, \mathbb{B} is separable and nonatomic and hence isomorphic to \mathbb{B}_M .

Remark. The theorem above is false for $\alpha = \omega_1$ since for any countable C which generates \mathbb{B}_M , at some countable stage every clopen set is generated and after one more step all of \mathbb{B}_M .

3. Countably generated Borel hierarchies

A set $X \subseteq 2^{\omega}$ is called a Luzin set iff X is uncountable and for every meager $M, M \cap X$ is countable. The analagous definition with measure zero in place of meager is of a Sierpinski set [30]. For I a σ -ideal in $\text{Forel}(2^{\omega})$ say X is I-Luzin iff $[\forall A \in \text{Borel}(2^{\omega}) (|A \cap X| < 2^{\aleph_0} \text{ iff } A \in I)]$. The following theorem was first proved by Luzin [12] assuming I is the ideal of meager sets and CH.

Theorem 14. (MA). If I is an ω_1 saturated σ -ideal in Borel(2^{ω}) containing singletons, then there exists an I-Luzin set.

Proof. Let $\kappa = |2^{\omega}|$, $\{A_{\alpha} : \alpha < \kappa\} = I$, and $\{B_{\alpha} : \alpha < \kappa\} = \text{Borel}(2^{\omega}) - I$ each set repeated κ -many times. Choose x_{α} for $\alpha < \kappa$, so that for every αx_{α} is in $B_{\alpha} - (\bigcup \{A_{\beta} : \beta < \alpha\} \cup \{x_{\beta} : \beta < \alpha\})$. Clearly if this can be done, then $X = \{x_{\alpha} : \alpha < \kappa\}$ is *I*-Luzin. If $\kappa = \omega_1$, then it is trivial, and if MA, then this follows from [14, Lemma 1, p. 158].

The next theorem was proved by Poprougenko [19] and Sierpinski (see [29]).

Theorem 15. If $X \subseteq 2^{\omega}$ is a Luzin set, then ord (X) = 3.

Proof. Since every Borel set B has the property of Baire, $B = G\Delta M$ where G is open and M is meager. But $M \cap X = F$ is countable hence F_{σ} , so $B \cap X = (G\Delta F) \cap X$ showing ord $(X) \leq 3$. Now choose $s \in 2^{<\omega}$ so that $[s] \cap X$ is uncountable and dense in [s]. If $D \subseteq [s] \cap X$ is countable and dense in [s], then $D \neq G \cap X$ for all $G \in G_{\delta}$, so ord $(X) \geq 3$.

A modern example of a Luzin set arises when one adds an uncountable (in M) number of product generic Cohen reals X to M a countable transitive model of ZFC. $M[X] \vdash ``X$ is a Luzin set''. See also Kunen [10] for more on Luzin sets and MA.

In contrast to the boolean algebras Szpilrajn [29] showed:

Theorem 16. If $X \subseteq 2^{\omega}$ is a Sierpinski set, then ord (X) = 2.

Proof. The proof is similar except note that any measurable set is the union of an F_{σ} set and a set of measure zero.

The following theorem generalizes these classical results using a lemma of Silver (see [14, p. 162]) that assuming MA every $X \subseteq 2^{\omega}$ with $|X| < |2^{\omega}|$ is a Q set, i.e. every subset of X is an F_{σ} in X.

Theorem 17. (MA). There are uncountable X, $Y \subseteq 2^{\omega}$ such that $\operatorname{ord} (X) = 3$ and $\operatorname{ord} (Y) = 2$.

Proof. Let X be *I*-Luzin where I is the ideal of meager Borel sets. For any meager set M choose F a meager F_{σ} with $M \subseteq F$. By Silver's Lemma there exists F_0 an F_{σ} set such that $F_0 \cap F \cap X = M \cap F \cap X = M \cap X$. Thus every meager set intersected with X is an F_{σ} set intersected with X and this shows as before ord (X) = 3. For I the ideal of measure zero sets analagous arguments work.

After I had shown that it is consistent with ZFC that $\forall \alpha \leq \omega_1 \exists X \subseteq \omega^{\omega}$ ord $(X) = \alpha$, Kunen showed that in fact CH implies $\forall \alpha \leq \omega_1 \exists X \subseteq \omega^{\omega}$ ord $(X) = \alpha$. The following theorem sharpens his result slightly.

Theorem 18. If there exists a Luzin set, then for any α such that $2 < \alpha \le \omega_1$ there is an $X \subseteq 2^{\omega}$ such that $\operatorname{ord}(X) = \alpha$.

Proof. Let Y be a Luzin set with the property that for every Borel set $A \subseteq 2^{\omega}$ ($A \cap Y$ is countable iff A is meager). Such a set always exists if a Luzin set does. By Theorem 13 there is a $C \subseteq \mathbb{B}_M$ countable such that C generates \mathbb{B}_M in exactly α steps and C is closed under finite Boolean combinations. Let $C = \{[C_n]: n \in \omega\}$ where the C_n are Borel subsets of 2^{ω} and $[C_n]$ is the equivalence class modulo meager of C_n . For $x, y \in 2^{\omega}$ define $x \sim y$ iff for all $n \leq \omega$ ($x \in C_n$ iff $v \in C_n$). We claim that for each $x \in 2^{\omega}$ the \sim equivalence class $c_i x$ is meager. Note that any element of the σ -algebra generated by $\{C_n: n < \omega\}$ is a union of \sim equivalence classes. If some \sim equivalence class E is not meager, then there are K_0 and K_1 disjoint nonmeager Borel sets such that $E = K_0 \cup K_1$. Since $\{[C_n]: n < \omega\}$ generates \mathbb{B}_M there are L_0 and L_1 in the σ -algebra generated by $\{C_n: n < \omega\}$ such that $[L_0] = [K_0]$ and $[L_1] = [K_1]$. For some i, L_i is disjoint from E, but then L_i is meager, contradiction. By shrinking Y if necessary we may assume that for all $x, y \in Y$ (x = y iff $x \sim y$). Let $R = \{C_n \cap Y: n < \omega\}$, then R_2 contains every countable subset of Y. It is easily seen that $K(R) = \alpha$, so by Proposition 2, we are done.

Theorem 19. (MA). For any $\alpha < \omega_1$ there is an $X \subseteq \omega^{\omega}$ such that $\alpha \leq \operatorname{ord} (X) \leq \alpha + 2$.

Proof. For $\alpha < \omega_1$ let \mathbb{P}_{α} be the partial order $\mathbb{P}_{\alpha}(\emptyset, \omega^{\omega})$. Let T_{α} be the normal

tree of rank α used in the definition of \mathbb{P}_{α} . $T_{\alpha}^* = \{s \in T_{\alpha} : |s|_{T_{\alpha}} = 0\}$. If G is \mathbb{P}_{α} -generic, then G is completely determined by the real $y_G : T_{\alpha}^* \to \omega^{<\omega}$ defined by $y_G(s) = t$ iff $\{(s, t)\} \in G$. Each condition $p \in \mathbb{P}_{\alpha}$ can be thought of as a statement about y_G . Let $C_p = \{y \in \omega^{\omega} : y \text{ codes a map } \hat{y} : T_{\alpha}^* \to \omega^{<\omega} \text{ and } p(\hat{y}) \text{ is true}\}$. It is easily seen that for any $p \in \mathbb{P}_{\alpha}$ there is $\beta < \alpha$ such that C_p is Π_{β}^0 .

Lemma 20. If \mathbb{B}_{α} is the complete boolean algebra associated with \mathbb{P}_{α} and X_{α} is ω^{ω} with the topology generated by basic open sets $\{C_p : p \in \mathbb{P}_{\alpha}\}$, then \mathbb{B}_{α} is isomorphic to the boolean algebra of regular open subsets of X_{α} .

Proof. Given $A \subseteq X_{\alpha}$ a regular open set let $D_A = \{p \in \mathbb{P}_{\alpha} : C_p \subseteq A\}$. The map $A \rightarrow D_A$ is an isomorphism.

Define I_{α} to the σ -ideal generated by Π_{α}^{0} sets of the form $\omega^{\omega} - \bigcup \{C_{p} : p \in D\}$ where D is a maximal antichain in \mathbb{P}_{α} .

Lemma 21. α is the least ordinal such that for every Borel A there is a $\Sigma_{\alpha}^{0} B$ such that $A\Delta B \in I_{\alpha}$.

Proof. Note first that I_{α} is the ideal of meager subsets of X_{α} . If D is a maximal antichain in \mathbb{P}_{α} , then $\bigcup \{C_p : p \in D\}$ is open dense in X_{α} , so every element of I_{α} is meager in X_{α} . If C is closed nowhere dense in X_{α} , then let $Q = \{p \in \mathbb{P} : C_p \cap C = \emptyset\}$. Since Q is open dense in \mathbb{P}_{α} , we can pick $D \subseteq Q$ a maximal antichain. Thus $C \subseteq \omega^{\omega} - \bigcup \{C_p : p \in D\}$ and every meager subset of X_{α} is in I_{α} .

Since A is Borel in X_{α} there is a regular open set B in X_{α} such that $(A\Delta B) \in I_{\alpha}$. Let $Q = \{p \in \mathbb{P}_{\alpha} : C_p \subseteq B\}$. Pick $D \subseteq Q$ an antichain which is maximal with respect to being contained in Q. Since B is regular open, $B = \bigcup \{C_p : p \in D\}$, so B is Σ_{α}^0 in ω^{ω} . To see that α is minimal note that for $s \in T_{\alpha}$ with $|s|_{T_{\alpha}} = \beta$ there is no $B \Sigma_{\beta}^0$ in ω^{ω} with $(C_{(s,s)}\Delta B) \in I_{\alpha}$.

Now let $X \subseteq \omega^{\omega}$ be I_{α} -Luzin. Then ord $(X) \ge \alpha$ since for any A and B Borel in ω^{ω} $((A \Delta B) \in I_{\alpha}$ iff $|(A \Delta B) \cap X| < |X|)$. But ord $(X) \le \alpha + 2$ follows from the fact that for all B in I_{α} there exists C in $I_{\alpha} \cap \Sigma_{\alpha+1}^{0}$ with $B \subseteq C$, just as in the proof of Theorem 17. This concludes the proof of Theorem 19.

Remarks. (1) If V = L, then using the Δ_2^1 well-ordering of $L \cap 2^{\omega}$ we can get $X \subseteq 2^{\omega}$ a Δ_2^1 set with ord $(X) = \alpha$ for any $\alpha \leq \omega_1$. If X is Π_1^1 (or Σ_1^1), then $X = A\Delta M$ where A is Π_{α}^0 and $M \in I_{\alpha}$, so X cannot be I_{α} -Luzin.

(2) A finer index can be given to a set $X \subseteq \omega^{\omega}$ by considering the classical Hausdorff difference hierarchies. A set $C \subseteq \omega^{\omega}$ is a $\beta - \Pi_{\alpha}^{0}$ set iff there exists $D_{\gamma} \in \Pi_{\alpha}^{0}$ for $\gamma < \beta$ such that the D_{γ} 's are decreasing and $D_{\lambda} = \bigcup_{\gamma < \lambda} D_{\gamma}$ for λ limit and $C = \bigcup \{D_{\gamma} - D_{\gamma+1} : \gamma < \beta \text{ and } \gamma \text{ even}\}$. It is a theorem of Hausdorff that $\Delta_{\alpha+1}^{0} = \bigcup \{\beta - \Pi_{\alpha}^{0} : \beta < \omega_{1}\}$ (see [11, pp. 417, 448]). It is also not hard to show,

using a universal set argument, that there exists a properly $\beta - \Pi_{\alpha}^{0}$ set for all $\alpha, \beta < \omega_{1}$. Accordingly define H(X) to be the lexicographical least pair $(\alpha, \beta) \in \omega_{1}^{2}$ such that for any Borel set A there exists B a $\beta - \Pi_{\alpha}^{0}$ set such that $A \cap X = B \cap X$. If X is a Luzin set (Sierpinski set), then H(X) = (2, 2) (H(X) = (2, 1)). It is easily shown that in Theorem 22 $N \models H(X_{\alpha+1}) = (\alpha+1, 1)^{\alpha}$. It is not hard to see that for C a countable closed set $H(C) = (1, \alpha)$ where α is the Cantor-Bendixson rank of C.

Theorem 22. It is relatively consistent with ZFC that for any uncountable $X \subseteq 2^{\omega}$ ord $(X) = \omega_1$. This can be generalized to show that for any successor ordinal β_0 such that $2 \leq \beta_0 < \omega_1$, it is consistent that

$$\{\beta : \exists X \subseteq 2^{\omega} \text{ uncountable ord } (X) = \beta\} = \{\beta : \beta_0 \leq \beta \leq \omega_1\}.$$

Remark. It is true in the model obtained that for any uncountable separable metric space X the Borel hierarchy on X has length ω_1 . This is true, since if $|X| = \omega_1$, then since $|2^{\omega}| \ge \omega_2$ and X can be embedded into \mathbb{R}^{ω} , X must be zero dimensional. But any zero dimensional space can be embedded into 2^{ω} .

To prove Theorem 22 let M be a countable transitive model of ZFC+GCH. Choose $(\alpha_{\lambda} : \lambda < \omega_2)$ in M so that for all $\beta < \omega_1 \{\lambda : \alpha_{\lambda} = \beta\}$ is unbounded in ω_2 . Define \mathbb{P}^{γ} for $\gamma \leq \omega_2$ by induction $\mathbb{P}^0 = \mathbb{P}_{\alpha_0}(\phi, 2^{\omega} \cap M), \mathbb{P}^{\gamma+1} = \mathbb{P}^{\gamma} * Q^{\gamma}$ where Q^{γ} is a term in the forcing language of \mathbb{P}^{γ} denoting $\mathbb{P}_{\alpha_{\gamma}}(\emptyset, M[G_{\gamma}] \cap 2^{\omega})$ for any $G_{\lambda} \mathbb{P}^{\gamma}$ -generic over M and at limits take the direct limit.

Call $p \in \mathbb{P}^{\beta}$ nice if it has the following properties for all $\gamma < \beta$.

(1) $p(\gamma)$ is a canonical name for $p^* \cup \{(s, \tau) : s \in F\}$ where p^* is a function from some finite subset of $\{s \in T_{\alpha_{\gamma}} : |s| = 0\}$, F is some finite subset of $\{s \in T_{\alpha_{\gamma}} : |s| > 0\}$, and each τ is forced with value one to be an element of 2^{ω} .

(2) For each $(s, \tau) \in p(\gamma) \exists t_{\tau} \in 2^{<\omega}$ such that $p \upharpoonright \gamma \Vdash ``t_{\tau} \subseteq \tau$ '' and if (s, τ) , $(s \cap n, \tau')$ are in $p(\gamma)$ (or $(s \cap n, t) \in p^*$), then t_{τ} and $t_{\tau}'(t)$ are incompatible.

It is not hard to see by induction on β that the nice p are dense. For the rest of the proof we assume all p are nice.

For $Q \subseteq \mathbb{P}$ and θ a sentence we say that Q decides θ iff $\{p \in \mathbb{P}: \text{ there is a } q \in Q \text{ such that } p \ge q \text{ and } (q \Vdash "\theta" \text{ or } q \Vdash "\neg \theta")\}$ is dense in \mathbb{P} . For any $H \subseteq 2^{\omega}$ define |p|(H) and $|\tau|(H, p)$ for $p \in \mathbb{D}^{\gamma}$ and $\tau \ge \mathbb{P}^{\gamma}$ term for an element of 2^{ω} by induction on γ .

(1) For $p \in \mathbb{P}^0 = \mathbb{P}_{\alpha_0}(\emptyset, 2^{\omega} \cap M)$ define

$$|p|(H) = \max\{|s|_{T_{\infty}} : \exists x \in 2^{\omega} - H(s, x) \in p\}.$$

(2) For $p \in P^{\gamma+1}$ define

 $|p|(H) = \max \{ |p \upharpoonright \gamma|(H), |\tau|(H, p \upharpoonright \gamma) : (s, \tau) \in p(\gamma) \}.$

(3) For $p \in P^{\lambda}$ define

 $|p|(H) = \sup \{|p \upharpoonright \gamma| : \gamma < \lambda\}.$

(4) Define $|\tau|(H, p)$ is the least β such that for any $n \in \omega$ $\{q \in \mathbb{P}^{\gamma} : q \text{ incompatible with } p \text{ or } |q|(H) \leq \beta\}$ decides " $\tau(n) = 0$ "

 $\mathbb{P}^{\omega_2} = \mathbb{P}$ is not a lattice, however, it does have one similar property:

Lemma 23. Suppose G is \mathbb{P}^{α} -generic over M and for $i < n < \omega q_i \in G$ and $|q_i|(H) < \beta$, then there is a $q \in G$ with $|q|(H) < \beta$ and $q \ge q_i$ for all i < n.

Proof. The proof is by induction on α . For $\alpha = 0$ or a α a limit it is easy. So suppose $\alpha = \beta + 1$ and $G_{\beta} \times G^{\beta}$ where G_{β} is \mathbb{P}^{β} -generic over M. Find $\Gamma \subseteq G_{\beta}$ finite so that for any $q \in \Gamma$ with $|q|(H) < \beta$ and for any i and j less than n if $(s, \tau) \in q_i(\beta)$ and $(s \cap k, \hat{\tau}) \in q_i(\beta)$ (or $(s \cap k, t) \in q_i(\beta)$ where $t \in 2^{<\omega}$), then there is $r \in \Gamma$ such that $r \Vdash \tau \neq \hat{\tau}(t \not\equiv \tau)^{n}$. By induction there is q in G_{β} such that $|q|(H) < \beta$, for all $\hat{q} \in \Gamma q \ge \hat{q}$, and for all $i < n q \ge q_i \upharpoonright \beta$. Define $q(\beta)$ to be equal to $\bigcup \{q_i(\beta): i < n\}$.

Lemma 24. Given P_0 a countable subset of \mathbb{P}^{α} and Q_0 a countable set of \mathbb{P}^{α} terms for elements of 2^{ω} , there exists H countable such that for every $p \in P_0$ and $\tau \in Q_0$ $|p|(H) = |\tau|(H, \emptyset) = 0$.

Proof. This is easy using c.c.c. of \mathbb{P}^{α} .

Let |p| = p(H) and $|\tau|(p) = |\tau|(H, p)$. for some fixed H.

Lemma 25. For each $p \in \mathbb{P}^{\alpha}$ and β there exists $\hat{p} \in \mathbb{P}^{\alpha}$ compatible with p, $|\hat{p}| < \beta + 1$, and for every $q \in \mathbb{P}^{\alpha}$ with $|q| < \beta$, if \hat{p} and q are compatible, then p and q are compatible.

Proof. The proof is by induction on α . For $\alpha = 0$ this is just Lemma 8 of Section 1. For α limit it is easy. From now on assume the lemma is true for α .

Define for $x, y \in 2^{\omega}$, x is lexicographically less than y iff

 $\exists n \forall m < n (x(m) = y(m) \text{ and } x(n) < v(n)).$

This is the lexicographical order. For $C \subseteq 2^{c}$ a nonempty closed set let x_C be the lexicographically least element of C.

Claim 1. Let \dot{C} be a term in \mathbb{P}^{α} and $p_0 \in \mathbb{P}^{\circ}$ with $|p_0| < \beta + 1$ such that $p_0 \Vdash \dot{C}$ is a nonempty closed subset of 2^{ω} . Suppose for every $G \mathbb{P}^{\alpha}$ -generic with $p_0 \in G$, and

 $s \in 2^{<\omega}(M[G] \models ``[s] \cap \dot{C} = \emptyset$ '' iff $\exists q \in G, |q| < \beta$, and $q \Vdash ``[s] \cap \dot{C} = \emptyset$ ''). Then $|x_C|(p_0) < \beta + 1$.

Proof. First we show that given any $p \in \mathbb{P}^{\alpha}$ with $p \ge p_0$, if $s \in 2^{<\omega}$, $p \Vdash ``[s] \cap \dot{C} \ne \emptyset$, then there exist $\hat{p} \in \mathbb{P}^{\alpha}$ compatible with $p, |\hat{p}| < \beta + 1$, and $\hat{p} \Vdash ``[s] \cap \dot{C} \ne \emptyset$. Let p' be as from Lemma 25 for p. By using Lemma 23 obtain \hat{p} compatible with $p, \hat{p} \ge p', \hat{p} \ge p_0$, and $|\hat{p}| < \beta + 1$. I claim $\hat{p} \Vdash ``[s] \cap \dot{C} \ne \emptyset$. Suppose not then there exists $G \mathbb{P}^{\alpha}$ -generic, $\hat{p} \in G$, and $M[G] \models ``[s] \cap \dot{C} = \emptyset$. So there exists $q \in G, |q| < \beta$, and $q \Vdash ``[s] \cap \dot{C} = \emptyset$. But then since q is compatible with \hat{p} it is compatible with p' and hence with p, contradiction. In order to show $|x_C| (p_0) < \beta + 1$ it suffices to show for every $p \ge p_0$ and $n \in \omega$ there exist $\hat{p} \in \mathbb{P}^{\alpha}$ compatible with $p, |\hat{p}| < \beta + 1$, and there exists $s \in 2^n$ such that $\hat{p} \Vdash ``x_C \upharpoonright n = s$. So given p and $n \text{ find } r \ge p$ and $s \in 2^n$ such that $r \Vdash ``x_C \upharpoonright n = s$. We have just shown there exists \hat{r} compatible with r with $|\hat{r}| < \beta + 1$ and $\hat{r} \Vdash ``[s] \cap C \ne \emptyset$. Let G be \mathbb{P}^{α} -generic containing r and \hat{r} . For each $t \in 2^{m+1}$ with $m + 1 \le n$ and for all k < m (t(k) = s(k)) and t(m) < s(m), choose $q_t \in G$ with $|\hat{\alpha}| < \beta$ and $q_t \Vdash ``[t] \cap C = \emptyset$. (There are only finitely many such t). Choose $q \in G$ with $|q| < \beta + 1$, $q \ge \hat{r}$, and $q \ge q_t$ for each $x \in (q = xists)$ by Lemma 23). Then $q \Vdash ``x_C \upharpoonright n = s$.

For p and q compatible define $p \cup q \Vdash ``\theta''$ to mean that for every r, if $r \ge p$ and $r \ge q$, then $r \Vdash ``\theta''$. For $\tau \in \mathbb{P}^{\alpha}$ term for an element of 2^{ω} and $p \in \mathbb{P}^{\alpha}$, define $C(\tau, p) = \bigcap \{D_{\hat{\tau}} : \text{there exist } q \in G, |q| < \beta, |\hat{\tau}|(q) < \beta, q \Vdash ``\hat{\tau} \in 2^{\omega}'', p \text{ and } \sigma \text{ are compatible, and } p \cup q \Vdash ``\tau \in D_{\hat{\tau}}''\}$. D is a universal Π_1^0 subset of $2^{\omega} \times 2^{\omega}$ $(\forall K \in \Pi_1^0 \exists x \in 2^{\omega} K = D_x = \{y : (x, y) \in D\}).$

Claim 2. Let \hat{p} be given by Lemma 25 for $p \in \mathbb{P}^{\alpha}$ (i.e. for all $q \in \mathbb{P}^{\alpha}$ if $|q| < \beta$, then if q and \hat{p} are compatible, then q and p are compatible). Then \hat{p} and $C(\tau, p)$ satisfy the hypothesis of Claim 1 for p_0 and \dot{C} .

Proof. Suppose $M[G] \models [s] \cap C(\tau, p) = \emptyset$. By compactness there exists $n < \omega$, $q_i \in G$, τ_i for i < n with $|q_i| < \beta$ and $|\tau_i| (q_i) < \beta$ so that $p \cup q_i \Vdash [\tau \in D_{\tau_i}]$ and $M[G] \models [\cap \{D_{\tau_i} : i < n\} \cap [s] = \emptyset$. Let $\hat{\tau}$ be a term for an element of 2^w so that $D_i = \bigcap \{D_{\tau_i} : i < n\}$ and $q \in G$ with $q \ge q_i$ for i < n and $|q| < \beta$. ($\hat{\tau}$ can be chosen so that $|\hat{\tau}| (q) < \beta$ assuming some nice properties of D). Since q and \hat{p} are compatible, q and p are compatible and $q \cup p \Vdash [\tau \in D_i]$. Since $M[G] \models [T_{\tau_i} \cap [s] = \emptyset$ by compactness there exists $m \in \omega$ so that if $t = \hat{\tau}^G \upharpoonright m$ then for every $x \ge t$, $x \in 2^w$ $D_x \cap [s] = \emptyset$. Since $|\hat{\tau}| (q) < \beta$ there exists $\hat{q} \ge q$ an element of G, $|\hat{q}| < \beta$, and $\hat{q} \Vdash [\tau] \upharpoonright m = t]$; hence $\hat{q} \Vdash [s] \cap C(\tau, p) = \emptyset$. The fact that $\hat{p} \Vdash [C(\tau, p) \neq \emptyset]$ follows from this since if not there exists q compatible with \hat{p} , $|q| < \beta$, and $q \Vdash [\emptyset] \cap$ $C(\tau, p) = \emptyset$. But then q is compatible with p contradiction.

We now return to the proof of the $\alpha + 1$ step of Lemma 25.

Assume $p \in \mathbb{P}^{\alpha+1}$ is nice. Let (s_i, τ_i) for i < n be all $(s, \tau) \in p(\alpha)$ with $|s| \ge 1$ and

let $\bar{\tau} = (\tau_0, \tau_1, \dots, \tau_{n-1})$ (where $(, \dots,): (2^{\omega})^n \to 2^{\omega}$ is some recursive coding). Let $\hat{p} \uparrow_{\alpha}$ be as given from Lemma 25 for $p \uparrow_{\alpha}$. Let $\bar{\tau}^l$ be the lexicographical least element of $C(\tilde{\tau}, p \uparrow_{\alpha})$. By Claim 1 and $2 |\bar{\tau}^l| (\hat{p} \uparrow_{\alpha}) < \beta + 1$. Now let

$$\hat{p}(\alpha) = \{(s, t) \in p(\alpha) : |s| = 0\} \cup \{(s_i, \tau_i^i) : i < n\}$$

 $(\bar{\tau}^{l} = (\tau_{0}^{l}, \ldots, \tau_{n-1}^{l}))$. Since $\emptyset \Vdash C(\bar{\tau}, p_{\alpha})$ is included in $\prod_{i < n} [s_{\tau_{i}}]^{n}$, \hat{p} is a condition, \hat{p} and p are compatible, also $|\hat{p}| < \beta + 1$. Now suppose $q \in \mathbb{P}^{\alpha+1}$ compatible with $\hat{p}, |q| < \beta$, and q and p are not compatible. Let G be \mathbb{P}^{α} -generic with $\hat{p} \uparrow_{\alpha}$ and $q \uparrow_{\alpha}$ elements of G and $M[G] \models \hat{p}(\alpha)$ and $q(\alpha)$ are compatible". If we think of $p(\alpha)$ as a statement about $\bar{\tau}$ i.e. $p(\alpha)(\bar{\tau})$, then $\hat{p}(\alpha) = p(\alpha)(\bar{\tau}^{l})$. Since p and q are incompatible but p_{α} and q_{α} are compatible $(p \uparrow_{\alpha} \cup q \uparrow_{\alpha}) \models \hat{p}(\alpha)$ and $q(\alpha)$ are incompatible". $D(\bar{\tau}) \equiv \hat{p}(\alpha)(\bar{\tau})$ and $q(\alpha)$ are incompatible" is a Π_{1}^{0} statement with parameters from $q(\alpha)$ about $\bar{\tau}$. Thus we conclude that $M[G] \models \hat{p}(\alpha)(\bar{\tau}^{l})$ and $q(\alpha)$ are incompatible", contradiction. This concludes the proof of Lemma 25.

From now on let $\mathbb{P} = \mathbb{P}^{\omega_2}$.

Lemma 26. Suppose $|\tau| = 0$, B(v) is a Σ_{β}^{0} predicate, $\beta \ge 1$, with parameters from M, and $p \in \mathbb{P}$ is such that $p \Vdash "B(\tau)"$; then there exists $q \in \mathbb{P}$ compatible with p, $|q|(H) < \beta$ and $q \Vdash "B(\tau)"$.

Proof. The proof is by induction on β .

Case 1. $\beta = 1$.

Suppose $p \Vdash \exists n R(x \upharpoonright n, \tau \upharpoonright n)$ for R recursive and $x \in M$. Let G be \mathbb{P} -generic with $p \in G$. Choose $n \in \omega$ and $s \in 2^n$ so that $M[G] \models R(\upharpoonright n, \tau \upharpoonright n)$ and $\tau \upharpoonright n = s$. Choose $q \in G$ with |q| = 0 and $q \Vdash \tau \upharpoonright n = s$.

Case 2. β is a limit ordinal.

If $p \Vdash \exists n B(n, \tau)$, then $\exists \hat{p} \ge p \ \hat{p} \Vdash B(n_0, \tau)$ and $B(n_0, v) \Sigma_{\gamma}^0$ for $\gamma < \beta$, so apply induction hypothesis to \hat{p} .

Case 3. $\beta + 1$.

Suppose $p \Vdash \exists n B(n, \tau)$ where B(n, v) is Π_{β}^{0} with parameters from *M*. Choose $r \ge p$ and $n_0 \in \omega$ so that $r \Vdash B(n_0, \tau)$. By Lemma 25 there is *q* compatible with $r, |q| < \beta + 1$, and for every $s, |s| < \beta$, if *q* and *s* are compatible, then *r* and *s* are compatible. $q \Vdash B(n_0, \tau)$ because if not, then there is $q' \ge q$ such that $q' \Vdash B(n_0, \tau)$, and so by induction there is *s* with $|s| < \beta$ compatible with *q'* and $s \Vdash B(n_0, \tau)$; but then *s* is compatible with *r*, contradiction.

Now let us prove the first part of Theorem 22. Let G be \mathbb{P} -generic over M. We claim M[G] if for every $X \subseteq 2^{\omega}$ and $\alpha < \omega_1$ if $|X| = \omega_1$, then ord $(X) \ge \alpha + 1^{\circ}$. But since any such X is in some $M[G_{\beta}]$ for $\beta < \omega_2$, we may as well assume $X \in M$, $\alpha_0 = \alpha + 1$, and we must show M[G] if "ord $(X) \ge \alpha + 1$ ". Let $G_{(0)}$ be the Π^0_{α} set created by $G \cap \mathbb{P}_{\alpha_0}(\emptyset, 2^{\omega} \cap M)$. Suppose that M[G] if "there is K a Σ^0_{β} set such that

 $K \cap X = G_{(0)} \cap X^{"}$. Let τ be a term for the parameter of K. Choose $p \in G$ such that $p \models "\forall z \in X$ ($x \in K$ iff $z \in G_{(0)}$)". By Lemma 24 there exists H in M countable so that $|\tau|(H, \emptyset) = |p|(H) = 0$. Let $z \in X - H$. Define $\hat{p} \in \mathbb{P}$ by $\hat{p}(0) = p(0) \cup \{((0), z)\}$ and $\hat{p}(\alpha) = p(\alpha)$ for $\alpha > 0$. Since \hat{p} says $z \in G_{(0)}$, $\hat{p} \Vdash "z \in K"$. By Lemma 26 there exists \hat{q} compatible with \hat{p} , $|q|(H) < \beta$, and $q \Vdash "z \in K"$. By Lemma 23 there exists \hat{q} with $|\hat{q}(H) < \beta$, $\hat{q} \ge q$, and $\hat{q} \ge p$. Since $|(0)|_{\tau_{\alpha_0}} = \alpha$, $((0), z) \notin \hat{q}(0)$, there exists $m \in \omega$ such that r defined by $r(0) = q(0) \cup \{((0, m), z)\}$ and $r(\alpha) = \hat{q}(\alpha)$ for $\alpha > 0$ is a condition. But this is a contradiction since $r \Vdash$ " $t \ge G_{(0)}$ iff $z \in K$ and $z \notin G_{(0)}$ ".

Now we prove the second sentence of Theorem 22. Let $X = \bigcup \{X_{\alpha} : \beta_0 \le \alpha < \omega_1 \}$ and α a successor} where each X_{α} is a set of ω_1 product generic Cohen reals. Let $M_0 = M[X]$. Define in M_0 the partial order \mathbb{P}^{γ} for $\gamma \le \omega_2$ so that $\mathbb{P}^{\gamma+1} = \mathbb{P}^{\gamma} * Q_{\gamma}$ where Q_{γ} is a term denoting:

Case 1. $\mathbb{P}_{\beta_0}(\emptyset, M_0[G_{\gamma}] \cap 2^{\omega})$ or

Case 2. $\mathbb{P}_{\beta}(Y_{\gamma}, X_{\beta} \cup F)$ where Y_{γ} is a Borel subset of X_{β} in $M_0[G_{\gamma}]$ and $F = \{x \in 2^{\omega} : x \text{ eventually zero}\}.$

Case 1 is done cofinally in ω_2 and Case 2 is done in such a way as to insure: $M_0[G_{\omega_2}]$ [±]"For every successor ordinal β with $\beta_0 \leq \beta < \omega_1$ and Y Borel in X_β there is a γ such that $Y = Y_\gamma$ ". First we show that essentially the same arguments as before show that $M_0[G_{\omega_2}]$ [±]"For every $X \subseteq 2^\omega$ uncountable ord $(X) \geq \beta_0$ ". This will not use that the X_α are made up of Cohen reals, hence any of the intermediate models would serve as the ground model. So suppose Case 1 occurs on the first step, $Y \in M_0$ is uncountable, $\beta_0 = \gamma + 1$, and $M_0[G_{\omega_2}]$ [±]" $Y \cap G_{(0)} =$ $Y \cap J$ for some $J \in \Sigma_{\gamma}^{0}$ ". Given $L \subseteq \omega_2$ define \mathbb{P}_L^α as follows.

For $\alpha \in L$:

Case 1. $\mathbb{P}_L^{\alpha+1} = \mathbb{P}_L^{\alpha} * \mathbb{P}_{\beta_0}(\emptyset, M[G_{\alpha}^L] \cap 2^{\omega})$ where G_{α}^L is \mathbb{P}_L^{α} -generic over M_0 .

Case 2. $\mathbb{P}_L^{\alpha+1} = \mathbb{P}_L^{\alpha} * \mathbb{P}_3(Y_{\alpha} - F, X_{\beta} \cup F)$ (where we assume L has the property that when Case 2 happens for $\alpha \in L$ then Y_{α} is a Borel subset of X_{β} coded by some term τ_{α} in \mathbb{P}_L^{α}).

For $\alpha \notin L$:

 $\mathbb{P}_L^{\alpha+1} = \mathbb{P}_L^{\alpha} *$ (singleton partial order).

Note that by using c.c.c. of \mathbb{P}^{ω_2} we can find $L \subseteq \omega_2$ countable, so that the Borel code for the above J is a $\mathbb{P}_L^{\omega^2}$ term and L has the property mentioned under Case 2. For α a limit \mathbb{P}_L^{α} is the direct limit of $(\mathbb{P}_L^{\beta}; \beta < \alpha)$.

Lemma 27¹. If $N \supseteq M$ is a model of ZFC and G is $\mathbb{P}_{\beta}(\emptyset, N \cap 2^{\omega})$ generic over N, then $G \cap \mathbb{P}_{\beta}(\emptyset, M \cap 2^{\omega})$ is $\mathbb{P}_{\beta}(\emptyset, M \cap 2^{\omega})$ generic over M.

¹ I would like to thank the referee for suggesting this proof of Lemma 27 and thus eliminating the need for Lemma 28. A similar argument is utilized by J. Truss, "Sets having calibre \aleph_1 ", in: Logic Colloquium 76, Studies in Logic, Vol. 87 (North-Holland, Amsterdam, 1977).

Proof. It is sufficient to show that if $A \in M$ and A is a maximal antichain in $\mathbb{P}_{\beta}(0, M \cap 2^{\omega})$ (where $\beta < \omega^{M}$), then A is also a maximal antichain in $\mathbb{P}_{\beta}(0, N \cap 2^{\omega})$ for any $N \supseteq M$ which is a transitive model of ZFC. But by c.c.c. (in M), A is countable in M, so this result is immediate by absoluteness of Π_{1}^{1} predicates.

Given any $G \mathbb{P}^{\omega_2}$ -generic let G_L be the subset of \mathbb{P}_L generated by the rank zero conditions in G. The preceding lemma enables us to prove:

Lemma 29. For any α if G_{α} is \mathbb{P}^{α} -generic over M_0 , then G_{α}^{L} is \mathbb{P}_{L}^{α} -generic over M_0 .

Proof. This is proved by induction on α . For $\alpha + 1 \notin L$ it is immediate. For $\alpha + 1 \in L$ Case 1 is handled by Lemma 27 and the product lemma. Case 2 is easy as $\mathbb{P}_{\beta}(Y_{\alpha} - F, X_{\beta} \cup F)$ is the same partial order in either case. For α limit ordinal let $\Delta \subseteq \mathbb{P}_{L}^{\alpha}$ be dense, we show $\{q \in \mathbb{P}^{\alpha} : \exists p \in \Delta, p \leq q\}$ is dense in \mathbb{P}^{α} . If $q \in \mathbb{P}^{\alpha}$, then $q \in \mathbb{P}^{\beta}$ for some $\beta < \alpha$. Let $\Delta_{\beta} = \{p \upharpoonright \beta : p \in \Delta\}$, then Δ_{β} is dense in \mathbb{P}_{L}^{β} . Hence if G_{α} is \mathbb{P}^{α} -generic with $q \in G_{\alpha}$, then since G_{β}^{L} is \mathbb{P}_{L}^{β} -generic it meets Δ_{β} — say at $p \upharpoonright \beta$. But then q and p are compatible.

Define for $H \subseteq 2^{\omega} |p|(H), |\tau|(H, p)$ for $p \in \mathbb{P}_{L}^{\alpha}$ and $\tau \in \mathbb{P}_{L}^{\alpha}$ -term for a subset of ω by induction on α .

Case 1. $\mathbb{P}^{\alpha+1} = \mathbb{P}^{\alpha} * \mathbb{P}_{\beta_0}(\emptyset, M[G_L^{\alpha}] \cap 2^{\omega}).$

 $|p|(H) = \max \{|p \uparrow \gamma|(H), |p(\gamma)|(H, p \uparrow \gamma)\}$ (same as before).

Case 2. $\mathbb{P}^{\alpha+1} = \mathbb{P}^{\alpha} * \mathbb{P}_{\beta}(Y_{\alpha} - F, X_{\alpha} \cup F).$

 $|p|(H) = \max \{ |p| \alpha | (H), |s|_{T_{\alpha}} : x \notin H (s, x) \in p(\alpha) \}.$

 $|\tau|(H, p)$ is defined as it was just before Lemma 23. Lemma 23 is easily proven since in Case 2 we have a lattice. Lemma 24 is also easily proven if in addition H is taken with the property that $\forall x \in H \forall \alpha \in L \{p:|p|(H)=0\}$ decides " $x \in Y_{\alpha}$ " whenever Case 2 happens at stage α . Lemma 25 can be proven for $\beta < \beta_0$ by the same argument in Case 1 and by the argument of Theorem 34 in Case 2. Lemma 26 follows and so does the claim that $M_0[G_{\omega_1}] \models "K \subseteq \{\beta: \beta_0 \leq \beta < \omega_1\}$ ".

Next we show $M_0[G_{\omega_2}]$ "ord $(X_{\beta}) = \beta$ for each β successor $\beta_0 \leq \beta < \omega_1$ ". If not, then again we can reduce to some $L \subseteq \aleph_2$ countable; and since each X_{α} is present in M_0 , we can relabel L so that for some $\hat{\beta} < \omega_1$ and β_1 with $\beta_0 \leq \beta_1 < \omega_1$, $M_0[G_{\hat{\beta}}]$ "ord $(X_{\beta_1}) < \beta_1$ " for $G_{\hat{\beta}} \mathbb{P}^{\beta}$ -generic over M_0 , and on some step before $\hat{\beta}$ we force with $\mathbb{P}_{\beta_1}(\emptyset, X_{\beta_1} \cup F)$. Suppose $X = \{x_{\alpha} : \alpha < \omega_1\}$ and $M_0 =$ $M[\{\langle \alpha, x_{\alpha} \rangle : \alpha < \omega_1\}]$. Given $H \subseteq \omega_1, H \in M$ let $\hat{H} = \{\langle \alpha, x_{\alpha} \rangle : \alpha \in H\}$. Define $\mathbb{P}_H^{\alpha} \in$ $M[\hat{H}]$ for each $\alpha < \hat{\beta}$.

Case 1. $\mathbb{P}_{H}^{\alpha+1} = \mathbb{P}_{H}^{\alpha} * \mathbb{P}_{\beta_{\alpha}}(\emptyset, M[G_{\alpha}^{H}] \cap 2^{\omega}).$

Case 2. $\mathbb{P}_{H}^{\alpha+1} = \mathbb{P}_{H}^{\alpha} * \mathbb{P}_{\beta}((Y_{\beta} - F) \cap \hat{H}, (X_{\beta} \cap \hat{H}) \cup F)$ (assuming Y_{α} is a Borel subset of X_{β} given by the term τ_{α} in forcing language of \mathbb{P}_{H}^{α}).

Lemma 30. For any $\alpha \leq \hat{\beta}$ if G^{α} is \mathbb{P}^{α} -generic over M_0 , then G_H^{α} is \mathbb{P}_H^{α} -generic over $M[\hat{H}]$.

Proof. The proof is like Lemma 29 except on $\alpha + 1$ under Case 2. $\mathbb{P}_1 = \mathbb{P}_{\beta}(Y_{\alpha} - F, X_{\beta} \cup F)$ in $M[X][G^{\alpha}] = M_1$, $\mathbb{P}_2 = \mathbb{P}_{\beta}((Y_{\alpha} - F) \cap \hat{H}, (X_{\beta} \cap \hat{H}) \cup F)$ in $M[\hat{H}][G_{H}^{\alpha}] = M_2$. Again suppose $\Delta \in M_2$ is dense in \mathbb{P}_2 , we show $\{p \in \mathbb{P}_1 : \exists q \in \Delta, q \leq p\}$ is dense in \mathbb{P}_1 . Given $p \in \mathbb{P}_1$ let $p = r \cup \{\langle s_n, x_n \rangle : n < N\}$ where $x_n \in X_{\alpha} - \hat{H}, N < \omega$, and $r \in \mathbb{P}_2$. Let Q_N be the partial order for adding N Cohen reals. By the product lemma $\{x_n : n < N\}$ is Q_N -generic over M_2 , and also $p \in M_2[\{x_n : n < N\}]$. Hence if $\forall q \in \Delta p$ and q are incompatible in

$$\mathbb{P}_{3} = \mathbb{P}_{\beta}((Y_{\alpha} - F) \cap (H \cup \{x_{n} : n < N\}), (X_{\beta} \cap (H \cup \{x_{n} : n < N\})) \cup F),$$

then $\exists \hat{p} \in Q_N \ \hat{p} \Vdash \forall q \in \Delta p$ and q are incompatible in \mathbb{P}_3 . Choose $y_n \in F$ for n < Nso that $p_0 = r \cup \{\langle s_n, y_n \rangle : n < N\} \in \mathbb{P}_2$ and $\forall m < \omega \exists \hat{p}' \ge \hat{p} \forall n < N \ \hat{p}' \Vdash "y_n \upharpoonright_m = x_n \upharpoonright_m$. Since $\exists q \in \Delta p_0$ and q are compatible, then as before p and q can be forced compatible by an extension of \hat{p} . So p and q are compatible in \mathbb{P}_3 and hence in \mathbb{P}_1 .

Lemma 31. Given $\hat{\tau}$ a term in forcing language of $\mathbb{P}_{H}^{\hat{\beta}}$ if $p \in \mathbb{P}^{\hat{\beta}} p \Vdash_{\mathbb{P}\hat{\beta}} "B(\tau)$ " where B(v) is a Σ_{1}^{1} predicate with parameters in $M[\hat{H}]$, then $\exists q \in \mathbb{P}_{H}^{\hat{\beta}}$ compatible with p such that $q \Vdash_{\mathbb{P}\hat{\beta}} "B(\tau)$ ".

Proof. Let G be $\mathbb{P}^{\hat{\beta}}$ -generic over M_0 with $p \in G$. Then by Lemma 9 G_H^{β} is $\mathbb{P}_H^{\hat{\beta}}$ -generic over $M[\hat{H}]$. Since $\Sigma_1^{\hat{i}}$ sentences are absolute and $M_0[G] \models "B(\tau)"$ we have $M[\hat{H}][G_H] \models "B(\tau)"$. So $\exists q \in G_H q \Vdash_{\mathbb{P}_1,\hat{\beta}} "B(\tau)"$. But for any $G \mathbb{P}^{\hat{\beta}}$ -generic containing q, $M[H][G_H] \models "B(\tau)"$ whence by absoluteness $M_0[G] \models "B(\tau)"$. We conclude $q \Vdash_{\mathbb{P}\hat{\beta}} "B(\tau)"$.

Lemma 32. Given $H = X - \{z\}$ where $z \in X_{\alpha+1}$, $\gamma \leq \hat{\beta}$, $1 \leq \beta < \alpha$, $p \in \mathbb{P}^{\gamma}$, then $\exists \hat{p} \in \mathbb{P}^{\gamma}$, $|\hat{p}| (M[\hat{H}] \cap 2^{\omega}) < \beta + 1$, \hat{p} compatible with p, and $\forall q \in \mathbb{P}^{\gamma}$ if $|q| (M[\hat{H}] \cap 2^{\omega}) < \beta$, then $(\hat{p}, q \text{ compatible} \Rightarrow p, q \text{ compatible})$.

Proof. This is proved by induction on γ . For γ limit it is easy, also for $\gamma + 1$ in which Case 1 occurs the proof is the same as Lemma 25. So we only have to do $\gamma + 1$ in Case 2.

 $p \in \mathbb{P}^{\gamma} * \mathbb{P}_{\beta_i}(Y_{\gamma} - F, X_{\beta_i} \cup F)$. Extend $p(\gamma)$ if necessary so that $\forall \langle s, x \rangle \in p(\gamma) \forall i < \omega$ if $|s| = \lambda$ infinite limit $|s \cap i| \leq \beta + 1 < \lambda$, then $\exists j < \omega \quad \langle s \cap i \cap j, x \rangle \in p(\gamma)$. Let $\hat{p}(\gamma) = \{\langle s, x \rangle \in p(\gamma) : |s| < \beta + 1 \text{ or } x \neq z\}$. If $\hat{p} = \langle \hat{p} \mid \gamma, \hat{p}(\gamma) \rangle$ were a condition, then just as in Lemma 8, \hat{p} would have the required properties. To be a condition we need to know that whenever $\langle \langle n \rangle, x \rangle \in \hat{p}(\gamma) \quad \hat{p} \upharpoonright \gamma \Vdash ``x \notin (Y_{\gamma} - F)''$.

Note that none of these x's are equal to z because $z \in X_{\alpha+1}$ so $\langle\langle n \rangle, z \rangle \in p(\gamma) \rightarrow |\langle n \rangle| = \alpha \ge \beta + 1$ so $\langle\langle n \rangle, z \rangle \notin \hat{p}(\gamma)$. Let G be \mathbb{P}^{γ} -generic containing $p \upharpoonright \gamma$, and $\hat{p} \upharpoonright \gamma$. By Lemma 31 $\exists q \in \mathbb{P}_{H}^{\gamma} \cap G$ (so $|q| (M[H] \cap 2^{\omega}) = 0$) such that $\forall x \forall n$ if $\langle \langle n \rangle, x \rangle \in \hat{p}(\gamma)$, then $q \Vdash x \notin Y_{\gamma} - F$ ". By Lemma 23, $\exists p_0 \ge q$, $\hat{p} \upharpoonright \gamma$ so that $|p_0| (M[H] \cap 2^{\omega}) < \beta + 1$. So $\langle p_0, \hat{p}(\gamma) \rangle$ works.

Immediate from Lemma 32 we get that: If J is any $\Sigma_{\alpha+1}^{0}$ predicate with parameters $(H = X - \{z\}, z \in X_{\alpha+1}, \text{ and } \tau \text{ is in the forcing language of } \mathbb{P}_{H})$, then $\forall p \in \mathbb{P}$ if $p \Vdash z \in J^{\circ}$, then $\exists q \in \mathbb{P} |q| (M[H] \cap 2^{\omega}) < \beta, q$ and p are compatible, and $q \Vdash z \in J^{\circ}$. So we get our result ord $(X_{\alpha+1}) = \alpha + 1$ in $M_0[G_{\omega}]$.

Remark. Assuming large amounts of the axiom of determinacy and therefore getting more absoluteness in inner models (see [7]) it is easy to produce an inner model N such that $N \models$ "For every $\alpha < \omega_1$ there exist $X \subseteq 2^{\omega}$ such that ord $(X) = \alpha$ and for every $n < \omega$ and $A \prod_{m}^{1} A \cap X$ is Borel in X". Similar improvements for Theorem 43 are possible.

4. The σ-algebra generated by the abstract rectangles

For any cardinal λ let $\mathbf{R}^{\lambda} = \{A \times B : A, B \subseteq \lambda\}$. If $\mathbf{R}^{\lambda}_{\omega_1}$ (the σ -algebra generated by \mathbf{R}^{λ}) is the set of all subsets of $\lambda \times \lambda$, then $\lambda \leq |2^{\omega}|$ (see [9, 21]).

Theorem 33. If $\alpha_0 < \omega_1$ and there is an $X \subseteq \omega^{\omega}$ such that $|X| = \kappa \ge \omega$ and every subset of X of cardinality less than κ is $\Pi^0_{\alpha_0}$ in X, then $R^{\kappa}_{\alpha_0} = P(\kappa \times \kappa)$. The same is true if every subset of X of cardinality less than κ is $\Sigma^0_{\alpha_0}$ in X.

Proof. Consider $A \subseteq \kappa \times \kappa$ and suppose $(\alpha, \beta) \in A$ implies $\alpha \leq \beta$. It is enough to show such sets are in $R_{\alpha_0}^{\kappa}$ since every subset of $\kappa \times \kappa$ can be written as the union of a set above the diagonal and a set below the diagonal. Let T be a normal α_0 tree and $T^* = \{s \in T : |s|_T = 0\}$. For any $y: T^* \to \omega^{<\omega}$ define G_y^s as follows. If $s \in T^*$, then $G_y^s = [y(s)]$, otherwise $G_y^s = \bigcap \{ \omega^\omega - G_y^{s^{-n}} : n < \omega \}$. Let X = $\{x_{\alpha}: \alpha < \kappa\}$ and for each $\beta < \kappa$ choose β so that for all α ((α, β) $\in A$ iff $x_{\alpha} \in G_{y_{\alpha}}^{\phi}$). $B_s \subseteq \kappa \times \kappa$ If $s \in T^*$, then $B_s =$ $s \in T$ define as follows. For $\bigcup \{\{\alpha : t \subseteq x_{\alpha}\} \times \{\beta : y_{\beta}(s) = t\} : t \in \omega^{<\omega}\}, \text{ otherwise } B_{s} = \bigcap \{(\kappa \times \kappa) - B_{s-n} : n < \omega\}.$ Clearly $B_{\emptyset} = A$ and B_{\emptyset} is " $\Pi_{\alpha_0}^0$ " in R^{κ} , and so every subset of $\kappa \times \kappa$ is " $\Pi_{\alpha_0}^0$ " in R^{κ} . Note that $(\kappa \times \kappa) - (A \times B) = ((\kappa - A) \times \kappa) \cup (\kappa \times (\kappa - B))$ and thus if α_0 is even (odd), then $R_{\alpha_0}^{\kappa}$ is the class of sets " $\Pi_{\alpha_0}^0$ " (" $\Sigma_{\alpha_0}^0$ ") in R^{κ} . By passing to complements if necessary we have that $R_{\alpha_0}^{\kappa} = P(\kappa \times \kappa)$. The second sentence of the theorem is proved similarly.

Corollary (Kunen [9]; Rao [21]). If there is an $X \subseteq 2^{\omega}$ such that $|X| = \omega_1$, then $R_{2^{\omega}}^{\omega} = P(\omega_1 \times \omega_1)$.

The converse of this corollary is also true. Suppose $R \subseteq P(\omega_1)$ is a countable

field of sets and $\{(\alpha, \beta): \alpha < \beta < \omega_1\} \in \{A \times B : A, B \in R\}_{\omega_1}$. Since this set is antisymetric we conclude that the map given in Proposition 2 is a 1-1 embedding of ω_1 into 2^{ω} .

Corollary (Kunen [9]; Silver). (MA). If $\kappa = |2^{\omega}|$, then $R_2^{\kappa} = P(\kappa \times \kappa)$.

Proof. If X is *I*-Luzin where *I* is the ideal of meager sets, then every subset of X of smaller cardinality is Σ_2^0 in X (see proof of Theorem 17).

For any $\alpha \leq \omega_1 X \subseteq \omega^{\omega}$ is a Q_{α} set iff $\operatorname{ord} (X) = \alpha$ and every subset of X is Borel in X.

Theorem 34. If M is countable transitive model of ZFC, $1 \le \alpha_0 < \omega_1^M$, and $X = M \cap \omega^{\omega}$, then there is a Cohen extension M[G] such that $M[G] \models "X$ is a Q_{α_0+1} set".

Remark. This shows that the Baire order of the constructible reals can be any countable successor ordinal greater than one. In fact the argument shows that in M[G] for any uncountable $Y \subseteq 2^{\omega}$ with $Y \in M$, Y is a Q_{α_0+1} set. Thus, for example, if M models V = L, then in M[G] there are $\Pi_1^1 Q_{\alpha_0+1}$ sets. In Theorem 55 we show that it is consistent with ZFC that for every $\alpha < \omega_1$ there is a Q_{α} set (in that model the continuum is \aleph_{ω_1+1}).

The proof of Theorem 34. M[G] is gotten by iterated $\Pi_{\alpha_{\alpha}+1}^{0}$ -forcing. Let $\kappa = |2^{2^{\alpha}}|$. Suppose we are given \mathbb{P}^{α} for some $a < \kappa$ and Y_{α} a term in the forcing language of \mathbb{P}^{α} for a subset of X ($\emptyset \Vdash ``Y_{\alpha} \subseteq X$ `'), then let $\mathbb{P}^{\alpha+1} = \mathbb{P}^{\alpha} * \mathbb{P}_{\alpha_{\alpha}+1}(Y_{\alpha}, X)$. At limit ordinals take direct limits. \mathbb{P}^{κ} may be viewed as a sub-lower lattice of $\sum_{k} \mathbb{P}_{\alpha_{\alpha}+1}(\emptyset, X)$. We may assume that for every set $B \subseteq X$ in M[G] ($G \mathbb{P}^{\kappa}$ -generic over M) there exists α such that $Y_{\alpha} = B$. This is because \mathbb{P}^{κ} has c.c. It follows from Corollary \in that $M[G] \models ``ord(X) \leq \alpha_{0} + 1$ and every subset of X is Borel in X`'.

We assume $\mathbb{P}^0 = \mathbb{P}_{\alpha_0+1}(\emptyset, X)$. Let $G_{(0)}$ be one of the $\Pi^0_{\alpha_0}$ set determined by $G \cap \mathbb{P}^0$. We want to show that $M[G] \models$ "For every K in $\Sigma^0_{\alpha_0}$, $K \cap X \neq G_{(0)} \cap X$ ". To this end we make the following definition: For $H \subseteq \omega^{\omega}$, $|p|(H) = \max\{|s|:$ there exists $x \notin H$ $(s, x) \in p(\alpha)$ for some $\alpha < \kappa\}$. Let $\sup p(p) = \{\alpha < \kappa : p(\alpha) \neq \emptyset\}$. Given τ a term in the forcing language of \mathbb{P}^{κ} denoting a subset of ω , we can find H included in ω^{ω} and K included in κ with the following properties:

- (a) H and K are countable;
- (b) for each $n \in \omega \{ p \in \mathbb{P}^{\kappa} : \text{supp } (p) \subseteq K, |p| (H) = 0 \}$, decides " $n \in \tau$ ";
- (c) $\forall x \in H \forall \alpha \in K \{ p \in \mathbb{P}^{\kappa} : \text{supp } (p) \subseteq K, |p| (H) = 0 \}$ decides " $x \in Y_{\alpha}$ ".

H and K can be found by repeatedly using the c.c.c. of \mathbb{P}^{κ} .

Lemma 35. If H and K have property (c), then for any $p \in \mathbb{P}^{\kappa}$ and β with $1 \leq \beta < \alpha_0$, there exists $\hat{p} \in \mathbb{P}^{\kappa}$ compatible with p, $|\hat{p}|(H) < \beta + 1$, supp $(\hat{p}) \subseteq K$, and for any $q \in \mathbb{P}^{\kappa}$ if $|q|(H) < \beta$ and supp $(q) \subseteq K$, then [if \hat{p} and q are compatible, then p and q are compatible].

Proof. The proof of this is like Lemma 8. Let G be P^* -generic over M with $p \in G$. Choose $\Gamma \subseteq G$ finite with the properties:

(1) $\forall q \in \Gamma$ (|q| (H) = 0 and supp (q) $\subseteq K$).

(2) If $((n), x) \in p(\alpha)$ for some $n < \omega$, $\alpha \in K$, and $x \in H$ (so $p \upharpoonright \alpha \Vdash ``x \notin Y_{\alpha} ")$, then there is $q \in \Gamma \cap \mathbb{P}^{\alpha}$ such that $q \Vdash ``x \notin Y_{\alpha} "$.

(3) If $(s, x) \in p(\alpha)$, $\alpha \in K$, and $|s| = \lambda$ is an infinite limit ordinal, and $|s^{-}i| \le \beta + 1 < \lambda$, then there is a $j \in \omega$ such that $\{(s^{-}i^{-}j, x)\} \in p$.

Now let $\hat{p} \in \mathbb{P}^{\kappa}$ be defined by

$$\hat{p}(\alpha) = \bigcup \{r(\alpha) : r \in \Gamma\} \cup \{(s, x) \in p(\alpha) : |s| < \beta + 1 \text{ or } x \in H\}$$

when $\alpha \in K$ and $\hat{p}(\alpha) = \emptyset$ for $\alpha \notin K$. Note if $((n), x) \in \hat{p}(\alpha)$, then $x \in H$ since $|(n)| = \alpha_0 \ge \beta + 1$. By choice of $\Gamma \hat{p}$ is a condition and also $|\hat{p}|(H) < \beta + 1$ and is compatible with p since $\hat{p}, p \in G$. It is easily checked as in Lemma 8 that \hat{p} has the required property.

Lemma 30. Let H and K have properties (b) and (c) for τ . Let B(v) be a Σ_{β}^{0} $(1 \leq \beta \leq \alpha_{0})$ predicate with parameters from M and $p \in \mathbb{P}^{\alpha}$ such that $p \Vdash "B(\tau)"$. Then there exists $q \in \mathbb{P}^{\alpha}$ compatible with p, $|q|(H) < \beta$, $q \Vdash "B(\tau)"$, and supp $(q) \subseteq K$.

Proof. The proof is by induction on β .

 $\beta = 1: p \Vdash \exists n R(n, \tau \upharpoonright n, x \upharpoonright n)$, $x \in M$, and R primitive recursive. Let G be P-generic over m with $p \in G$. There exist $n \in \omega$ and $s \in 2^n$ such that $M[G] \models R(n, \tau \upharpoonright n, x \upharpoonright n)$ and $\tau \upharpoonright n = s$. By property (b) there exists $q \in G$ such that $q \Vdash T \upharpoonright n = s$, supp $(q) \subseteq K$, and |q|(H) = 0. q does it.

 β limit: $p \Vdash "\exists n B_n(\tau)"$, $B_n \in \Sigma_{\beta_n}^0$, $\beta_n < \beta$. Choose $r \ge p$ such that $r \Vdash "B_n(\tau)"$ for some *n*. By induction there exist *q* such that $q \Vdash "B_n(\tau)"$, *q* is compatible with *r* (and hence with *p*), and $|q|(H) < \beta$, supp $(q) \subseteq K$. *q* does it.

 $\beta + 1$: If $p \Vdash \exists n B_n(\tau)$ we could extend p to force $B_n(\tau)$ for some particular n. So we may as well assume $p \Vdash B(\tau)$ where B(v) is Π_{β}^0 with parameter in M. Since $1 \leq \beta < \alpha_0$ by Lemma 35 there is \hat{p} compatible with p, $|\hat{p}|(H) < \beta + 1$, etc. Then $\hat{p} \Vdash B(\tau)$ because otherwise there is $p_0 \geq \hat{p}$ such that $p_0 \Vdash B(\tau)$, and so by induction there is q compatible with p_0 (hence with $\hat{p}) |q|(H) < \beta$, supp $(q) \subseteq K$, and $q \Vdash B(\tau)$. By our assumption on \hat{p} , since \hat{p} and q are compatible, p and qare compatible, but $p \Vdash B(\tau)$. A.W. Miller

We now use Lemma 36 to show that for any $G \mathbb{P}^*$ -generic over M, $M[G] \models$ "For every L a $\sum_{\alpha_0}^{\infty}$ set $(L \cap X \neq G_{(0)} \cap X)$ " where $G_{(0)}$ is one of the $\prod_{\alpha_0}^{\infty}$ sets determined by $G \cap \mathbb{P}_{\alpha_0+1}(\emptyset, X)$. Suppose not; then let τ be a term in forcing language of \mathbb{P}^* , La $\sum_{\alpha_0}^{\infty}$ set with parameter τ , and $p \in G$ such that $p \Vdash$ "for every $x \in X$, $x \in L$ iff $x \in G_{(0)}$ ". Choose H and K with properties (a), (b), and (c) with respect to τ and also so that $\sup p(p) \subseteq K$ and |p|(H) = 0. Since H is countable there exists $x \in X - H$. Let $r = p \cup \{(0, ((0), x))\}$ (so $r \Vdash x \in G_{(0)}$). Since $r \Vdash$ " $x \in L$ ", by Lemma 36 there exists q compatible with r, $|q|(H) < \alpha_0$, and $q \Vdash$ " $x \in L$ ". Since $|q|(H) < \alpha_0$, $((0), x) \notin q(0)$. Let \hat{q} be defined by:

 $\hat{q}(\alpha) = \begin{cases} p(\alpha) \cup q(\alpha) & \text{if } \alpha > 0, \\ p(0) \cup q(0) \cup \{((0, m), x)\} & \text{otherwise } (m \text{ sufficiently large} \\ \text{so that } \hat{q}(0) \text{ is condition}. \end{cases}$

 $\hat{q} \Vdash x \in L$ and $x \notin G_{(0)}$ and $(x \in L \text{ iff } x \in G_{(0)})$. This a contradiction and concludes the proof of Theorem 34.

Theorem 37. For any α_0 a successor ordinal such that $2 \le \alpha_0 < \omega_1$, it is relatively consistent with ZFC that $|2^{\omega}| = \omega_2$ and α_0 is the least ordinal such that $R_{\alpha_0}^{\omega_2} = P(\omega_2 \times \omega_2)$.

Remark. In Theorem 52 we remove the restriction that α_0 is a successor (but the continuum in that model is $\aleph_{\omega+1}$). In [1] it is shown that α_0 cannot be ω_1 .

Proof. Let M be a countable transitive model of "ZFC+ $|2^{\omega}| = |2^{\omega_1}| = \omega_2$ ". Let $X = \omega^{\omega} \cap M$ and define \mathbb{P}^{α} for $\alpha \leq \omega_2$ so that $\mathbb{P}^{\alpha+1} = \mathbb{P}^{\alpha} * \mathbb{P}_{\alpha_0}(Y_{\alpha}, X)$ where Y_{α} is a \mathbb{P}^{α} term for a subset of X, and at limits take the direct limit. Dovetail so that in $M[G_{\omega_2}]$ for every $Y \subseteq X$ such that $|Y| \leq \omega_1$ there are ω_2 many $\alpha < \omega_2$ such that $Y_{\alpha} = Y$. By Theorem 33 $\mathbb{R}_{\alpha_0}^{\omega_2} = \mathbb{P}(\omega_2 \times \omega_2)$.

Now comes the difficulty: we must show some subset of $\omega_2 \times \omega_2$ is not in $\mathbb{R}_{\alpha_0-1}^{\omega_2}$. For the remainder of the proof let $(A_s : s \in \omega^{<\omega})$ and $(B_s : s \in \omega^{<\omega})$ be fixed terms in the forcing language of \mathbb{P}^{ω_2} such that for every $s \in \omega^{<\omega} \oplus \mathbb{H}^*$ $A_s \subseteq X$ and $B_s \subseteq \omega_2$ ". For $p \in \mathbb{P}^{\omega_2}$ define $\operatorname{supp}(p) = \{\alpha < \omega_2 : p(\alpha) \neq \emptyset\}$ and trace $(p) = \{x \in X : \exists \alpha \exists t \ (t, x) \in p(\alpha)\}$. By using the c.c.c. of \mathbb{P}^{ω_2} choose for each $x \in X$ countable sets $I_x \subseteq X$ and $J_x \subseteq \omega_2$ so that:

(1) for each $s \in \omega^{<\omega} \{ p \in \mathbb{P}^{\omega_2} : \text{trace } (p) \subseteq I_x \text{ and } \text{supp } (p) \subseteq J_x \}$ decides " $x \in A_s$ ", and

(2) for each $y \in I_x$ and $\alpha \in J_x$ { $p \in \mathbb{P}^{\omega_2}$: trace $(p) \subseteq I_x$ and supp $(p) \subseteq J_x$ } decides " $y \in Y_{\alpha}$ ".

Similarly for $\alpha < \omega_2$ we can pick countable sets $I_{\alpha} \subseteq X$ and $J_{\alpha} \subseteq \omega_2$ having properties (1) and (2) with α , B_s , I_{α} , I_{α} in place of x, A_s , I_x , I_x .

For $x \in X$ and $\alpha < \omega_2$ let $L(x, \alpha) = (I_x \times J_x) \cup (I_\alpha \times J_\alpha)$ and define for $p \in \mathbb{P}^{\omega_2}$,

$$|p|(x,\alpha) = \max \{ |s|_{T_{\alpha_0}} : (s, u) \in p(\gamma) \text{ and } (u, \gamma) \notin L(x, \alpha) \}.$$

Lemma 38. Fix $x \in X$ and $\alpha < \omega_2$ and let $|p| = |p|(x, \alpha)$. For any $\beta \ge 1$ and $p \in \mathbb{P}^{\omega_2}$ there is a $\hat{p} \in \mathbb{P}^{\omega_2}$ with $|\hat{p}| < \beta + 1$, \hat{p} compatible with p, and for any $q \in \mathbb{P}^{\omega_2}$ if $|q| < \beta$ and \hat{p} and q are compatible, then p and q are compatible.

Proof. The proof of this is like that of Lemma 35. Let $p_0 \ge p$ so that if $(s, x) \in p(\gamma)$ with $|s| = \lambda$ a limit ordinal greater than β and $|s^{-}i| \le \beta + 1$, then there is $j < \omega$ so that $(s^{-}i^{-}j, x) \in p_0(\gamma)$. Let G be \mathbb{P}^{ω_2} -generic with $p_0 \in G$. Choose $\Gamma \subseteq G$ finite so that if $((n), u) \in p_0(\gamma)$ (so $p_0 \upharpoonright \gamma \Vdash ``u \notin Y_{\gamma}``)$ and $(u, \gamma) \in L(x, \alpha)$, then there is a $q \in \Gamma$ such that $q \Vdash ``u \notin Y_{\gamma}``$. Define \hat{p} by

$$\hat{p}(\gamma) = \bigcup \{q(\gamma) : q \in \Gamma\} \cup \{(s, u) \in p_0(\gamma) : |s| < \beta + 1 \text{ or } (u, \gamma) \in L(x, \alpha)\}.$$

For any well-founded tree \hat{T} define $C_s(\hat{T})$ for $s \in \hat{T}$ as follows. If $|s|_{\hat{T}} = 0$, then $C_s(\hat{T}) = A_s \times B_s$, otherwise

$$C_{s}(\hat{T}) = \bigcup \{ (X \times \omega_{2}) - C_{s-i}(\hat{T}) : i < \omega \}.$$

Lemma 39. If $x \in X$, $\alpha \in \omega_2$, $\hat{T} \in M$ is a well-founded tree, $s \in \hat{T}$ with $|s|_{\hat{T}} = \beta$ where $1 \leq \beta \leq \alpha_0 - 1$, and $p \in \mathbb{P}^{\omega_2}$ such that $p \Vdash ``(x, \alpha) \notin C_s(T)$ '', then there exist q compatible with p, $|q|(x, \alpha) < \beta$, and $q \Vdash ``(x, \alpha) \notin C_s(T)$ ''.

Proof. The proof is by induction on β .

Case 1. $\beta = 1$: Suppose

$$p \Vdash ``(x, \alpha) \in \bigcup_{i \in \omega} (A_{s^{-i}} \times B_{s^{-i}})''.$$

So there exists $i_0 \in \omega$ and \hat{p} and \hat{q} elements of \mathbb{P}^{ω_2} so that $(p \cup \hat{p} \cup \hat{q}) \in \mathbb{P}^{\omega_2}$ and using (1) above,

$$(t, u) \in \hat{p}(\gamma) \rightarrow (u, \gamma) \in I_x \times J_x$$

and

$$(t, u) \in \hat{q}(\gamma) \rightarrow (u, \gamma) \in I_{\alpha} \times J_{\alpha}$$

and

$$\hat{p} \Vdash x \in A_{s-i_{i}}, \qquad \hat{q} \Vdash y \in B_{s-i_{i}}.$$

So $\hat{p} \cup \hat{q} = q$ does the job.

Case 2. β a limit ordinal: Suppose

$$p \Vdash ``(x, \alpha) \in \bigcup_{i \in \omega} C_{s^{-i}}(\hat{T})$$

where $|s|_{\hat{T}} = \beta$. Find $q \ge p$ and $i_0 \in \omega$ such that $q \Vdash (x, y) \in C_{s-i_0}(\hat{T})$. Let

$$T_0 = \{t \in \hat{T} : s \cap i_0 \subseteq t \text{ or } t \subseteq s \cap i_0\}.$$

Then

$$|s|_{T_0} = |s^{-i}|_{\hat{T}} + 1 < \beta$$
, and $C_s(T_0) = (X \times \omega_2) - C_{s^{-i_0}}(T)$,

hence $q \Vdash (x, \alpha) \notin C_s(T_0)$ where $|s|_{T_0} < \beta$; so by induction hypothesis there exists r compatible with q (and hence with p), $|r|(x, \alpha) < \beta$, and $r \Vdash (x, \alpha) \in C_{s-i_0}(T)$. r does the trick.

Case 3. $\beta + 1$: Since $\beta + 1 < \alpha_0$, let q be as from Lemma 38.

Define $D \subseteq X \times \omega_2$ by $D = \{(x, \alpha) : x \in G^{\alpha}_{(0)} \text{ where } G^{\alpha}_{(0)} \text{ is one of the } \prod^{0}_{\alpha_0-1} \text{ sets}$ created on the α th step. D is $\prod^{0}_{\alpha_0-1}$ in the rectangles on $X \times \omega_2$. We want to show it is not $\Sigma^{0}_{\alpha_0-1}$ in the rectangles on $X \times \omega_2$ in $M[G_{\omega_0}]$.

Define: (x, α) is free (with respect to $(A_s : s \in \omega^{\leq \omega})$, $(B_s : s \in \omega^{\leq \omega})$) iff $[x \notin I_\alpha \text{ and } \alpha \notin J_x]$.

Lemma 40. If $T \subseteq \omega^{<\omega}$ is well-founded and $T \in M$, $s \in T$ with $|s|_T \leq \alpha_0 - 1$, (x, α) is free, and $Y_{\alpha} = \emptyset$; then for every $p \in \mathbb{P}^{\omega_2}$ such that $|p|(x, \alpha) = 0$ it is not the case that $p \Vdash ``(x, \alpha) \in D$ iff $(x, \alpha) \notin C_s(T)$.

Proof. Let $\hat{p} \ge p$ by defining $\hat{p}(\gamma) = p(\gamma)$ for $\gamma \ne \alpha$ and $\hat{p}(\alpha) = p(\alpha) \cup \{((0), x)\}$. Then $\hat{p} \Vdash ``(x, \alpha) \in D$ '' so by Lemma 39 there exists q compatible with \hat{p} , $|q|(x, \alpha) < \alpha_0$, and $q \Vdash ``(x, \alpha) \notin C_s(T)$ ''. But (x, α) free implies that $(x, \alpha) \notin L(x, \alpha)$ so q does not say $``x \in G_{(0)}^{n}$ ''. Thus for a sufficiently large $m < \omega$ r defined by $r(\gamma) = p(\gamma) \cup q(\gamma)$ for $\gamma \ne \alpha$ and $r(\alpha) = p(\alpha) \cup q(\alpha) \cup \{((0, m), x)\}$ is a member of \mathbb{P}^{ω_2} . But $r \Vdash ``(x, \alpha) \notin D$ and $(x, \alpha) \notin C_s(T)$ '', a contradiction since r extends p.

Since the terms $(A_s : s \in \omega^{<\omega})$ and $(B_s : s \in \omega^{<\omega})$ were arbitrary to start with it will complete the proof of the theorem to find lots of (x, α) free.

The next lemma generalized Kunen [9, p. 74].

Lemma 41. Given $|I_{\alpha}| < \kappa$ for $\alpha < \kappa^+$, there exists $G \subseteq \kappa^+$ with $|G| = \kappa^+$ and there is S with $|S| \le \kappa$ so that for any $\alpha, \beta \in G$ if $\alpha \neq \beta$, then $I_{\alpha} \cap I_{\beta} \subseteq S$.

Proof. We can assume $I_{\alpha} \subseteq \kappa^+$.

Define $\mu_{\alpha}, z_{\alpha} < \kappa^+$ for $\alpha < \kappa^+$ nondecreasing so that:

- (1) $\mu_{\lambda} = \sup \{\mu_{\alpha} : \alpha < \lambda\}$ for λ limit;
- (2) z_{α} 's are strictly increasing;

(3) for α a successor and for distinct β , $\gamma < \alpha I_{z_{\alpha}} \cap I_{z_{\alpha}} \subseteq \mu_{\alpha}$;

(4) if $\mu_{\alpha+1} > \mu_{\alpha}$, then for any $z > z_{\alpha}$ $\mu_{\alpha} \not\supseteq I_z \cap \bigcup \{I_{z_{\beta}} : \beta \leq \alpha\}$ and $\bigcup \{I_{z_{\beta}} : \beta \leq \alpha\} \subseteq \mu_{\alpha+1}$.

Let $G = \{z_{\alpha} : \alpha < \kappa^+\}$ and $S = \sup \{\mu_{\alpha} : \alpha < \kappa^+\}$. To see that $S < \kappa^+$ note that for any $\alpha < \kappa^+ |\{\beta : \mu_{\beta+1} > \mu_{\beta} \text{ and } \beta < \alpha\}| < \kappa$. This is because $I_{z_{\alpha}} \cap (\mu_{\beta+1} - \mu_{\beta}) \neq \emptyset$ for all $\beta < \alpha$ such that $\mu_{\beta+1} > \mu_{\beta}$.

Lemma 42. There exists $\Sigma_0 \subseteq X$ and $\Sigma_1 \subseteq \omega_2$ with $|\Sigma_0| = |\Sigma_1| = \omega_2$, for every $\alpha \in \Sigma_1$, $Y_{\alpha} = \emptyset$, and for every $(x, \alpha) \in \Sigma_0 \times \Sigma_1(x, \alpha)$ is free.

Proof. By Lemma 41 there exists $\hat{\Sigma}_0 \subseteq X$ and $S \subseteq \omega_2$ with $|\hat{\Sigma}_0| = \omega_2$ and $|S| < \omega_2$ so that for every distinct $x, y \in \hat{\Sigma}_0 J_x \cap J_y \subseteq S$. Since $\{J_x - S : x \in \hat{\Sigma}_0\}$ is a disjoint family, we can cut down $\hat{\Sigma}_0$ (maintaining $|\hat{\Sigma}_0| = \omega_2$) and find $\hat{\Sigma}_1 \subseteq \omega_2$ so that $|\hat{\Sigma}_1| = \omega_2$, for every $\alpha \in \hat{\Sigma}_1$ $Y_\alpha = \emptyset$, and for every $x \in \hat{\Sigma}_0 J_x \cap \hat{\Sigma}_1 = \emptyset$. Applying Lemma 41 again find $\hat{\Sigma}_1 \subseteq \hat{\Sigma}_1$ with $|\hat{\Sigma}_1| = \omega_2$ and $T \subseteq X$ with $|T| < \omega_2$ so that for every distinct α , $\beta \in \Sigma_1 I_\alpha \cap I_\beta \subseteq T$. Since $\{I_\alpha - T : \alpha \in \Sigma_1\}$ are disjoint by cutting down Σ_1 (maintaining $|\hat{\Sigma}_1| = \omega_2$) we can assume $\hat{\Sigma}_0$ defined to be equal to $\hat{\Sigma}_0 - (T \cup \bigcup \{I_\alpha : \alpha \in \Sigma_1\})$ has cardinality ω_2 . $\hat{\Sigma}_0$ and $\hat{\Sigma}_1$ do the job.

Lemma 42 finishes the proof of Theorem 37.

Remark. There is nothing special about ω_2 in the above theorem; we could have replaced it by any larger cardinal κ with $\kappa^{<\kappa} = \kappa$.

Now we turn to a slightly different problem. For X a topological space a set $A \subseteq X^n$ is projective iff it is in the smallest class containing the Borel sets (in the product topology on X^m for any $m \in \omega$) and closed under complementation and projection ($B \subseteq X^m$ is the projection of $C \subseteq X^{m+1}$ iff $(\bar{y} \in B \text{ iff } \exists x \in X x \bar{y} \in C)$).

Theorem 43. If M is a countable transitive model of ZFC, then there exists N a c.c.c. Cohen extension of M such that if $M \cap \omega^{\omega} = X$, then $N \models$ "Every projective set in X is Borel and the Borel hierarchy of X has ω_1 distinct levels (ord $(X) = \omega_1$)".

This shows the relative consistency of an affirmative answer to a question of Ulam [31, p. 10]. Note that since $X \times X$ is homeomorphic to X (take any recursive coding function), if for every $B \subseteq X \times X$ Borel $\{x : \exists y(x, y) \in B\}$ is Borel in X, then every projective set in X is Borel in X.

Proof. The proof is slightly simpler if we assume that CH holds in *M*. We give the proof in that case and then later indicate the necessary modifications. In any case $|2^{\omega}|^{M} = |2^{\omega}|^{N}$.

Construct a sequence $M = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_{\omega_1} = N$, by iterated forcing so that $M_{\alpha+1}$ is obtained from M_{α} by $\Pi^0_{\alpha+1}$ -forcing. On the α th stage we are presented with a term τ_{α} in the forcing language of \mathbb{P}^{α} denoting a real. Then letting Y_{α} be the projective set (over X) determined by τ_{α} we let $\mathbb{P}^{\alpha+1} = \mathbb{P}^{\alpha} * \mathbb{P}_{\alpha+1}(Y_{\alpha}, X)$. What is being done is that at stage α we make Y_{α} a $\Pi^0_{\alpha+1}$ set intersected with X. The reason this will work is that after the α th stage our forcing will not interfere

with the Borel hierarchy on X up to the α th level. Since this is c.c.c. forcing we can imagine that each X-projective set in N is eventually caught by some τ_{α} for $\alpha < \omega_1$. So it is clear that $N \Vdash$ "Every X-projective set is Borel in X", for any N = M[G], where G is \mathbb{P}^{ω_1} -generic over M. Define for $H \subseteq X$ and $p \in \mathbb{P}$, $|p|(H) = \max\{|s|_{T_{\alpha,1}}: \text{there exist } \alpha < \omega_1 \text{ and } x \notin H, (s, x) \in p(\alpha)\}$. Given τ a term in the forcing language of \mathbb{P}^{γ} denoting a subset of ω ($\gamma < \omega_1$), there exists $H \subseteq X$ such that:

- (a) H is countable;
- (b) $\forall n \in \omega, \{p \in \mathbb{P}^{\gamma} : |p|(H) = 0\}$ decides " $n \in \tau$ ";
- (c) $\forall \beta < \gamma$ and $x \in H$, $\{p \in \mathbb{P}^{\gamma} : |p|(H) = 0\}$ decides " $x \in Y_{\beta}$ ".

Lemma 44. (Write |p| = |p|(H)). "Exactly statement of Lemma 38" for \mathbb{P}^{γ} .

Proof. Extend $p \leq p_0$ as before. Let G be \mathbb{P}^{γ} -generic with $p_0 \in G$. Choose $\Gamma \subseteq G$ finite so that:

(1) $q \in \Gamma \rightarrow |q| (H) = 0;$

(2) if $\langle \langle n \rangle, x \rangle \in p_0(\alpha)$ (so $p \upharpoonright_{\alpha} \Vdash ``x \notin Y_{\alpha} ``)$, then $\exists q \in \Gamma \cap \mathbb{P}^{\alpha}$ such that $q \Vdash ``x \notin Y_{\alpha} ``$. Define

 $\hat{p}(\alpha) = \bigcup \{r(\alpha) : r \in \Gamma\} \cup \{\langle s, x \rangle \in p_0(\alpha) : |s|_{T_n} < \beta + 1 \text{ or } x \in H\}.$

 \hat{p} is a condition because if $\langle\langle n \rangle, x \rangle \in p(\alpha)$ and $|\langle n \rangle|_{T_{\alpha,1}} < \beta + 1$, then $\hat{p} \uparrow_{\alpha} \ge p \uparrow_{\alpha}$ (so $\hat{p} \uparrow_{\alpha} \Vdash x \notin Y_{\alpha}$ " as required).

The $r \in \Gamma$ take care of such requirements about $x \in H$. The rest of the proof is the same.

Lemma 45. If τ , H, γ are as above, B(v) is a Σ^{0}_{β} predicate for some $\beta \ge 1$ with parameter from M, and $p \in \mathbb{P}^{\gamma}$ such that $p \Vdash B(\tau)^{"}$, then there is a $q \in \mathbb{P}^{\gamma}$ compatible with $p, |q|(H) < \beta$ and $q \Vdash B(\tau)^{"}$.

Proof. The proof is the same as before.

We can assume that for unboundedly many $\alpha < \omega_1 \ Y_{\alpha} = \emptyset$. Let $G_{\alpha}(G_{(0)}^{\alpha})$ be one of the Π_{α}^0 sets determined by $G \cap P_{\alpha+1}(\emptyset, X)$ where $Y_{\alpha} = \emptyset$.

Claim. $M[G] \models$ "for any $L \in \Sigma^0_{\alpha}$ $(L \cap X \neq G_{\alpha} \cap X)$ ".

Proof. Otherwise let τ be a term for a real in the forcing language \mathbb{P}^{γ} for some $\gamma < \omega_1$ such that for some L a Σ_{α}^0 set with parameter τ and some $p \in P^{\gamma}$ $p \Vdash L \cap X = G_{\alpha} \cap X^{"}$. Choose H with properties (a), (b), and (c) with respect to τ , and also |r|(H)=0. Let $x \in X - H$. Define $r(\alpha) = p(\alpha) \cup \{(0), x\}$ and for $\beta \neq \alpha$ $r(\beta) = p(\beta)$. Note that $r \Vdash x \in G_{\alpha}$ hence $r \Vdash x \in L^{"}$. By Lemma 45 there exists $q \in \mathbb{P}^{\gamma}$ compatible with $r, |q|(H) < \beta$, and $q \Vdash x \in L^{"}$. Since $x \notin H$ we know

((0), x) $\notin q(\alpha)$. Define $\hat{q} \in \mathbb{P}^{\omega_1}$ by $\hat{q}(\beta) = p(\beta) \cup q(\beta)$ for $\beta \neq \alpha$ and $\hat{q}(\alpha) = p(\alpha) \cup q(\alpha) \cup \{((0, n), x)\}$ where n is picked sufficiently large so $\hat{q}(\alpha)$ is a condition. But then $\hat{q} \Vdash ``x \in L$ and $x \notin G_{\alpha}$ and $(x \in L \text{ iff } x \in G_{\alpha})$ '' and this is a contradiction. This concludes the proof of Theorem 43.

When the continuum hypothesis does not hold in M the construction of N still has ω_1 steps but at each step we must take care of all reals in the ground model. That is $\mathbb{P}^{\alpha+1} = \mathbb{P}^{\alpha} * Q_{\alpha}$ where Q_{α} is a term denoting $\sum \{\mathbb{P}_{\alpha+1}(H_x, X) : x \in \omega^{\omega} \cap M[G_{\alpha}]\}$ for $G \mathbb{P}^{\alpha}$ -generic over M. This works since all reals in N = M[G] for $G \mathbb{P}^{\omega_1}$ -generic over M are caught at some countable stage.

Remark. It is easy to see that if V = L there is an $X \subseteq \omega^{\omega}$ uncountable Π_1^1 set such that $X \in L$ and $X \times X$ is homeomorphic to X. Also by absoluteness it is possible to make sure that for every $A \Sigma_2^1$ in ω^{ω} , $A \cap X$ is Borel in X. This family of sets includes those obtained by the Souslin operation from Borel sets in X.

Theorem 46. (MA). $\exists X \subseteq 2^{\omega} \text{ ord } (X) = \omega_1 \text{ and } \forall A \in \Sigma_1^1 \text{ in } 2^{\omega} \exists B \text{ Borel}(2^{\omega})$ $A \cap X = B \cap X.$

Proof. Let \mathbb{B} be the c.c.c. countably generated boolean algebra of Theorem 9 with $K(\mathbb{B}) = \omega_1$. $\mathbb{B} \simeq \text{Borel}(2^{\omega})/J$ for some J an ω_1 -saturated σ -ideal in the Borel sets.

Lemma 47. If I is an ω_1 -saturated σ -ideal in Borel(2^{ω}), then $B_I = \{A \subseteq 2^{\omega} : \exists B \text{ Borel } \exists C \in I \ (A \Delta B) \subseteq C\}$ is closed under the Souslin operation.

For a proof the reader is referred to [11, p. 95].

By Theorem 14 MA implies there is $X \subseteq 2^{\omega}$ a *J*-Luzin set. For any $\alpha < \omega_1$ there is $A \prod_{\alpha}^0$ so that for every $B \sum_{\alpha}^0$, $(A \Delta B) \notin J$, hence $|(A \Delta B) \cap X|| = |2^{\omega}|$, so $A \cap X \neq B \cap X$, and thus ord $(X) = \omega_1$. If A is \sum_{α}^1 , then by Lemma 47 there is BBorel and C in J with $A \Delta B \subseteq C$. Since $|C \cap X| < |2^{\omega}|$ by MA $\exists D \in Borel(2^{\omega})$ $(A \Delta B) \cap X = D \cap X$. So $A \cap X = (B \Delta D) \cap X$.

This suggests the following question:

Can you have $X \subseteq 2^{\omega}$ such that every subset of X is Borel in X and the Borel hierarchy on X has ω_1 distinct levels? The answer is no.

Theorem 48. If $X \subseteq 2^{\omega}$ and every subset of X is Borel in X, then ord $(X) < \omega_1$.

Proof. Let $X = \{x_{\alpha} : \alpha < \kappa\}$ and $X_{\alpha} = \{x_{\beta} : \beta < \alpha\}$.

Lemma 49. If $|X| \leq \kappa$. every subset of X is Borel in X, and $R_{\omega_1}^{\kappa} = P(\kappa \times \kappa)$, then ord $(X) < \omega_1$.

Proof. Since every rectangle in $X \times X$ is Borel in $X \times X$ and $\mathbb{R}_{\omega_1}^{\kappa} = \mathbb{P}(\kappa \times \kappa)$, every subset of $X \times X$ is Borel in $X \times X$. Suppose for contradiction $\forall \alpha < \omega_1 \exists H_{\alpha} \subseteq X$ not Π_{α}^0 in X. Let $H = \bigcup_{\alpha < \omega_1} \{x_{\alpha}\} \times H_{\alpha}$. For some $\alpha < \omega_1$, H is Π_{α}^0 in $X \times X$. But then every cross section of H is Π_{α}^0 in X contradiction.

The proof of the theorem is by induction on $|X| = \kappa$.

For $\kappa = \omega_1$ it follows from Lemma 49 since $R_{2}^{\omega_1} = P(\omega_1 \times \omega_1)$.

For $cof(\kappa) = \omega$ it is trivial.

For $\operatorname{cof}(\kappa) > \omega_1$: $\forall \alpha < \kappa$ choose β_{α} minimal $< \omega_1$ so that every subset of X_{α} is $\Pi_{\beta_{\alpha}}^0$ in X (we can do this since X_{α} is Π_{β}^0 in X some $\beta < \omega_1$). Since $\operatorname{cof}(\kappa) > \omega_1$ there exists $\alpha_0 < \omega_1$ such that for a final segment of ordinal less than κ , $\beta_{\alpha} = \alpha_0$. By Theorem 33 $R_{\omega_1}^{\kappa} = P(\kappa \times \kappa)$ so by Lemma 49 ord $(X) < \omega_1$.

For $cof(\kappa) = \omega_1$: Let $\eta_{\alpha} \uparrow \kappa$ for $\alpha < \omega_1$ be an increasing continuous cofinal sequence.

Lemma 50. $\exists \beta_0 < \omega_1 \forall \alpha < \omega_1 X_{\eta_0}$ is $\Pi^0_{\beta_0}$ in X.

Proof. If $G \subseteq \kappa \times \kappa$ is the graph of a partial function, then $G \in R_2^{\kappa}$ (Rao [21]). This is because if $f: D \to \kappa$ where $D \subseteq \kappa$, then viewing $x \subseteq$ irrational real numbers we have: $(f(\alpha) = \beta)$ iff $(\alpha \in D \text{ and } \forall r \in Q(r < x_{f(\alpha)} \text{ iff } r < x_{\beta}))$ where Q is the set of rational numbers.

Then $D = \{(\alpha, \beta): \alpha < \omega_1 \land \beta < \eta_\alpha\}$ is the complement in $\omega_1 \times \kappa$ of a countable union of graphs of functions from κ into ω_1 . Hence the set $\bigcup_{\alpha < \omega_1} \{x_\alpha\} \times X_{\eta_\alpha}$ is Borel in $X \times X$. Say it is $\Pi^0_{\beta_0}$. It follows that each X_{η_0} is $\Pi^0_{\beta_0}$.

For all $\lambda < \omega_1$ let $\beta(\lambda)$ be minimal so that every subset of $X_{\eta_{h}}$ is $\Pi^0_{\beta(\lambda)}$ in X. If the hypothesis of Theorem 33 fails, then $\exists f : \omega_1 \to \omega_1$ increasing so that for all $\lambda < \omega_1 \beta(f(\lambda)) < \beta(f(\lambda+1))$. So for all $\lambda < \omega_1$ there is some $H_{\lambda} \subseteq X_{\eta_{(\lambda+1)}}$ which is not $\Pi^0_{\beta(f(\lambda))}$ in X. Since every subset of $X_{\eta(\beta)}$ is $\Pi^0_{\beta(f(\beta))}$ in X we can assume $H_{\lambda} \subseteq (X_{\eta_{(\lambda+1)}} - X_{\eta_{(\lambda)}})$. Let $H = \bigcup_{\lambda < \omega_1} H_{\lambda}$. Then H is $\Pi^0_{\alpha_0}$ in X for some $\alpha_0 < \omega_1$. But for each λ , $H_{\lambda} = H \cap (X_{\eta_{(\lambda+1)}} - X_{\eta_{(\lambda)}})$. so each H_{λ} is $\Pi^0_{\max(\alpha_0,\beta_0+1)}$ in X, contradiction. This ends the proof of Theorem 48.

Remark. Kunen has noted that Theorem 48 may be generalized to nonseparable metric spaces. Let \mathbb{B} be a σ -discrete basis for X and assume that every subset of X is Borel in X. By using σ -discreteness it is easily seen that $\exists \mathscr{H} \subseteq \mathbb{B} \exists \beta < \omega_1$ so that $\mathbb{B} - \mathscr{H}$ is countable and $\forall U \in \mathscr{H} \text{ ord } (U) \leq \beta$. But $Y = \{x \in X : \forall U \in \mathbb{B} \ (x \in U \rightarrow U \notin \mathscr{H})\}$ is separable and hence by the theorem $\operatorname{ord} (Y) < \omega_1$, and so $\operatorname{ord} (X) < \omega_1$.

As a partial converse of Theorem 33 we have:

Theorem 51. If $\kappa = |2^{\omega}|$, $\kappa^{<\kappa} = \kappa$, and $R_{\alpha_0}^{\kappa} = P(\kappa \times \kappa)$, then there is $X \subseteq 2^{\omega}$ with $|X| = \kappa$ and every subset of X of cardinality less than κ is $\Pi_{\alpha_0}^0$ in X.

Proof. Let Z_{α} for $\alpha < \kappa$ be all the subsets of κ of cardinality less than κ . Put $Z = \bigcup_{\alpha < \kappa} \{\alpha\} \times Z_{\alpha}$ and $W = \{(\alpha, \beta) : \alpha < \beta < \kappa\}$. Let $\{A_n : n < \omega\}$ be closed under finite boolean combinations and $Z, W \in \{A_n \times A_m : n, m < \omega\}_{\alpha_n}$. The map $F : \kappa \rightarrow 2^{\omega}$ defined by $(F(\alpha)(n) = 1 \text{ iff } \alpha \in A_n)$ is 1-1 and the set $X = F^n \kappa$ has the required property.

For any cardinal κ let $R(\kappa)$ be the least $\beta < \omega_1$ such that $R_{\beta}^{\kappa} = P(\kappa \times \kappa)$ or ω_1 if no such β exists.

Theorem 52. It is relatively consistent with ZFC that $|2^{\omega}| = \omega_{\omega+1}$, for every $n \le \omega$ $R(\omega_n) = 1 + n$, and $R(\omega_{\omega+1}) = \omega$. This can be generalized to show that for any $\lambda < \omega_1$ a limit ordinal it is consistent with ZFC that $R(|2^{\omega}|) = \lambda$.

Proof. Let $M \models "ZFC + MA + |2^{\omega}| = \omega_{\omega+1}$ " be countable and transitive. Let $\kappa = \omega_{\omega+1}$ and define \mathbb{P}^{α} for $\alpha \leq c$ so that $\mathbb{P}^{\alpha+1} = \mathbb{P}^{\alpha} * \mathbb{P}_{2+\beta+1}(X_{\alpha}, Y_{\alpha})$ where $Y_{\alpha} \subseteq 2^{\omega}$, $Y_{\alpha} \in M$, $|Y_{\alpha}| = \omega_{\beta+1}$, and $\emptyset \Vdash "X_{\alpha} \subseteq Y_{\alpha}$ ". At limits take the direct limit. By dovetailing arrange that for any $G \mathbb{P}^{\kappa}$ -generic over M, $M[G] \models "If Y \subseteq 2^{\omega}$, $Y \in M$, and $|Y| = \omega_{\beta+1}$ for some $\beta < \omega$, then every subset of Y is $\Pi_{2+\beta+1}^{0}$ in Y".

As in the proof of Theorem 34 given any τ a term for a subset of ω , find in $M, H \subseteq 2^{\omega}, K \subseteq \kappa$ so that: Let $Q = \{p \in \mathbb{P}^{\kappa} : \operatorname{supp}(p) \subseteq K, |p|(H) = 0\}$:

- (1) $|H| \leq \omega_{\beta_0}, |K| \leq \omega_{\beta_0}$
- (2) $\forall n \in \omega \ Q$ decides " $n \in \tau$ ".
- (3) $\forall \beta \in K \ \forall x \in H \ Q$ decides " $x \in X_{\beta}$ ".
- (4) If $\alpha \in K$ and $|Y_{\alpha}| \leq \omega_{\beta_{\alpha}}$, then $Y_{\alpha} \subseteq H$.

Lemma 53. If H, K have property (3), (4) above, then for any $p \in \mathbb{P}^{\kappa}$ and β with $1 \leq \beta < 2 + \beta_0$ there is \hat{p} compatible with p, $|\hat{p}|(H) < \beta + 1$, supp $(\hat{p}) \subseteq K$, and for any q if $|q|(H) < \beta$, supp $(q) \subseteq H$, and \hat{p} and q are compatible, then p and q are compatible.

Proof. The proof of this is just like the proof of Lemma 35. To check that the \hat{p}

gotten there is an element of \mathbb{P}^{κ} , note that if $((n), x) \in \hat{p}(\alpha)$, then $x \in H$. Because if $x \notin H$ and $\alpha \in K$, then $|Y_{\alpha}| \ge \omega_{\beta_0+1}$ because of (4). Say $|Y_{\alpha}| = \omega_{\gamma+1}$, so $\mathbb{P}^{\alpha+1} = \mathbb{P}^{\alpha} * \mathbb{P}_{2+\gamma+1}(X_{\alpha}, Y_{\alpha})$ and $|(n)|_{T_{2+\gamma+1}} \ge 2+\gamma \ge 2+\beta_0 \ge \beta+1$, but then it was thrown out, contradiction.

Lemma 54. Suppose H and K have properties (2), (3), and (4) for $\tau \subseteq \omega$. Suppose $1 \leq \beta \leq 2+\beta_0$ and B(v) is a Σ^0_β predicate with parameters from M, $p \in \mathbb{P}^{\kappa}$ and $p \Vdash "B(\tau)"$. Then $\exists q \in \mathbb{P}^{\kappa}$ compatible with p, $|q|(H) < \beta$, $\operatorname{supp}(q) \subseteq K$ and $q \Vdash "B(\tau)"$.

Proof. This follows from Lemma 53 just as in Theorem 34.

From Lemma 54 we have that:

(A) For any $Y \subseteq 2^{\omega}$ with $Y \in M$ and *n* with $1 \le n \le \omega$ ($|Y| = \omega_n$ iff Y is a C_{2+n} -set). We claim that:

(B) For any $n < \omega$ there are $X, Y \subseteq 2^{\omega}$ with $|X| = |Y| = \omega_{n+2}$ so that if U is the usual \prod_{n+2}^{0} set universal for \prod_{n+2}^{0} sets, then $U \cap (X \times Y)$ is not \sum_{n+2}^{0} in the abstract rectangles on $X \times Y$.

To prove (B) just generalize the argument of Theorem 37, for n = 0 the argument is the same. Let $X \subseteq 2^{\omega}$ be in M with $|X| = \omega_{n+2}$. Choose $K \subseteq \kappa$, $|K| = \omega_{n+2}$, and $K \in M$, so that for any $\alpha \in K$ $Y_{\alpha} = X$ and $\emptyset \Vdash ``X_{\alpha} = \emptyset''$. Let $Y = \{y_{\alpha} : \alpha \in K\}$ where y_{α} is the \prod_{n+2}^{0} code (with respect to U) for $G_{(0)}^{\alpha}$. To generalize the argument allow $I_x, J_x, I_\alpha, J_\alpha$ to have cardinality $\leq \omega_n$ and also whenever $\gamma \in J_x(\gamma \in J_\alpha)$ and $|Y_{\gamma}| \leq \omega_n$, then $Y_{\gamma} \subseteq I_x(Y_{\gamma} \subseteq I_\alpha)$.

In M[G] for any $n \le \omega R(\omega_n) = 1 + n$. To see this, let $Y \subseteq 2^{\omega}$ with $Y \in M$ and $|Y| = \omega_{n+1}$. If $X \subseteq Y$ and $|X| \le \omega_n$, then there is $Z \in M$ with $|Z| \le \omega_n$ and $X \subseteq Z$. Because $M \models$ "MA" Z is Π_2^0 in Y and since X is Π_{2+n}^0 in Z by (A), we have X is Π_{2+n}^0 in Y. By Theorem 33 $R_{n+2}^{\omega_{n+1}} = P(\omega_{n+1} \times \omega_{n+1})$. By (B) n+2 is the least which will de.

Thus $R(\omega_{\omega}) = \omega$. To see that $R(\kappa) = \omega$ let $Y \subseteq 2^{\omega}$ with $Y \in M |Y| = \kappa$, and every subset $Z \subseteq Y$ such that $|Z| < \kappa$ and $Z \in M$ is Σ_2^0 in Y (see Theorem 17). In M[G] every $Z \subseteq Y$ with $|Z| < \kappa$ is Σ_{ω}^0 in Y, so by Theorem 33 $R_{\omega}^{\kappa} = P(\kappa \times \kappa)$.

Remark. It is easy to generalize Theorem 52 to show that for any $\lambda < \omega_1$ a limit ordinal and $\kappa > \omega$ of cofinality ω , it is consistent that $|2^{\omega}| = \kappa^+$ and $R(\kappa^+) = \lambda$.

Theorem 55. It is relatively consistent with ZFC that

- (a) $|2^{\omega}| = \omega_{\omega_1+1},$
- (b) for any $\alpha < \omega_1$ there is a Q_{α} set.
- (c) $R(\omega_n) = n+1$ for $n < \omega$,
- (d) $R(\omega_{\lambda}) = \lambda$ for $\lambda < \omega_1$ a limit ordinal,
- (e) $R(\omega_{\lambda+n+1}) = \lambda + n$ for $\lambda < \omega_1$ a limit ordinal and $n < \omega$.

The proof of this is an easy generalization of Theorem 52 and is left to the reader.

A set $U \subseteq 2^{\omega} \times 2^{\omega}$ is universal for the Dorel sets iff for every $B \subseteq 2^{\omega}$ there exists $x \in 2^{\omega}$ such that $B = U_x = \{y : (y, x) \in U\}$.

Theorem 56. It is relatively consistent with ZFC that no set universal for the Borel sets is in the σ -algebra generated by the abstract rectangles in $2^{\omega} \times 2^{\omega}$.

Proof. Let $M \models$ "ZFC + \neg CH" and let

$$Q = \sum_{\beta < \omega_2} \left(\sum \{ \mathbb{P}_{\alpha}(\emptyset, 2^{\omega} \cap M) : \alpha < \omega_1 \} \right).$$

Let G be Q-generic over M, then in M[G] there is no set U universal for the Borel sets in the σ -algebra generated by the rectangles. Suppose G is given by $(y^{\alpha}_{\beta}: T^*_{\alpha+1} \rightarrow 2^{<\omega}: \alpha < \omega_1 \text{ and } \beta < \omega_2)$ where $T_{\alpha+1}$ is the normal $\alpha + 1$ tree used in the definition of $\mathbb{P}_{\alpha+1}$ and $G^{(0)}_{y^{\alpha}_{\alpha}}$ are the Π^0_{α} sets determined by y^{α}_{β} . Then as before we can easily get for each $\alpha < \omega_1$ that $V^{\alpha} = \{(x, \beta: x \in G^{(0)}_{y^{\alpha}_{\alpha}})\}$ is not Σ^0_{α} in the abstract rectangles on $(2^{\omega} \times \omega_2)$. Now suppose such a U existed and were Σ^0_{α} in the abstract rectangles on $2^{\omega} \times 2^{\omega}$. Choose $F: \omega_2 \rightarrow 2^{\omega}$ (necessarily 1-1) so that $\forall \beta < \omega_2 \forall x \in 2^{\omega}$ $((x, \beta) \in V^{\alpha} \leftrightarrow (x, f(\beta)) \in U)$. If U is Σ^0_{α} in $\{A_n \times B_n : n < \omega\}$, then V^{α} is Σ^0_{α} in $\{A_n \times f^{-1}(\beta_n) : n < \omega\}$, contradiction.

Remarks. (1) In [9] Kunen shows that if one adds ω_2 Cohen reals to a model of GCH, then no well-ordering of ω_2 is in $R_{\omega_1}^{\omega_2}$.

(2) In [1] it is shown that if G is a countable field of sets with Borel(2^{ω}) $\subseteq G_{\omega_1}$, the order of G is ω_1 .

In the model of Theorem 56 for any countable G and $\alpha < \omega_1$ Borel(2^{ω}) is not included in G_{α} . This can be seen as follows. Let $G = \{A_n : n < \omega\}$ and let $\{s_n : n < \omega\} = T^*$ where T is a normal α tree. Define for any $y \in \omega^{\omega}$ and $s \in T$ the set G_y^s as follows. For $s = s_n$ let $G_y^s = A_{y(n)}$, otherwise $G_y^s = \bigcap \{\omega^{\omega} - G_y^s : n < \omega\}$. If $U = \{(x, y) : x \in G_y^0\}$, then U is " Π_{α}^{o} " in the abstract rectangles and universal for all Borel sets, contradicting Theorem 56.

5. Problems

Show:

- (1) If $|X| = \omega_1$, then X is not a Q_{ω} set.
- (2) If $R_{\omega^2}^{\omega_2} = P(\omega_2 \times \omega_2)$, then there is $n < \omega$ with $R_n^{\omega_2} = P(\omega_2 \times \omega_2)$.
- (3) If there exists a Q_{ω} set, then there exists a Q_n set for some $n < \omega$.
- (4) If $R_{\omega_1}^{\omega_2} = P(\omega_2 \times \omega_2)$ and $|2^{\omega}| = \omega_2$, then $|2^{\omega_1}| = \omega_2$.
- (5)² If there is a Q_2 set of size ω_1 , then every subset of 2^{ω} of size ω_1 is a Q_2 set.

² Answered by William Fleissner in the negative; cf. "On *Q*-sets" by Fleissner and Miller, Proc. AMS, to appear.

(6) If X is a Q_{α} set and Y is a Q_{β} set, then $2 \le \alpha < \beta$ implies |X| < |Y|.

Show consistency of:

(7) $\{\alpha : X \subseteq 2^{\omega} \text{ ord } (X) = \alpha\} = \{1\} \cup \{\alpha \le \omega_1 : \alpha \text{ is even}\}.$

(8) $|2^{\omega}| = \omega_3$ and for any $X \subseteq 2^{\omega}$ if $|X| = \omega_1$, then X is a Q_7 set, if $|X| = \omega_2$, then X is a $Q_{\omega+3}$ set, and if $|X| = \omega_3$, then ord $(X) = \omega_1$.

(9) For any $\alpha \leq \omega_1$ there is a $\Pi_1^1 X$ with ord $(X) = \alpha$.

(10) For any $X \subseteq 2^{\omega}$ if $|X| \ge \omega_1$ then there is an X-projective set not Borel in X.

(11) There is no G countable with $\Sigma_1^1 \subseteq G_{\omega_1}$. (This is a problem of Ulam, see Fund. Math. 30 (1938) 365.)

References

- R.H. Bing, W.W. Bledsoe and R.D. Mauldin, Sets generated by rectangles, Pacific J. Math. 51 (1974) 27-36.
- [2] L. Harrington, 'Long projective well-orderings. Ann. Math. Logic 12 (1977) 1-24.
- [3] R.W. Heath, Screenability, pointwise paracompactness, and metrization of Moore spaces, Can. J. Math. 16 (1964) 763-770.
- [4] A. Horn and A. Tarski, Measures in boolean algebras, Trans. Am. Math. 48 (1947) 154-167.
- [5] T.J. Jech, Lectures in Set Theory, Lecture Notes in Math. 217 (Springer-Verlag, Berlin, 1971).
- [6] R.B. Jensen and R.M. Solovay, Some applications of almost disjoint sets, in: Mathematical Logic and Foundations of Set Theory (North-Holland, Amsterdam, 1970).
- [7] A.S. Kechris and Y.N. Moschovakis, Notes on the theory of scales, in: Seminaire Cabal 76-77, Proc. Caltech-UCLA Logic Seminar (Springer-Verlag, Berlin, 1977).
- [8] A. Kolmogorov, Problem 65, Fund. Math. 25 (1935) 578.
- [9] K. Kunen, Inaccessibility properties of cardinals, Doctoral Dissertation, Stanford University (1968).
- [10] K. Kunen, Luzin spaces, Topological Proceedings 1 (1976) 191-199.
- [11] K. Kuratowski, Topology, Vol. I (Academic Press, New York, 1966).
- [12] N. Lusin, Sur un problème de M. Baire, Comptes Rendus (Paris) 158 (1914) 1258-61.
- [13] R. Mansfield, The solution of one of Ulam's problems concerning analytic rectangles, in: Axiomatic Set Theory, Proc. Symp. in Pure Math., Vol. 8, Part I (Am. Math. Soc., 1971).
- [14] D.A. Martin and R.M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (2) (1970) 143-178.
- [15] R.D. Mauldin, Countably generated families, Proc. A.M.S. 54 (1976) 291-297.
- [16] R.D. Mauldin, On rectangles and countably generated families, Fund. Math. 95 (1977) 129-139.
- [17] R.D. Mauldin, Baire functions, Borel sets, and ordinary function systems, Adv. Math. 12 (1974) 418-450.
- [18] J. Mycielski, On the axiom of determinateness, Fund. Math. 53 (1964) 205-224.
- [19] G. Poprougenko, Sur un problème de M. Mazurkiewicz, Fund. Math. 15 (1930) 284-286.
- [20] B.V. Rao, Remarks on generalized analytic sets and the axiom of determinateness, Fund. Math. 69 (1970) 125-129.
- [21] B.V. Rao, On discrete Borel spaces and projective sets, Bull. A.M.S. 75 (1969) 614-617.
- [22] J.R. Shoenfield, Unramified forcing, in: Axiomatic Set Theory, Proc. Symp. in Pure Math., Vol. 8, Part I (Am. Math. Soc., 1971).
- [23] W. Sierpinski, Sur l'equivalence des problèmes de M. Kolmogorov et M. Mazurkiewicz, Fund. Math. 30 (1938) 65-67.
- [24] W. Sierpinski, Hypothèse du continua (Chelsea, 1956).
- [25] R. Sikorski, Boolean Algebra (Springer-Verlag, Berlin, 1960).

- [26] R.M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin's problem, Ann. Math. 94 (1971) 201–245.
- [27] R.M. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable, Ann. Math. 92 (1970) 1-56.
- [28] R.M. Solovay, On the cardinality of Σ_2^1 sets of reals, in: Foundations of Mathematics, Symp. Papers Commemorating 60th Birthday of Kurt Godel (Springer-Verlag, Berlin, 1969).
- [29] E. Szpilrajn, (Marczewski), Sur un problème de M. Banach, Fund. Math. 15 (1930) 212-214.
- [30] E. Szpilrajn, The characteristic function of a sequence of sets and some of its applications, Fund. Math. 31 (1938) 207-223.
- [31] S.M. Ulam, Problems in Modern Mathematics (Wiley, New York, 1964).
- [32] S. Willard, Some examples in the theory of Borel sets, Fund. Math. 71 (1971) 187-191.