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Abstrat

We give examples of a Vitali set and a Hamel basis whih are

Marzewski measurable and perfetly dense. The Vitali set ex-

ample answers a question posed by Jak Brown. We also show

there is a Marzewski null Hamel basis for the reals, although a

Vitali set annot be Marzewski null. The proof of the existene

of a Marzewski null Hamel basis for the plane is easier than for

the reals and we give it �rst. We show that there is no easy way

to get a Marzewski null Hamel basis for the reals from one for

the plane by showing that there is no one-to-one additive Borel

map from the plane to the reals.

Basi de�nitions

A subset A of a omplete separable metri spae X is alled Marzewski

measurable if for every perfet set P � X either P \ A or P n A ontains

a perfet set. Reall that a perfet set is a non-empty losed set without

isolated points, and a Cantor set is a homeomorphi opy of the Cantor

middle-third set. If every perfet set P ontains a perfet subset whih

misses A, then A is alled Marzewski null. The lass of Marzewski mea-

surable sets, denoted by (s), and the lass of Marzewski null sets, denoted

by (s

0

), were de�ned by Marzewski [10℄, where it was shown that (s) is a

�-algebra, i.e. X 2 (s) and (s) is losed under omplements and ountable

unions, and (s

0

) is a �-ideal in (s), i.e. (s

0

) is losed under ountable unions

and subsets. Several equivalent de�nitions and important properties of (s)

and (s

0

) were proved in [10℄, for example every analyti set is Marzewski
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measurable, the properties (s) and (s

0

) are preserved under \generalized

homeomorphisms" (also alled Borel bijetions), i.e. one-to-one onto fun-

tions f suh that both f and f

�1

are Borel measurable (i.e. pre-images of

open sets are Borel), a ountable produt is in (s) if and only if eah fator

is in (s), and a �nite produt is in (s

0

) if and only if eah fator is in (s

0

).

The perfet kernel of a losed set F is the set of all a 2 F suh that

U \ F is unountable for every neighborhood U of a.

A set is totally imperfet i� it ontains no perfet subset. A totally

imperfet set of reals annot ontain unountable losed set, so it must have

inner Lebesgue measure zero. A set B is alled Bernstein set if every perfet

set intersets both B and the omplement of B, or, equivalently, both B

and its omplement are totally imperfet. Clearly, no Bernstein set an be

Marzewski measurable.

A set A is perfetly dense i� its intersetion with every nonempty open

set ontains a perfet set.

Let R denote the set of all real numbers and Q denote the set of all

rational numbers. We use  to denote the ardinality of the ontinuum.

The linear losure (or span) over Q of a non-empty set A � R is the set

span(A) = fq

1

a

1

+ : : :+ q

n

a

n

: n < !; q

j

2 Q ; a

j

2 Ag

and span(;) = f0g. A is alled linearly independent over Q if q

1

a

1

+ : : : +

q

n

a

n

6= 0 whenever n < !, q

j

2 Q for 1 � j � n with q

j

6= 0 for at least one

j, and a

1

; : : : ; a

n

are di�erent points from A. A linearly independent set H

suh that R = span(H) is alled a Hamel basis. Note a Hamel basis must

have ardinality . The inner Lebesgue measure of any Hamel basis H is

zero (Sierpinski [8℄ see also Erdos [2℄). A Hamel basis an have Lebesgue

measure 0 (see Jones [4℄, or Kuzma Chapter 11 [6℄).

A Hamel basis H whih intersets every perfet set is alled a Burstin set

[1℄. Every Burstin set H is also a Bernstein set, otherwise if P � H for some

perfet set P , by the linear independene of H it follows that H \ 2P = ;

(where 2P = f2p : p 2 Pg), a ontradition sine 2P is a perfet set.

A Burstin set an be onstruted as follows. List all perfet subsets of

R as

fP

�

: � < g;

pik a non-zero p

0

2 P

0

and using that

jspan(A)j � jAj+ ! <  if jAj < 

2



and jP

�

j =  for eah �, pik by indution

p

�

2 P

�

n span(fp

�

: � < �g)

and let H



= fp

�

: � < g. If H is a maximal linearly independent set with

H



� H, then H is a Burstin set.

A set V � R is alled a Vitali set if V is a omplete set of representatives

(or a transversal) for the equivalene relation de�ned by x � y i� x�y 2 Q ,

i.e. for eah x 2 R there exists a unique v 2 V suh that x � v 2 Q . No

Vitali set is Lebesgue measurable or, has the Baire property. One may

onstrut a Vitali set whih is a Bernstein set.

Perfetly dense Marzewski measurable Vitali set

Reall that an equivalene relation on a spae X is alled Borel if it is a

Borel subset of X �X. The Vitali equivalene � as de�ned above is Borel.

We �rst show that a Vitali set annot be Marzewski null.

Theorem 1 Suppose X is an unountable separable ompletely metrizable

spae with a Borel equivalene relation, �, on it with every equivalene lass

ountable. Then, if V � X meets eah equivalene lass in exatly one

element, V annot be Marzewski null.

Proof: By a theorem of Feldman and Moore [3℄ every suh Borel equivalene

relation is indued by a Borel ation of a ountable group. This implies that

there are ountably many Borel bijetions f

n

: X ! X for n 2 ! suh that

x � y i� f

n

(x) = y for some n. If V were Marzewski null, then

X =

[

n<!

f

n

(V )

would be Marzewski null.

2

To obtain a Marzewski measurable Vitali set we will use the following

theorem:
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Theorem 2 (Silver [9℄) If E is a oanalyti equivalene relation on the

spae of all real numbers and E has unountably many equivalene lasses,

then there is a perfet set of mutually E-inequivalent reals (in other words,

an E-independent perfet set). In the ase of a Borel equivalene relation E,

one an drop the requirement that the �eld of the equivalene be the whole

set of reals.

If E � X�X is a Borel equivalene relation, where X is an unountable

separable ompletely metrizable spae, and B is a Borel subset of X, then

the saturation of B, [B℄

E

=

S

x2B

[x℄

E

, is analyti sine it is the projetion

into the seond oordinate of the Borel set (B � X) \ E. The saturation

need not be Borel, for example let B be a Borel subset of X = R

2

whose

projetion �

1

(B) into the �rst oordinate is not Borel. De�ne (x; y)E(u; v)

i� x = u (i.e. two points are equivalent if they lie on the same vertial line).

Then [B℄

E

= �

1

(B) � R is not Borel. On the other hand, if E is a Borel

equivalene with eah equivalene lass ountable, and f

n

are as in the proof

of Theorem 1, then the saturation [B℄

E

=

S

n<!

f

n

(B) of every Borel set B

is Borel.

Theorem 3 Suppose X is an unountable separable ompletely metrizable

spae with a Borel equivalene relation E. Then there exists Marzewski

measurable V � X whih meets eah equivalene lass in exatly one ele-

ment.

Proof: Let fP

�

: � < g list all perfet subsets of X. We will desribe how

to onstrut disjoint C

�

, eah C

�

either ountable (possibly �nite or empty)

or a Cantor set suh that the set V

�

=

S

�<�

C

�

is E-independent. Then

extend the set V



=

S

�<

C

�

to a maximal E-independent set V .

Case (a). If P

�

\ [C

�

℄

E

is unountable for some � < �, then let C

�

= ;.

Subase (a1). jP

�

\ C

�

j > !. Then the perfet kernel of P

�

\ C

�

is

ontained in both P

�

and V

�

(and hene in V ).

Subase (a2). jP

�

\C

�

j = !. Then, sine P

�

\ [C

�

℄

E

nC

�

is unountable

analyti, it ontains a perfet set Q whih misses V .

Case (b). Not ase (a). Then jP

�

\[V

�

℄

E

j = jP

�

\

S

�<�

[C

�

℄

E

j � j�j! <  ,

and hene P

�

n [V

�

℄

E

ontains a Cantor set P .
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Subase (b1). The restrition of E to P has only ountably many lasses.

Let C

�

be a ountable E-independent subset of P with P � [C

�

℄

E

. Then

P n C

�

ontains a perfet set, whih misses V .

Subase (b2). Case (b) but not ase (b1). Then, by the above theorem

of Silver, there is a perfet E-independent set C

�

� P (and C

�

� V ).

2

Remark 4 The Vitali equivalene shows that a Borel equivalene need not

have a transversal that is Lebesgue measurable or has the Baire property.

See Kehris [5℄ 18.D for more on transversals of Borel equivalenes.

Theorem 5 There exists a Vitali set whih is Marzewski measurable and

its intersetion with eah non-empty open set ontains a perfet set.

Proof: By Theorem 3 there is a Marzewski measurable Vitali set V , and

by Theorem 1, V ontains a perfet set C. Split C into ountably many

Cantor sets C

0

; C

1

; : : :, �x a basis fB

n

: n < !g for the topology of R and

pik rational numbers q

n

so that the set q

n

+C

n

= fq

n

+ :  2 C

n

g intersets

B

n

for eah n. Then

V

0

= (V n C) [

[

f(q

n

+ C

n

) : n < !g

is a perfetly dense Marzewski measurable Vitali set.

2

Remark 6 A Vitali set V annot have the stronger property that its inter-

setion with every perfet set ontains a perfet set. This is beause if V

ontains the perfet set P , then the perfet set

P

0

= P + 1 = fp+ 1 : p 2 Pg

does not interset V . Similarly, if H is a Hamel basis that ontains the

perfet set P , then

2P = f2p : p 2 Pg

is a perfet set whih misses H.
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Marzewski null Hamel bases

Remark 7 (Erdos [2℄) Under CH there is a Hamel basis H whih is a

Lusin set (and hene Marzewski null). To see this, note that by a result of

Sierpinski there is a Lusin set X suh that X+X = fx+ y : x; y 2 Xg = R

(see e.q. [7℄). Let H be any maximal linearly independent subset of X, then

learly span(H) = span(X) = R.

Our onstrution (without CH) of a Marzewski null Hamel basis is

slightly simpler for the plane, so we do it �rst.

Theorem 8 There exists a Hamel basis, H, for R � R, i.e. a basis for the

plane as a vetor spae over Q , whih is a Marzewski null set, i.e., every

perfet set ontains a perfet subset disjoint from H.

Lemma 9 Suppose V with jV j <  is a subspae of R�R as a vetor spae

over Q (not neessarily losed), p 2 R � R, y 2 R, and

U � U

y

= (fyg � R) [ (R � fyg)

with jU j < . Then there exists a �nite F � (U

y

n U) with p 2 span(F [ V )

and suh that F is linearly independent over Q and independent over V ,

i.e., span(F ) meets V only in the zero vetor.

Proof:

Case 1. p = (u; 0).

Let y

1

and y

2

be so that

y

2

� y

1

= u; (y

1

; y) =2 U and (y

2

; y) =2 U:

Clearly p 2 span(f(y

1

; y); (y

2

; y)g). Let

F � f(y

1

; y); (y

2

; y)g � U

y

n U

be minimal suh that p 2 span(V [ F ), then F works.

Case 2. p = (0; v)

Obviously this ase is symmetri.
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Case 3. p = (u; v)

Apply ase 1 to (u; 0) obtaining F

1

. Let

V

0

= span(V [ F

1

)

and apply ase 2 to V

0

obtaining F

2

(and let F = F

1

[ F

2

) so that

(u; 0); (0; v) 2 span(V [ F

1

[ F

2

):

2

The theorem is proved from the Lemma as follows. Let fB

�

: � < g

list all unountable Borel subsets of R�R whih have the property that for

every y the set B

�

\ U

y

is ountable. And let fp

�

: � < g = R � R and

fy

�

: � < g = R. Construt an inreasing sequene H

�

� R � R for � < 

so that

1. H

�

are linearly independent over the rationals,

2. � < � implies H

�

� H

�

,

3. H

�

=

S

�<�

H

�

at limit ordinals �,

4. (H

�+1

nH

�

) � U

y

�

is �nite,

5. p

�

2 span(H

�+1

)

6. H

�

\ B

�

� H

�+1

whenever � < �.

7. H

�

\ U

y

�

� H

�+1

whenever � < �.

At suessor ordinals � + 1 apply the lemma with p = p

�

, V = span(H

�

),

and

U = fp 2 U

y

�

: 9� < � (p 2 B

�

or p 2 U

y

�

)g:

Then let H

�+1

= H

�

[ F .

The set H =

S

�<

H

�

is a Hamel basis and note that for every y

�

2 R

we have that H \ U

y

�

� H

�+1

and so

jH \ U

y

�

j < 

and similarly for every � we have that

jH \B

�

j < :
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To see that H is Marzewski null, suppose that P is any perfet subset of

the plane. If for some y 2 R we have that P \U

y

is unountable and losed,

then sine jH \ U

y

j <  and every perfet set an be split into ontinuum

many perfet subsets, there exists a perfet set P

0

� P \ U

y

disjoint from

H.

On the other hand if there is no suh y then P = B

�

for some � and

so jP \ Hj < . Thus again by splitting P into ontinuum many pairwise

disjoint perfet subsets, there must be a perfet subset of P disjoint from

H.

2

Theorem 10 There exists a Hamel basis, H, for the reals whih is a Mar-

zewski null set.

Obviously, this implies Theorem 8, sine

(H � f0g) [ (f0g �H)

is a Marzewski null Hamel basis for the plane. But the proof is a little

messier so we hose to do the one for the plane �rst.

For p; q 2

!

2 de�ne

�(p; q) =

1

X

n=0

p(n)

2

2n+1

+

1

X

n=0

q(n)

2

2n+2

So we are basially looking at the even and odd digits in the binary expan-

sion. The funtion �(p; q) maps

!

2 �

!

2 onto the unit interval [0; 1℄. For

any p 2

!

2 de�ne

U

p

= f�(p; q) : q 2

!

2g

The following is the analogue of Lemma 9.

Lemma 11 Suppose we have a subspae, V � R, with jV j <  and 1 2 V ,

p 2

!

2, U � U

p

with jU j < , and z 2 R. Then there exists a �nite

F � U

p

n U suh that

z 2 span(V [ F ) and span(F ) \ V is trivial:
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Proof:

Case 1. z = �(0; q). (0 2

!

2 is the onstantly zero funtion.)

We may assume that there are in�nitely many n suh that q(n) = 0,

beause otherwise z 2 Q and so we may take F to be empty. Let

A = fn : q(n) = 0g:

For any B � A de�ne the pair q

B

; q

0

B

2

!

2 as follows:

q

B

(n) =

�

q(n) if n =2 B

1 if n 2 B

q

0

B

(n) =

�

0 if n =2 B

1 if n 2 B

Sine q(n) = 0 for eah n 2 B, it follows that q(n) = q

B

(n) � q

0

B

(n) for

every n. Sine we never do any \borrowing" we have that

z = �(0; q) = �(p; q

B

)� �(p; q

0

B

)

Sine jU j <  there are ontinuum many B � A suh that neither �(p; q

B

)

nor �(p; q

0

B

) are in U . Fix one of these B's and let

F � f�(p; q

B

); �(p; q

0

B

)g � U

p

n U

be minimal, suh that z 2 span(V [ F ).

Case 2. z = �(q; 0)

Sine

1

2

z =

1

2

�(q; 0) = �(0; q)

this follows easily from ase 1.

To prove it for general z 2 R n Q �rst we may assume that z = �(q

1

; q

2

)

for some q

1

; q

2

2

!

2 sine a rational multiple of z is in [0; 1℄. Next we may

apply ase 1 to �(0; q

2

) and then iteratively (as in the proof of Lemma 9)

to �(q

1

; 0). Then sine z = �(q

1

; 0) + �(0; q

2

) the Lemma is proved.

2

Note for any distint p

1

; p

2

2

!

2 if neither is eventually one, then U

p

1

and U

p

2

are disjoint. The proof of Theorem 10 is now similar to that of

Theorem 8, using the family of U

p

for p 2

!

2 whih are not eventually one.

2
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Remark 12 Similar proofs an be given to produe Marzewski null Hamel

bases for R

n

, Q

!

, and R

!

. For R

n

one an either modify the proofs of

Theorem 8 and Lemma 9, or else observe (for example when n = 3) that if

H is a Marzewski null Hamel basis for R, then

(H � f0g � f0g) [ (f0g �H � f0g) [ (f0g � f0g �H)

is a Marzewski null Hamel basis for R

3

. If X = Q

!

or X = R

!

then X is

isomorphi to X �X and the proofs are similar to the proof for the plane.

Conjeture 13 Suppose X is an unountable ompletely metrizable sepa-

rable metri spae whih is also a vetor spae with respet to a �eld F and

salar multipliation and vetor sum are Borel maps. Then there exists a

basis H for X over F suh that H is Marzewski null.

Note that our onjeture redues to the ase that the �eld F is either

Q or Z

p

for some prime p. This is beause if K is a sub�eld of F and

H is a Marzewski null basis for X over K , then some maximal linearly

independent over F subset of H is a Marzewski null basis for X over F.

F.B. Jones [4℄ onstruted a Hamel basis ontaining a perfet set and at-

tributed the onstrution of what might be alled Vitali-independent perfet

set to R.L. Swain.

Theorem 14 There is a Hamel basis for R whih is Marzewski measurable

and perfetly dense.

Proof: Let C be a linearly independent Cantor set and H

0

be a Marzewski

null Hamel basis. Split C into ountably many Cantor sets C

0

; C

1

; : : :, �x a

basis fB

n

: n < !g for the topology of the real line and for eah n pik a

non-zero rational q

n

suh that q

n

C

n

intersets B

n

. Note that

C

0

=

[

fq

n

C

n

: n < !g

is still linearly independent (though not a Cantor set) and for all open sets

U there exists a perfet P � C

0

\ U . Let H

1

� H

0

be maximal suh that

H = C

0

[H

1

is linearly independent. It is easy to see that H works.

2

10



Borel Additive mappings

We might hope to get Theorem 10 as a orollary to Theorem 8 getting

a Borel linear isomorphism between R � R and R. Sine a Borel bijetion

preserves the Marzewski null sets, we would be able to obtain a Marzewski

null Hamel basis for the reals from one for the plane.

This will not work beause of the following result. A mapping is alled

additive i� f(x+y) = f(x)+f(y) for any x and y. Note that it f is additive,

then f(rx) = rf(x) for any rational r.

Theorem 15 Any additive Borel map f : R�R ! R fails to be one-to-one.

Lemma 16 Suppose g : R ! R is an additive Borel map. Then there exists

a omeager G � R and a real a suh that g(x) = ax for every x 2 G.

Proof: This is due to F.Burton Jones [4℄. Sine g is additive it is not hard

to prove that for every rational a 2 Q and real x that g(ax) = ag(x). Also

sine g is Borel there exist a omeager G suh that the restrition of g to

G is ontinuous. Sine aG is omeager for any nonzero a we may without

loss assume that aG � G for every nonzero rational a. Let x

0

be any �xed

nonzero element of G. For any a 2 Q we have that g(ax

0

) = ag(x

0

) and

ax

0

2 G. So by the ontinuity of g we have that g(yx

0

) = yg(x

0

) for any y

with yx

0

2 G. Now for any x 2 G

g(x) = g(

x

x

0

x

0

) =

x

x

0

g(x

0

) = x

g(x

0

)

x

0

and so a =

g(x

0

)

x

0

works.

2

Assume that f is an additive map. By the Lemma there exists omeager

G

i

and reals a

i

, i = 0; 1, suh that for every x 2 G

0

we have f(x; 0) = a

0

x

and for every y 2 G

1

we have f(0; y) = a

1

y. Sine f is additive it follows

that for every x; y 2 G = G

0

\G

1

we have that

f(x; y) = a

0

x + a

1

y:

If either a

i

is zero, then of ourse f is not one-to-one. So assume both are

nonzero. Let x and x

0

be arbitrary distint elements of G and de�ne

z = �

a

0

a

1

(x� x

0

)

11



Sine G is omeager, so is G + z and so we an hoose y in both G and

G+ z. If we let y

0

be so that y = y

0

+ z, then y

0

= y � z 2 G and

f(x; y) = a

0

x+ a

1

y = a

0

x + a

1

y

0

� a

0

(x� x

0

) = a

0

x

0

+ a

1

y

0

= f(x

0

; y

0

)

and f is not one-to-one.

2

We use similar Baire ategory arguments to prove the following theorem:

Theorem 17 There is no Borel (or even Baire) 1-1 additive funtion f of

the following form for any n = 1; 2; : : :

1. f : R

n+1

! R

n

2. f : R

n

! Q

!

, or f : R

n

! Z

!

( even for any 1-1 additive f )

3. f : Q

!

! R

n

, or f : Z

!

! R

n

.

Proof:

(1) f : R

n+1

! R

n

This argument is a generalization of Theorem 15. There exists a omea-

ger G � R and a linear transformation L : R

n+1

! R

n

with the property

that

f(x

1

; : : : ; x

n+1

) = L(x

1

; : : : ; x

n+1

) for any x

1

; : : : ; x

n+1

2 G

Sine L annot be 1-1 there must be distint vetors u and v with L(u) =

L(v). Sine G is omeager there exists a vetor w suh that u

i

+w

i

; v

i

+w

i

2

G for all oordinates i = 1; : : : ; n+1 (hoose w

i

2 (G� u

i

)\ (G� v

i

)). But

then

f(u+w) = L(u+w) = L(u)+L(w) = L(v)+L(w) = L(v+w) = f(v+w)

implies that f is not 1-1.

(2) f : R

n

! Q

!

; or f : R

n

! Z

!

( even for any 1-1 additive funtion f ).

It is enough to prove this for the ase f : R

1

! Q

!

, sine there are suh

maps from R

1

into R

n

and from Z

!

into Q

!

. Let f(x)(m) 2 Q refer to

the m

th

oordinate of f(x). If f is 1-1 and additive, then for eah non-zero

12



x 2 R there is some m suh that f(x)(m) 6= 0. By Baire ategory there

must exists some q

0

2 Q with q

0

6= 0, oordinate m, open interval I and

H � I omeager in I suh that

f(x)(m) = q

0

for every x 2 H:

But this is impossible beause we an �nd � 2 Q with � lose to 1 but

di�erent from 1 and some x we have x; �x 2 H but

f(x) + f(�x) = f(x + �x) = f((1 + �)x) = (1 + �)f(x)

Sine both x and �x are in H we have that f(x)(m) = f(�x)(m) = q

0

,

ontraditing 2q

0

6= (1 + �)q

0

.

(3) f : Q

!

! R

n

; or f : Z

!

! R

n

We show there is no suh map f : Z

!

! R

n

. Sine there is a 1-1 additive

Borel map (inlusion) from Z

!

into Q

!

, this suÆes. We start by giving the

proof for n = 1. Assume for ontradition that G � Z

!

is a omeager G

Æ

-set

and f�G is ontinuous on G.

The topology on Z

!

is determined by the basi open sets

[s℄ = fx 2 Z

!

: s � xg

where s 2 Z

<!

| the set of �nite sequenes from Z.

Claim. For any N 2 ! for any s 2 Z

<!

there exists t 2 Z

<!

with s � t and

for every x 2 G \ [t℄ we have f(x) > N .

proof: Let m = jsj the length of s (so s = hs(0); : : : ; s(m � 1)i). For

eah k 2 Z let x

k

2 Z

!

be the sequene whih is all zeros exept on the m

th

oordinate where it is k. Sine f is additive and 1-1 it must be that either

lim

k!1

f(x

k

) =1 or lim

k!�1

f(x

k

) =1. Sine G is omeager there exists

u 2 [s℄ suh that u+x

k

2 G for every k 2 Z (i.e, hoose u 2

T

k2Z

(�x

k

+G)).

Note that (u+x

k

) 2 [s℄ for every k and f(u+x

k

) = f(u)+ f(x

k

) and hene

for some k 2 Z we have that f(u+ x

k

) > N . Sine f is ontinuous on G we

an �nd the t as required.

This proves the Claim.

Aording to the Claim for eah N there exists a dense open set D

N

suh

that for every x 2 D

N

\ G we have f(x) > N . But this is a ontradition

sine it implies

G \

\

N2!

D

N

= ;

13



For the ase that f : Z

!

! R

n

the argument is similar, we just prove a

laim that says: For any N 2 ! for any s 2 Z

<!

there exists t 2 Z

<!

with

s � t and for every x 2 G \ [t℄ we have f(x)(i) > N for some oordinate

i < n.

2

*
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