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Abstract

We give examples of a Vitali set and a Hamel basis which are
Marczewski measurable and perfectly dense. The Vitali set ex-
ample answers a question posed by Jack Brown. We also show
there is a Marczewski null Hamel basis for the reals, although a
Vitali set cannot be Marczewski null. The proof of the existence
of a Marczewski null Hamel basis for the plane is easier than for
the reals and we give it first. We show that there is no easy way
to get a Marczewski null Hamel basis for the reals from one for
the plane by showing that there is no one-to-one additive Borel
map from the plane to the reals.

Basic definitions

A subset A of a complete separable metric space X is called Marczewski
measurable if for every perfect set P C X either PN A or P\ A contains
a perfect set. Recall that a perfect set is a non-empty closed set without
isolated points, and a Cantor set is a homeomorphic copy of the Cantor
middle-third set. If every perfect set P contains a perfect subset which
misses A, then A is called Marczewski null. The class of Marczewski mea-
surable sets, denoted by (s), and the class of Marczewski null sets, denoted
by (s°), were defined by Marczewski [10], where it was shown that (s) is a
o-algebra, i.e. X € (s) and (s) is closed under complements and countable
unions, and (s°) is a o-ideal in (s), i.e. (s°) is closed under countable unions
and subsets. Several equivalent definitions and important properties of (s)
and (s°) were proved in [10], for example every analytic set is Marczewski
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measurable, the properties (s) and (s°) are preserved under “generalized
homeomorphisms” (also called Borel bijections), i.e. one-to-one onto func-
tions f such that both f and f~! are Borel measurable (i.e. pre-images of
open sets are Borel), a countable product is in (s) if and only if each factor
is in (s), and a finite product is in (s°) if and only if each factor is in (s%).

The perfect kernel of a closed set F' is the set of all @ € F such that
U N F' is uncountable for every neighborhood U of a.

A set is totally imperfect iff it contains no perfect subset. A totally
imperfect set of reals cannot contain uncountable closed set, so it must have
inner Lebesgue measure zero. A set B is called Bernstein set if every perfect
set intersects both B and the complement of B, or, equivalently, both B
and its complement are totally imperfect. Clearly, no Bernstein set can be
Marczewski measurable.

A set A is perfectly dense iff its intersection with every nonempty open
set contains a perfect set.

Let R denote the set of all real numbers and QQ denote the set of all
rattonal numbers. We use ¢ to denote the cardinality of the continuum.

The linear closure (or span) over Q of a non-empty set A C R is the set

span(A) = {qra1 + ...+ qua, :n < w, ¢; € Q, a; € A}

and span(()) = {0}. A is called linearly independent over Q if qra; + ...+
¢nyn 7 0 whenever n < w, ¢; € Q for 1 < j < n with ¢; # 0 for at least one
j, and ay,...,a, are different points from A. A linearly independent set H
such that R = span(H) is called a Hamel basis. Note a Hamel basis must
have cardinality ¢. The inner Lebesgue measure of any Hamel basis H is
zero (Sierpinski [8] see also Erdos [2]). A Hamel basis can have Lebesgue
measure 0 (see Jones [4], or Kuczma Chapter 11 [6]).

A Hamel basis H which intersects every perfect set is called a Burstin set
[1]. Every Burstin set H is also a Bernstein set, otherwise if P C H for some
perfect set P, by the linear independence of H it follows that H N 2P = ()
(where 2P = {2p : p € P}), a contradiction since 2P is a perfect set.

A Burstin set can be constructed as follows. List all perfect subsets of
R as

{P,:a<c},

pick a non-zero py € Py and using that

lspan(A)] < JA|+w < ¢ if |A| <c¢



and |P,| = ¢ for each «a, pick by induction

Pa € Po \ span({ps : 8 < a})

and let H, = {p, : @ < ¢}. If H is a maximal linearly independent set with
H. C H, then H is a Burstin set.

A set V C Ris called a Vitali set if V' is a complete set of representatives
(or a transversal) for the equivalence relation defined by x ~ y iff z—y € Q,
i.e. for each x € R there exists a unique v € V such that + — v € Q. No
Vitali set is Lebesgue measurable or, has the Baire property. One may
construct a Vitali set which is a Bernstein set.

Perfectly dense Marczewski measurable Vitali set

Recall that an equivalence relation on a space X is called Borel if it is a
Borel subset of X x X. The Vitali equivalence ~ as defined above is Borel.
We first show that a Vitali set cannot be Marczewski null.

Theorem 1 Suppose X 1is an uncountable separable completely metrizable
space with a Borel equivalence relation, =, on it with every equivalence class
countable. Then, if V. C X meets each equivalence class in exactly one
element, V' cannot be Marczewski null.

Proof: By a theorem of Feldman and Moore [3] every such Borel equivalence
relation is induced by a Borel action of a countable group. This implies that
there are countably many Borel bijections f, : X — X for n € w such that
x =y iff f,(x) =y for some n. If V were Marczewski null, then

would be Marczewski null.
O

To obtain a Marczewski measurable Vitali set we will use the following
theorem:



Theorem 2 (Silver [9]) If E is a coanalytic equivalence relation on the
space of all real numbers and E has uncountably many equivalence classes,
then there is a perfect set of mutually E-inequivalent reals (in other words,
an E-independent perfect set). In the case of a Borel equivalence relation E,
one can drop the requirement that the field of the equivalence be the whole
set of reals.

If E C X xX is a Borel equivalence relation, where X is an uncountable
separable completely metrizable space, and B is a Borel subset of X, then
the saturation of B, [B], = U,cp[7],, is analytic since it is the projection
into the second coordinate of the Borel set (B x X) N E. The saturation
need not be Borel, for example let B be a Borel subset of X = R? whose
projection 7 (B) into the first coordinate is not Borel. Define (z,y)E(u,v)
iff x = u (i.e. two points are equivalent if they lie on the same vertical line).
Then [B], = m(B) x R is not Borel. On the other hand, if F is a Borel
equivalence with each equivalence class countable, and f, are as in the proof
of Theorem 1, then the saturation [B], = J, ., fn(B) of every Borel set B
is Borel.

Theorem 3 Suppose X is an uncountable separable completely metrizable
space with a Borel equivalence relation E. Then there exists Marczewsk:
measurable V- C X which meets each equivalence class in exvactly one ele-
ment.

Proof: Let {P, : a < ¢} list all perfect subsets of X. We will describe how
to construct disjoint C,, , each C, either countable (possibly finite or empty)
or a Cantor set such that the set V,, = Uka (U3 is E-independent. Then
extend the set V. = Ua<c C, to a maximal EF-independent set V.

Case (a). If P, N[Cp], is uncountable for some § < «, then let C\, = 0.

Subcase (al). |P, N Cg| > w. Then the perfect kernel of P, N Cy is
contained in both P, and V,, (and hence in V).

Subcase (a2). |P,NCs| = w. Then, since P, N[Cs], \ Cj is uncountable
analytic, it contains a perfect set () which misses V.

Case (b). Not case (a). Then |PuN[Va],| = |PaNUs0[Csl,] < lafw < ¢,

and hence P, \ [V4,], contains a Cantor set P.



Subcase (b1). The restriction of E to P has only countably many classes.
Let C, be a countable E-independent subset of P with P C [C,],. Then
P\ C, contains a perfect set, which misses V.

Subcase (b2). Case (b) but not case (bl). Then, by the above theorem
of Silver, there is a perfect E-independent set C,, C P (and C, C V).
O

E*

Remark 4 The Vitali equivalence shows that a Borel equivalence need not
have a transversal that is Lebesque measurable or has the Baire property.
See Kechris [5] 18.D for more on transversals of Borel equivalences.

Theorem 5 There exists a Vitali set which is Marczewski measurable and
its intersection with each non-empty open set contains a perfect set.

Proof: By Theorem 3 there is a Marczewski measurable Vitali set V', and
by Theorem 1, V' contains a perfect set C'. Split C' into countably many
Cantor sets Cp, C1, ..., fix a basis {B,, : n < w} for the topology of R and
pick rational numbers ¢, so that the set ¢,+C,, = {¢,+c : ¢ € C,} intersects
B,, for each n. Then

V=V \C) U J{(gn+Ch) i < w}

is a perfectly dense Marczewski measurable Vitali set.
O

Remark 6 A Vitali set V' cannot have the stronger property that its inter-
section with every perfect set contains a perfect set. This is because if V
contains the perfect set P, then the perfect set

P =P+1={p+1:pe P}

does not intersect V.. Similarly, if H is a Hamel basis that contains the
perfect set P, then
2P ={2p:pe€ P}

15 a perfect set which misses H.



Marczewski null Hamel bases

Remark 7 (Erdos [2]) Under CH there is a Hamel basis H which is a
Lusin set (and hence Marczewski null). To see this, note that by a result of
Sierpinski there is a Lusin set X such that X +X ={x+y:2x,y€ X} =R
(see e.q. [7]). Let H be any mazimal linearly independent subset of X, then
clearly span(H) = span(X) = R.

Our construction (without CH) of a Marczewski null Hamel basis is
slightly simpler for the plane, so we do it first.

Theorem 8 There exists a Hamel basis, H, for R X R, i.e. a basis for the
plane as a vector space over Q, which is a Marczewsk: null set, i.e., every
perfect set contains a perfect subset disjoint from H.

Lemma 9 Suppose V with |V| < ¢ is a subspace of Rx R as a vector space
over Q (not necessarily closed), p € R xR, y € R, and

UCU,=({y} xR) U(Rx {y})

with |U| < ¢. Then there exists a finite F C (U, \ U) with p € span(F UV)
and such that F is linearly independent over Q and independent over V,
i.e., span(F') meets V only in the zero vector.

Proof:

Case 1. p = (u,0).
Let y; and y, be so that

Y2 — 1 = U, (y17y> ¢ U and (yZay) ¢ U
Clearly p € span({(y1,¥), (y2,¥)}). Let

F C{(y1,v), (y2,9)} CU,\U

be minimal such that p € span(V U F'), then F' works.

Case 2. p= (0,v)
Obviously this case is symmetric.



Case 3. p = (u,v)
Apply case 1 to (u,0) obtaining Fi. Let

V' =span(V U F)
and apply case 2 to V' obtaining F, (and let F' = F; U F3) so that
(u,0),(0,v) € span(V U F} U F3).
O

The theorem is proved from the Lemma as follows. Let {B, : a < ¢}
list all uncountable Borel subsets of R x R which have the property that for
every y the set B, N U, is countable. And let {p, : @ < ¢} = R x R and
{yo : @ < ¢} = R. Construct an increasing sequence H, C R x R for o < ¢
so that

1. H, are linearly independent over the rationals,
2. B < aimplies Hg C H,,

3. Hy =J,-\ Ha at limit ordinals A,

4. (Hoy1 \ Ho) C Uy, is finite,

5. Pa € span(Hat1)

6. H,N Bz C Hgyy whenever < a.

7. Hy,NUy, C Hpyy whenever B < a.

At successor ordinals a + 1 apply the lemma with p = p,, V' = span(H,),
and
U={pelU,:I<alpeBsorpecly,)}

Then let H,yy = H, U F.
The set H = |J,.. H, is a Hamel basis and note that for every y, € R
we have that H NU,, C H,;; and so

|HNU,,| <c¢

and similarly for every a we have that

|H N B,| <c.

7



To see that H is Marczewski null, suppose that P is any perfect subset of
the plane. If for some y € R we have that PNU, is uncountable and closed,
then since |H NU,| < ¢ and every perfect set can be split into continuum
many perfect subsets, there exists a perfect set P’ C P N U, disjoint from
H.

On the other hand if there is no such y then P = B, for some « and
so |P N H| < ¢. Thus again by splitting P into continuum many pairwise
disjoint perfect subsets, there must be a perfect subset of P disjoint from
H.

O

Theorem 10 There exists a Hamel basis, H, for the reals which is a Mar-
czewskt null set.

Obviously, this implies Theorem 8, since
(H x{0})u ({0} x H)

is a Marczewski null Hamel basis for the plane. But the proof is a little
messier so we chose to do the one for the plane first.
For p,q € “2 define

= p(n) | qn)
O(p’ q) o Z 22n+1 + Z 22n+2

So we are basically looking at the even and odd digits in the binary expan-
sion. The function o(p,q) maps “2 x “2 onto the unit interval [0,1]. For
any p € “2 define

Up={o(p,q): qe*2}
The following is the analogue of Lemma 9.
Lemma 11 Suppose we have a subspace, V C R, with |V| <cand1 €V,
p € ¥2, U C U, with [U| < ¢, and z € R. Then there exists a finite
F CU,\U such that

z€span(VUF) and span(F)NV is trivial.



Proof:

Case 1. z=0(0,q). (0 € “2 is the constantly zero function.)
We may assume that there are infinitely many n such that ¢(n) = 0,
because otherwise z € Q and so we may take F' to be empty. Let

A={n: q(n)=0}.

For any B C A define the pair ¢g, ¢ € “2 as follows:

qﬂm:{qm)ﬁn¢3 %>:{0 itn¢B

1 tnenp I8\ 1 ifneB

Since ¢(n) = 0 for each n € B, it follows that ¢(n) = gg(n) — ¢5g(n) for
every n. Since we never do any “borrowing” we have that

z=0(0,q) = o(p,qg) — o(p,qp)

Since |U| < ¢ there are continuum many B C A such that neither o(p, ¢p)
nor o(p, qy) are in U. Fix one of these B’s and let

F g {U(pa QB>7 U(pv qIB)} g Up \ U
be minimal, such that z € span(V U F).

Case 2. z = 0(q,0)
Since

1 1
5'2 = §U(Q,Q) = U(Qa Q)

this follows easily from case 1.

To prove it for general z € R\ Q first we may assume that z = o(q1, ¢2)
for some ¢, ¢> € “2 since a rational multiple of z is in [0, 1]. Next we may
apply case 1 to 0(0,¢2) and then iteratively (as in the proof of Lemma 9)
to 0(q1,0). Then since z = 0(q1,0) + (0, ¢2) the Lemma is proved.

O

Note for any distinct p;,ps € “2 if neither is eventually one, then U,
and U, are disjoint. The proof of Theorem 10 is now similar to that of
Theorem 8, using the family of U, for p € “2 which are not eventually one.

|



Remark 12 Similar proofs can be given to produce Marczewski null Hamel
bases for R™, Q¥, and RY. For R™ one can either modify the proofs of
Theorem 8 and Lemma 9, or else observe (for example when n = 3) that if
H is a Marczewski null Hamel basis for R, then

(H > {0} x{0}) U ({0} x H x {0}) U ({0} x {0} x H)

is a Marczewski null Hamel basis for R*. If X = Q@ or X = R¥ then X is
wsomorphic to X x X and the proofs are similar to the proof for the plane.

Conjecture 13 Suppose X is an uncountable completely metrizable sepa-
rable metric space which is also a vector space with respect to a field F and
scalar multiplication and vector sum are Borel maps. Then there exists a
basis H for X over F such that H is Marczewski null.

Note that our conjecture reduces to the case that the field F is either
Q or Z, for some prime p. This is because if K is a subfield of F and
H is a Marczewski null basis for X over K, then some maximal linearly
independent over F subset of H is a Marczewski null basis for X over F.

F.B. Jones [4] constructed a Hamel basis containing a perfect set and at-
tributed the construction of what might be called Vitali-independent perfect
set to R.L. Swain.

Theorem 14 There is a Hamel basis for R which is Marczewski measurable
and perfectly dense.

Proof: Let C' be a linearly independent Cantor set and Hy be a Marczewski
null Hamel basis. Split C' into countably many Cantor sets Cy, (', ..., fix a
basis {B,, : n < w} for the topology of the real line and for each n pick a
non-zero rational ¢, such that ¢,C,, intersects B,. Note that

C' = U{ann n<w}

is still linearly independent (though not a Cantor set) and for all open sets
U there exists a perfect P C C'NU. Let H; C Hy be maximal such that

H=C'UH,

is linearly independent. It is easy to see that H works.
O
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Borel Additive mappings

We might hope to get Theorem 10 as a corollary to Theorem 8 getting
a Borel linear isomorphism between R x R and R. Since a Borel bijection
preserves the Marczewski null sets, we would be able to obtain a Marczewski
null Hamel basis for the reals from one for the plane.

This will not work because of the following result. A mapping is called
additive iff f(x+y) = f(x)+ f(y) for any 2 and y. Note that it f is additive,
then f(rxz) = rf(x) for any rational r.

Theorem 15 Any additive Borel map f : RxR — R fails to be one-to-one.

Lemma 16 Suppose g : R — R is an additive Borel map. Then there exists
a comeager G C R and a real a such that g(x) = ax for every x € G.

Proof: This is due to F.Burton Jones [4]. Since g is additive it is not hard
to prove that for every rational a € Q and real x that g(axr) = ag(x). Also
since ¢ is Borel there exist a comeager G such that the restriction of ¢ to
(G is continuous. Since a(G is comeager for any nonzero a we may without
loss assume that aG C G for every nonzero rational a. Let xy be any fixed
nonzero element of G. For any a € Q we have that g(axg) = ag(zp) and
axy € G. So by the continuity of g we have that g(yxo) = yg(xo) for any y
with yxg € G. Now for any = € G
x x g(xo)

g(x) = g(x—oxo) = x—og(xg) =z o

— 9(@o)
0

and so a works.

O

Assume that f is an additive map. By the Lemma there exists comeager
G; and reals a;, i = 0,1, such that for every = € Gy we have f(x,0) = apx
and for every y € G; we have f(0,y) = ayy. Since f is additive it follows
that for every =,y € G = Gy N G we have that

flx,y) = apx + ary.

If either a; is zero, then of course f is not one-to-one. So assume both are

nonzero. Let x and 2’ be arbitrary distinct elements of G and define
Qo

_ v =
z = al(a: ')

11



Since (G is comeager, so is G + z and so we can choose y in both G and
G + z. If we let /' be so that y =y’ + 2, then ¢ =y — 2 € G and

flz,y) = apr + ary = agr + ary’ — ap(z — 2') = apr’ + a1y’ = f(2',y')

and f is not one-to-one.
(I

We use similar Baire category arguments to prove the following theorem:

Theorem 17 There is no Borel (or even Baire) 1-1 additive function f of
the following form for anyn=1,2,...

1 f R SR
2. [ R" = Q, or f:R* = Z* ( even for any I1-1 additive f )
3. [ Q=R or f:2 —R".

Proof:

(1) f:R*™ - R?

This argument is a generalization of Theorem 15. There exists a comea-
ger G C R and a linear transformation L : R"*! — R" with the property
that

flzy, .o ) = Lxy, ..., xpyq) for any @y, ..., 2p0 € G

Since L cannot be 1-1 there must be distinct vectors u and v with L(u) =
L(v). Since G is comeager there exists a vector w such that w; +w;, v;+w; €
G for all coordinates i = 1,...,n+1 (choose w; € (G —u;) N (G —v;)). But
then

flutw) = Llu+w) = L{u) + L(w) = L(v) + L(w) = L(v+ w) = f(v+w)
implies that f is not 1-1.

(2) f:R* - @, or f:R" — Z¥ ( even for any 1-1 additive function f ).
It is enough to prove this for the case f : R' — Q”, since there are such

maps from R' into R* and from Z“ into Q”. Let f(z)(m) € Q refer to

the m' coordinate of f(x). If f is 1-1 and additive, then for each non-zero

12



x € R there is some m such that f(z)(m) # 0. By Baire category there
must exists some ¢y € Q with ¢y # 0, coordinate m, open interval I and
H C I comeager in I such that

f(z)(m) = qo for every x € H.

But this is impossible because we can find ¢ € Q with € close to 1 but
different from 1 and some x we have x,ex € H but

f@) + fler) = flx +ex) = f(L+€)x) = (1+€)f(x)

Since both z and ex are in H we have that f(z)(m) = f(ex)(m) = qo,
contradicting 2¢y # (1 + €)qo.

3)f:Q* =R, or f:ZY - R"

We show there is no such map f : Z* — R". Since there is a 1-1 additive
Borel map (inclusion) from Z* into @, this suffices. We start by giving the
proof for n = 1. Assume for contradiction that G C Z“ is a comeager G s-set
and f[G is continuous on G.

The topology on Z* is determined by the basic open sets

[s] ={r €Z:sCua}
where s € Z<“ — the set of finite sequences from Z.

Claim. For any N € w for any s € Z<¥ there exists t € Z<* with s C ¢ and
for every x € G N [t] we have f(x) > N.

proof: Let m = [s| the length of s (so s = (s(0),...,s(m — 1))). For
each k € Z let x;, € Z* be the sequence which is all zeros except on the m!”
coordinate where it is k. Since f is additive and 1-1 it must be that either
limy o f(2) = 00 or limy,_, o f(x;) = co. Since G is comeager there exists
u € [s] such that u+x;, € G forevery k € Z (i.e, choose u € (), o (—2+G)).
Note that (u+xy) € [s] for every k and f(u+x) = f(u)+ f(x)) and hence
for some k € Z we have that f(u+ x;) > N. Since f is continuous on G we
can find the ¢ as required.

This proves the Claim.

According to the Claim for each N there exists a dense open set Dy such
that for every © € Dy NG we have f(x) > N. But this is a contradiction
since it implies

New
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For the case that f : Z* — R" the argument is similar, we just prove a
claim that says: For any N € w for any s € Z<“ there exists t € Z<% with
s C t and for every x € G N [t] we have f(x)(i) > N for some coordinate
1< n.

O
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