
Universal sets for pointsets properly on
the nth level of the projective hierarchy

Greg Hjorth∗, Leigh Humphries, and Arnold W. Miller

Abstract

The Axiom of Projective Determinacy implies the existence of a
universal Π˜1n \∆˜ 1

n set for every n ≥ 1. Assuming MA(ℵ1) + ℵ1 = ℵL1
there exists a universal Π˜11\∆˜ 1

1 set. In ZFC there is a universal Π˜0α\∆˜ 0
α

set for every α.

1 Introduction

It is a classical result of descriptive set theory that universal sets exist for
various natural pointclasses2 such as Π˜0

α, Σ˜0
α, Π˜1

n, and Σ˜1
n.

Definition 1.1. For Γ a pointclass and X a Polish space, a subset U ⊆ 2ω × X
is a universal set for Γ iff

(i) U ∈ Γ and
(ii) for all B ⊆ X
B ∈ Γ iff there exists x ∈ 2ω such that B = Ux =df {y : (x, y) ∈ U}.
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2A pointclass is a collection of pointsets and a pointset is a subset of a Polish space.
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The existence of universal sets for pointclasses of the form Π˜1
n \∆˜ 1

n has
not been extensively investigated. Hjorth [4] shows that the existence of a
set universal for Π˜1

1 \ ∆˜ 1
1 is independent of ZFC, answering a question of

Mauldin (recalled in Miller [13]). In particular, Hjorth [4] shows that the
existence of such a set follows from Π˜1

1-Determinacy, but is inconsistent
with V = L. See §33 of Jech [5] for an elementary discussion of games and
descriptive set theory.

In Section 2 we extend this result by showing that the Axiom of Pro-
jective Determinacy implies that for each n there is a universal Π˜1

n \ ∆˜ 1
n

set. The proof we use is quite unlike that of the original result, in that it
requires only the closure properties of the Π˜1

n pointclasses and the deter-
minacy hypothesis is only utilized via Wadge’s Lemma. Using the same
argument we show that there are universal Π˜0

α \∆˜ 0
α for each countable or-

dinal α ≥ 3. For the Borel classes we need Borel Determinacy but that is a
Theorem of ZFC (Martin [12]).

In Section 3 we show that the existence of a Universal Π˜1
1 \ ∆˜ 1

1 set fol-
lows from ZFC + MA(ℵ1) + ℵ1 = ℵL1 . This theory is equiconsistent with
ZFC. For contrast Π˜1

1-Determinacy is a large cardinal axiom and Projective
Determinacy is a much stronger large cardinal axiom. See Kanamori [6]
Chapter 6 for a discussion of determinacy and large cardinals.

For simplicity’s sake, we state these results for the space 2ω but analo-
gous results can be proven for any other uncountable Polish space.

We will follow the notation that lowercase Greek letters denote ordi-
nals, lowercase Roman letters denote reals, uppercase Roman letters stand
for sets of reals, and capital Greek letters stand for pointclasses (sets of sets
of reals).

General background on descriptive set theory can be found in Kechris
[8], Moschovakis [14], and Sacks [16].

2 Determinacy

Recall that the Axiom of Projective Determinacy (PD) states that for every
Gale-Stewart game with payoff set in the projective hierarchy, one of play-
ers has a winning strategy. We will use only the consequence of this axiom
that appears in Lemma 2.2.

Theorem 2.1. (a) For every α ≥ 3 there is a universal Π˜0
α \∆˜ 0

α set.
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(b) Assuming PD, for every n ≥ 1 there is a universal Π˜1
n \∆˜ 1

n set.

proof
Let Γ be one of the classes Π˜1

n for n ≥ 1 or Π˜0
α for α ≥ 3. Assuming

Projective Determinacy in the former case, or using Borel Determinacy in
the later, we employ the following lemma due to Harrington (see Steel
[17]).

Lemma 2.2 (Harrington). Suppose A,B ⊆ 2ω. If A ∈ Γ and B ∈ Γ \∆, then
A ≤1 B. i.e. A is one-to-one Wadge reducible to B. This means that there exists
a one-to-one continuous map f : 2ω → 2ω such that f−1(B) = A.

Let T0 ⊆ 2<ω be a perfect subtree such that the corresponding closed
set [T0] is nowhere dense. Define

T ∗0 = {s ∈ 2<ω \ T0 : s�n ∈ T0 where `h(s) = n+ 1}.

These are the nodes which are just outside of T0.
Take C0, C1 ∈ Γ \∆ such that C0 ⊆ [T0] and note that the following set

C is in Γ.
C = C0 ∪

⋃
s∈T ∗

0

{s_x : x ∈ C1}.

Claim 2.3. Let P0 = [T0]. For every A ∈ Γ \ ∆ there exists continuous maps
f : P0 → 2ω and g : 2ω → 2ω and a closed set P1 ⊆ 2ω such that the following
five conditions are satisfied.

1. g−1(C) = A

2. g(P1) ⊆ P0

3. f(P0) ⊆ P1

4. f(g(y)) = y for all y ∈ P1, and

5. g(f(x)) = x for all x ∈ P0.

Before proving the claim, note that the existence of such an f , g, and P1

implies that A ∈ Γ \ ∆. The set A is in Γ since g witnesses that A ≤W C.
Conditions (2)-(5) guarantee that f : P0 → P1 is a homeomorphism with
f−1 = g � P1. Condition (1) is equivalent to:

∀x ∈ 2ω(x ∈ A ⇐⇒ g(x) ∈ C)
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which implies
∀x ∈ P1(x ∈ A ⇐⇒ g(x) ∈ C0).

But, since f is the inverse of g � P1, this implies

∀y ∈ P0(y ∈ C0 ⇐⇒ f(y) ∈ P1 ∩ A).

Since C0 6∈ ∆ it follows that A 6∈ ∆.
Proof of Claim:

We will define our continuous functions by means of Wadge strategies. A
Wadge strategy is a function σ : 2<ω → 2<ω which satisfies:

1. for all s, t ∈ 2<ω if s ⊆ t then σ(s) ⊆ σ(t) and

2. for all n ∈ ω there exists m ∈ ω such that `h(σ(s)) ≥ n whenever
`h(s) ≥ m.

Let fσ : 2ω → 2ω denote the continuous function corresponding to the
strategy σ, i.e., f(x) =

⋃
n∈ω σ(x�n).

Define the set D to consist of the triples (σ, τ, T1) satisfying the follow-
ing conditions:

1. σ : T0 → 2<ω is a Wadge strategy,

2. τ : 2<ω → 2<ω is a Wadge strategy,

3. T1 ⊆ 2<ω is a nonempty subtree without terminal nodes,

4. σ(T0) ⊆ T1,

5. τ(T1) ⊆ T0,

6. t ⊆ σ(τ(t)) or σ(τ(t)) ⊆ t for all t ∈ T1, and

7. s ⊆ τ(σ(s)) or τ(σ(s)) ⊆ s for all s ∈ T0.

Note thatD is Π˜0
2. We show that ifA ∈ Γ\∆, then there exists (σ, τ, T1) ∈ D

such that f−1τ (C) = A.
By Lemma 2.2 there exists a one to one continuous map f : P0 → 2ω

such that C0 = f−1(A). Let P1 = [T1] be the range of f and let σ be such
that fσ = f . By compactness, f : P0 → P1 is a homeomorphism. Let
τ : T1 → T0 be a Wadge strategy corresponding to f−1. We extend τ to 2<ω
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as follows: Suppose t ∈ T ∗1 , where `h(t) = n + 1. If τ(t � n) = s, then take
any s∗ ∈ T ∗0 extending s. This is possible since [T0] is nowhere dense. But
we know from Wadge’s Lemma that At ≤W C1 where

At = {x ∈ 2ω : t_x ∈ A}

Hence we can find a Wadge strategy τt,s∗ which takes t to s∗ and reduces
A∩ [t] to C ∩ [s∗]. We use τt,s∗ to define τ for all extensions of t. This proves
the Claim.

�
We now define the universal Γ \∆ set W by sections:

W(σ,τ,T1) =

{
{x : fτ (x) ∈ C} if (σ, τ, T1) ∈ D
C otherwise.

This proves the Theorem.
�

This leaves the case Π˜0
α for α = 1, 2.

Proposition 2.4. There does not exist a closed U ⊆ 2ω × 2ω universal for non-
clopen closed sets but there does exist a Π0

1 set V ⊆ ωω × 2ω universal for non-
clopen closed subsets of 2ω. There exists a Π0

2 set W ⊆ ωω × 2ω universal for
Π˜0

2 \∆˜ 0
2 subsets of 2ω.

proof
U cannot exist because for each n there would be an xn with

Uxn = {y ∈ 2ω : ∀m > n y(m) = 0}.

But some subsequence of the xn must converge to (say) x ∈ 2ω, but then
Ux = 2ω.

V can be defined as follows: Put (T, f) ∈ Q if and only if T ⊆ 2<ω

is a nonempty subtree without terminal nodes and f : ω → 2<ω has the
property that for every n if f(n) = s then |s| > n, s�n ∈ T , but s 6∈ T . Note
that Q is homeomorphic to ωω. To see this note that

P (2<ω)× (2<ω)ω ≈ 2ω × ωω ≈ ωω

and that Q is a Π0
2 subspace of the first space and therefor a zero dimen-

sional Polish space. Note that given any (T, f) ∈ Q and m it is easy to
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construct a sequence (Tn, fn) ∈ Q with T ∩ 2m = Tn ∩ 2m, fn�m = f �m,
and |fn(m)| > n for every n. But this sequence has no convergent subse-
quence. It follows that compact sets have empty interior. Hence by the
Alexandrov-Urysohn Theorem, Q is homeomorphic to ωω (see Kechris [8]
7.7 p.37.) Put V(T,f) = [T ].

Define W analogously to the proof of Theorem 2.1. The set D above is
homeomorphic to ωω by a similar argument to the one for Q. (Construct
a sequence of Wadge strategies to witness non-compactness.) Take P0 a
perfect closed nowhere dense set and let C0 ⊆ P0 be such that P0 \ C0

is countable and dense in P0. By Hurewicz’s Theorem (See [8]) for any
analyticA ⊆ 2ω which is not Fσ there is a perfect P1 and a homeomorphism
f : P0 → P1 which takes C0 to A ∩ P1. For C1 take any universal Gδ set.

�
The existence of a universal Π˜0

2\∆˜ 0
2 set for the case of 2ω×2ω is unknown

to us.

3 Martin’s Axiom

Theorem 3.1. Assume MA(ℵ1) and ℵL1 = ℵ1. Then there existsW ⊆ ωω × 2ω

with the properties:

1. W ∈ Π1
1,

2. ∀x ∈ ωω Wx ∈ Π˜1
1 \∆˜ 1

1, and

3. ∀A ∈ Π˜1
1 \∆˜ 1

1 ∃x ∈ ωω A =Wx.

HenceW is a universal set for Π˜1
1 \∆˜ 1

1.

We use the following standard results, details of which can be found in
chapter 4 of Moschovakis [14]. Recall that LO is the set of binary predicates
on ω which are linear orderings and WO ⊆ LO are the well-orderings. For
each countable ordinal α the set WO<α are the elements of WO of order
type less than α. Then WO is a Π1

1 set and the sets WO<α are Borel.

Theorem 3.2 (The Boundedness Lemma). Let A ⊆ WO be Σ˜1
1. Then there

exists α < ℵ1 such that A ⊆ WO<α.

Theorem 3.3. For any Π1
1 set A ⊆ ωω there is a continuous function f : ωω →

LO such that f−1(WO) = A.
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We identify each such f with the norm on A defined by φ(x) = order
type of f(x).

We also need the following Theorem.

Theorem 3.4 (Kleene, Kripke-Platek). (a) The Π1
1 predicates are closed under

the quantifier ∃x ∈ ∆1
1(y), e.g., Q(y, z) ≡ ∃x ∈ ∆1

1(y) P (x, y, z).
(b) The ∆1

1(z) sets (or hyperarithmetic in z sets) can be described from the
constructible hierarchy as follows:

∆1
1(z) = Lωz

1
[z] ∩ 2ω

where ωz1 is the first ordinal which is not the order type of a well-ordered relation
recursive in z. The countable ordinal ωz1 is also known as Church-Kleene ω1 of z
and the first admissible in z.

Part (a) can be found in Moschovakis [14] 4D.3 p.220. For part (b) Sacks
[16] exercise 9.12 gives the unrelativized version as an exercise and Bar-
wise, Gandy, Moschovakis [1] 3.1(b) prove it using admissible sets lan-
guage. For nonrelativized versions of (a) and (b) see Mansfield and Weit-
kamp [10] 4.19 and 5.19.

Intuitively, the proof of Theorem 3.1 proceeds by taking a special uni-
versal Π1

1 set U and identifying each non-∆˜ 1
1 section Uz by means of a func-

tion f designed to witness the unboundedness of the norm on Uz. The
function f will be coded by a real a which we create using almost disjoint
forcing and MA(ℵ1). If the function fa fails to perform as required, we fall
back to a default position, and code into the cross section some canonical
Π˜1

1 \∆˜ 1
1 set.

Next we discuss almost disjoint sets forcing.

Definition 3.5. Fix a recursive enumeration (sn)n∈ω of 2<ω. For b ∈ 2ω let
b? = {n : sn ⊂ b}.

Lemma 3.6. Assume MA(ℵ1). Suppose X ⊆ 2ω for has size ℵ1 and B ⊆ X is
arbitrary. Then there exists a ⊆ ω such that for every b ∈ X

b∗ ∩ a is infinite iff b ∈ B.

This lemma is standard and can be found in the textbooks Kunen [9]
p.57, Jech [5] p.276, Fremlin [2] 21C, or the handbook article Rudin [15].
Almost disjoint sets forcing was originally invented for its use in defin-
ability by Jensen and Solovay around 1968.

7



We use it in a way similar to Martin-Solovay [11] who showed that
assuming MA(ℵ1) + ℵ1 = ℵL1 every set of reals of cardinality ℵ1 is Π˜1

1.
Given a = (an ⊆ ω : n < ω) define the function fa : 2ω → 2ω as follows:

fa(b) = c iff ∀n (c(n) = 1⇔ b ∩ an is infinite).

Note that fa is a Borel function, in fact ∆0
3(a) uniformly in a. Consider

a set X ⊆ 2ω of size ℵ1 and an arbitrary function f : X → 2ω. For each
n < ω let

Bn = {b ∈ X : f(b)(n) = 1}.

By the Lemma there exists an such that:

∀b ∈ X (b∗ ∩ an is infinite iff b ∈ Bn).

It follows that if we set a = (an ⊆ ω : n < ω) that f�X = fa�X .
To summarize:

Lemma 3.7. Assume MA(ℵ1). There exists a ∆0
3 function

f : (P(ω))ω × 2ω → 2ω

such that for any g : X → 2ω an arbitrary function with domain X ⊆ 2ω of size
ℵ1, there exist a ∈ (P(ω))ω with f = fa�X .

Lemma 3.8. There exists a Π1
1 set U ⊆ ωω × 2ω and a Π0

1 set P ⊆ ωω × 2ω such
that

(1) for all x ∈ ωω Px ⊆ 2ω is a nonempty perfect set disjoint from Ux and
(2) for any Π˜1

1 set A ⊆ 2ω with uncountable complement there exists x with
Ux = A.

proof
LetQ ⊆ ωω×2ω be a Π0

1 set universal for perfect subsets of 2ω, i.e., every
cross section is perfect and every perfect set occurs as a cross section.

Let V ⊆ ωω × 2ω be a Π1
1 set universal for Π˜1

1 sets.
Let U〈u,v〉 = Vu \Qv and let P〈u,v〉 = Qv.
Since every uncountable Σ˜1

1 set contains a perfect set we are done.
�

Note that the results established until this point do not use the hypoth-
esis ℵ1 = ℵL1 . From this point on, however, we will be assuming both the
hypotheses of Theorem 3.1.
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The self-constructible reals are defined by

C = {x ∈ 2ω : x ∈ Lωx
1
}

where ωx1 is the Church-Kleene ω1 of x. The set C is Π1
1 and has cardinality

ℵ1 but does not contain a perfect set. Since uncountable Borel sets contain
perfect sets, for any norm g for C and countable ordinal α it must be that
g−1(WO<α) is countable.

The self-constructible reals were studied by Guaspari, Kechris, and
Sacks, see Kechris [7] §2. See also Mansfield and Weitkamp [10] 6.20.

Define the (relativized) self-constructible reals:

Cx = {z ∈ Px : z ∈ Lωx,z
1

[x]}.

The set C = {(x, z) : z ∈ Cx} is Π1
1. Each Cx ⊆ L[x] has cardinality ℵ1 but

contains no perfect set. Note that the perfect set Px from Lemma 3.8 is the
set of branches of tree recursive in x, so the restriction Cx ⊆ Px is harmless.

Let U be from Lemma 3.8. Take h, g : ωω × 2ω → LO to be recursive
continuous maps such that h−1(WO) = U and g−1(WO) = C. (i.e., norms
for the two sets). As usual we use gx(·) = g(x, ·) and hx(·) = g(x, ·) to
denote the cross sectional functions. Take fa from Lemma 3.7.

Recall the standard prewell-ordering predicate for Π1
1. For L1 and L2

linear orders define L1 � L2 iff L1 can be order embedded into L2, i.e.,
there exists f : ω → ω such that for all a, b ∈ ω if a <L1 b then f(a) <L2 f(b).
The predicate � is Σ1

1 as a subset of LO × LO.

Definition ofW

DefineW ⊆ ((P(ω))ω × ωω)× 2ω as follows:

z ∈ W〈a,x〉 iff either
(a) z ∈ Ux
or
(b) z ∈ Cx and ∃w, b ∈ ∆1

1(x, z, a) with w ∈ Cx and either
(1) gx(w) 6� hx(fa(w)) or
(2) b ⊆ ω is nonempty with no hx(fa(w)) least element.

We show thatW is universal for Π˜1
1 \∆˜ 1

1 via three Claims.

Claim 3.9. W ∈ Π1
1.
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proof
Clause (a) is Π1

1 and omitting all super-sub-scripts-1, the logical form
of (b) is

Π ∧ ∃w, b ∈ ∆(x, z, a) (Π ∧ (¬Σ ∨∆))

Since the quantifier ∃u ∈ ∆1
1(v) preserves the class of Π1

1 predicates (3.4)
we have thatW is Π1

1.
�

Suppose that Ux is properly Π˜1
1. Choose a so that fa : Cx → Ux and

gx(z) � hx(fa(z)) for every z ∈ Cx. This is possible because the set Cx
has cardinality ℵ1 and because the order types of hx(u) for u ∈ Ux are
unbounded. So we may find a using Lemma 3.7.

We say that a is good for x iff
for all z ∈ Cx fa(z) ∈ Ux and gx(z) � hx(fa(z)).

Claim 3.10. If a is good for x, thenW<a,x> = Ux and Ux is properly Π˜1
1.

proof
No z can enterW<a,x> because of clause (b)(2) because w ∈ Cx implies

fa(w) ∈ Ux and so hx(fa(w)) is a well-ordering. No z can enter by clause
(b)(1) since it would directly contradict our choice of fa. SoW<a,x> = Ux.

Since a is good for x the norm hx is unbounded on Ux and so by the
Boundedness Theorem 3.2, Ux cannot be Σ˜1

1.
�

Claim 3.11. If a is bad for x, then there is a countable set Z such that

W〈a,x〉 ∩ Px = Cx \ Z.

proof
Since Px is disjoint from Ux and Cx ⊆ Px no z ∈ Px entersW〈a,x〉 because

of clause (a), soW〈a,x〉 ∩ Px ⊆ Cx. For the reverse inclusion, note that since
Cx ⊆ Px, it suffices to show that for all but countably many z ∈ Cx that
z ∈ W〈a,x〉. The point is that for any countable α for all but countably many
z ∈ Cx will have ωx,z1 > α.

Case 1. fa(w) /∈ Ux for some w ∈ Cx.
Since hx(fa(w)) is not a well-ordering there is a set b with no hx(fa(w))

least element. By absoluteness such a set b exists in L[x, a, w]. Choose a

10



countable ordinal α with w ∈ Lα[x] and b ∈ Lα[x, a]. Since Lα[x] is count-
able for all but countably many z ∈ Cx we have that ωx,z1 > α, hence
w, b ∈ ∆1

1(x, z, a) by Theorem 3.4, so z is put intoW〈a,x〉 by (b)(2).

Case 2. gx(w) 6� hx(fa(w) for some w ∈ Cx.
Choose a countable ordinal α with w ∈ Lα[x]. Then for all but count-

ably many z ∈ Cx we have that ωx,z1 > α and hence w ∈ ∆1
1(x, z). It follows

from clause (b)(1) that z ∈ W〈a,x〉.

This proves the Claim.
�

Since Cx cannot be Borel even if a countable set is extracted, W〈a,x〉 is
properly Π˜1

1 for every a. This concludes the proof of Theorem 3.1.
�

We do not know what the consistency strength of the existence of a
universal Π˜1

2 \ ∆˜ 1
2 set is. Perhaps a variant of the model of Harrington [3]

could be made to work.
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