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Abstra
t

We give examples of a Vitali set and a Hamel basis whi
h are

Mar
zewski measurable and perfe
tly dense. The Vitali set ex-

ample answers a question posed by Ja
k Brown. We also show

there is a Mar
zewski null Hamel basis for the reals, although a

Vitali set 
annot be Mar
zewski null. The proof of the existen
e

of a Mar
zewski null Hamel basis for the plane is easier than for

the reals and we give it �rst. We show that there is no easy way

to get a Mar
zewski null Hamel basis for the reals from one for

the plane by showing that there is no one-to-one additive Borel

map from the plane to the reals.

Basi
 de�nitions

A subset A of a 
omplete separable metri
 spa
e X is 
alled Mar
zewski

measurable if for every perfe
t set P � X either P \ A or P n A 
ontains

a perfe
t set. Re
all that a perfe
t set is a non-empty 
losed set without

isolated points, and a Cantor set is a homeomorphi
 
opy of the Cantor

middle-third set. If every perfe
t set P 
ontains a perfe
t subset whi
h

misses A, then A is 
alled Mar
zewski null. The 
lass of Mar
zewski mea-

surable sets, denoted by (s), and the 
lass of Mar
zewski null sets, denoted

by (s

0

), were de�ned by Mar
zewski [10℄, where it was shown that (s) is a

�-algebra, i.e. X 2 (s) and (s) is 
losed under 
omplements and 
ountable

unions, and (s

0

) is a �-ideal in (s), i.e. (s

0

) is 
losed under 
ountable unions

and subsets. Several equivalent de�nitions and important properties of (s)

and (s

0

) were proved in [10℄, for example every analyti
 set is Mar
zewski
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measurable, the properties (s) and (s

0

) are preserved under \generalized

homeomorphisms" (also 
alled Borel bije
tions), i.e. one-to-one onto fun
-

tions f su
h that both f and f

�1

are Borel measurable (i.e. pre-images of

open sets are Borel), a 
ountable produ
t is in (s) if and only if ea
h fa
tor

is in (s), and a �nite produ
t is in (s

0

) if and only if ea
h fa
tor is in (s

0

).

The perfe
t kernel of a 
losed set F is the set of all a 2 F su
h that

U \ F is un
ountable for every neighborhood U of a.

A set is totally imperfe
t i� it 
ontains no perfe
t subset. A totally

imperfe
t set of reals 
annot 
ontain un
ountable 
losed set, so it must have

inner Lebesgue measure zero. A set B is 
alled Bernstein set if every perfe
t

set interse
ts both B and the 
omplement of B, or, equivalently, both B

and its 
omplement are totally imperfe
t. Clearly, no Bernstein set 
an be

Mar
zewski measurable.

A set A is perfe
tly dense i� its interse
tion with every nonempty open

set 
ontains a perfe
t set.

Let R denote the set of all real numbers and Q denote the set of all

rational numbers. We use 
 to denote the 
ardinality of the 
ontinuum.

The linear 
losure (or span) over Q of a non-empty set A � R is the set

span(A) = fq

1

a

1

+ : : :+ q

n

a

n

: n < !; q

j

2 Q ; a

j

2 Ag

and span(;) = f0g. A is 
alled linearly independent over Q if q

1

a

1

+ : : : +

q

n

a

n

6= 0 whenever n < !, q

j

2 Q for 1 � j � n with q

j

6= 0 for at least one

j, and a

1

; : : : ; a

n

are di�erent points from A. A linearly independent set H

su
h that R = span(H) is 
alled a Hamel basis. Note a Hamel basis must

have 
ardinality 
. The inner Lebesgue measure of any Hamel basis H is

zero (Sierpinski [8℄ see also Erdos [2℄). A Hamel basis 
an have Lebesgue

measure 0 (see Jones [4℄, or Ku
zma Chapter 11 [6℄).

A Hamel basis H whi
h interse
ts every perfe
t set is 
alled a Burstin set

[1℄. Every Burstin set H is also a Bernstein set, otherwise if P � H for some

perfe
t set P , by the linear independen
e of H it follows that H \ 2P = ;

(where 2P = f2p : p 2 Pg), a 
ontradi
tion sin
e 2P is a perfe
t set.

A Burstin set 
an be 
onstru
ted as follows. List all perfe
t subsets of

R as

fP

�

: � < 
g;

pi
k a non-zero p

0

2 P

0

and using that

jspan(A)j � jAj+ ! < 
 if jAj < 
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and jP

�

j = 
 for ea
h �, pi
k by indu
tion

p

�

2 P

�

n span(fp

�

: � < �g)

and let H




= fp

�

: � < 
g. If H is a maximal linearly independent set with

H




� H, then H is a Burstin set.

A set V � R is 
alled a Vitali set if V is a 
omplete set of representatives

(or a transversal) for the equivalen
e relation de�ned by x � y i� x�y 2 Q ,

i.e. for ea
h x 2 R there exists a unique v 2 V su
h that x � v 2 Q . No

Vitali set is Lebesgue measurable or, has the Baire property. One may


onstru
t a Vitali set whi
h is a Bernstein set.

Perfe
tly dense Mar
zewski measurable Vitali set

Re
all that an equivalen
e relation on a spa
e X is 
alled Borel if it is a

Borel subset of X �X. The Vitali equivalen
e � as de�ned above is Borel.

We �rst show that a Vitali set 
annot be Mar
zewski null.

Theorem 1 Suppose X is an un
ountable separable 
ompletely metrizable

spa
e with a Borel equivalen
e relation, �, on it with every equivalen
e 
lass


ountable. Then, if V � X meets ea
h equivalen
e 
lass in exa
tly one

element, V 
annot be Mar
zewski null.

Proof: By a theorem of Feldman and Moore [3℄ every su
h Borel equivalen
e

relation is indu
ed by a Borel a
tion of a 
ountable group. This implies that

there are 
ountably many Borel bije
tions f

n

: X ! X for n 2 ! su
h that

x � y i� f

n

(x) = y for some n. If V were Mar
zewski null, then

X =

[

n<!

f

n

(V )

would be Mar
zewski null.

2

To obtain a Mar
zewski measurable Vitali set we will use the following

theorem:
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Theorem 2 (Silver [9℄) If E is a 
oanalyti
 equivalen
e relation on the

spa
e of all real numbers and E has un
ountably many equivalen
e 
lasses,

then there is a perfe
t set of mutually E-inequivalent reals (in other words,

an E-independent perfe
t set). In the 
ase of a Borel equivalen
e relation E,

one 
an drop the requirement that the �eld of the equivalen
e be the whole

set of reals.

If E � X�X is a Borel equivalen
e relation, where X is an un
ountable

separable 
ompletely metrizable spa
e, and B is a Borel subset of X, then

the saturation of B, [B℄

E

=

S

x2B

[x℄

E

, is analyti
 sin
e it is the proje
tion

into the se
ond 
oordinate of the Borel set (B � X) \ E. The saturation

need not be Borel, for example let B be a Borel subset of X = R

2

whose

proje
tion �

1

(B) into the �rst 
oordinate is not Borel. De�ne (x; y)E(u; v)

i� x = u (i.e. two points are equivalent if they lie on the same verti
al line).

Then [B℄

E

= �

1

(B) � R is not Borel. On the other hand, if E is a Borel

equivalen
e with ea
h equivalen
e 
lass 
ountable, and f

n

are as in the proof

of Theorem 1, then the saturation [B℄

E

=

S

n<!

f

n

(B) of every Borel set B

is Borel.

Theorem 3 Suppose X is an un
ountable separable 
ompletely metrizable

spa
e with a Borel equivalen
e relation E. Then there exists Mar
zewski

measurable V � X whi
h meets ea
h equivalen
e 
lass in exa
tly one ele-

ment.

Proof: Let fP

�

: � < 
g list all perfe
t subsets of X. We will des
ribe how

to 
onstru
t disjoint C

�

, ea
h C

�

either 
ountable (possibly �nite or empty)

or a Cantor set su
h that the set V

�

=

S

�<�

C

�

is E-independent. Then

extend the set V




=

S

�<


C

�

to a maximal E-independent set V .

Case (a). If P

�

\ [C

�

℄

E

is un
ountable for some � < �, then let C

�

= ;.

Sub
ase (a1). jP

�

\ C

�

j > !. Then the perfe
t kernel of P

�

\ C

�

is


ontained in both P

�

and V

�

(and hen
e in V ).

Sub
ase (a2). jP

�

\C

�

j = !. Then, sin
e P

�

\ [C

�

℄

E

nC

�

is un
ountable

analyti
, it 
ontains a perfe
t set Q whi
h misses V .

Case (b). Not 
ase (a). Then jP

�

\[V

�

℄

E

j = jP

�

\

S

�<�

[C

�

℄

E

j � j�j! < 
 ,

and hen
e P

�

n [V

�

℄

E


ontains a Cantor set P .
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Sub
ase (b1). The restri
tion of E to P has only 
ountably many 
lasses.

Let C

�

be a 
ountable E-independent subset of P with P � [C

�

℄

E

. Then

P n C

�


ontains a perfe
t set, whi
h misses V .

Sub
ase (b2). Case (b) but not 
ase (b1). Then, by the above theorem

of Silver, there is a perfe
t E-independent set C

�

� P (and C

�

� V ).

2

Remark 4 The Vitali equivalen
e shows that a Borel equivalen
e need not

have a transversal that is Lebesgue measurable or has the Baire property.

See Ke
hris [5℄ 18.D for more on transversals of Borel equivalen
es.

Theorem 5 There exists a Vitali set whi
h is Mar
zewski measurable and

its interse
tion with ea
h non-empty open set 
ontains a perfe
t set.

Proof: By Theorem 3 there is a Mar
zewski measurable Vitali set V , and

by Theorem 1, V 
ontains a perfe
t set C. Split C into 
ountably many

Cantor sets C

0

; C

1

; : : :, �x a basis fB

n

: n < !g for the topology of R and

pi
k rational numbers q

n

so that the set q

n

+C

n

= fq

n

+
 : 
 2 C

n

g interse
ts

B

n

for ea
h n. Then

V

0

= (V n C) [

[

f(q

n

+ C

n

) : n < !g

is a perfe
tly dense Mar
zewski measurable Vitali set.

2

Remark 6 A Vitali set V 
annot have the stronger property that its inter-

se
tion with every perfe
t set 
ontains a perfe
t set. This is be
ause if V


ontains the perfe
t set P , then the perfe
t set

P

0

= P + 1 = fp+ 1 : p 2 Pg

does not interse
t V . Similarly, if H is a Hamel basis that 
ontains the

perfe
t set P , then

2P = f2p : p 2 Pg

is a perfe
t set whi
h misses H.
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Mar
zewski null Hamel bases

Remark 7 (Erdos [2℄) Under CH there is a Hamel basis H whi
h is a

Lusin set (and hen
e Mar
zewski null). To see this, note that by a result of

Sierpinski there is a Lusin set X su
h that X+X = fx+ y : x; y 2 Xg = R

(see e.q. [7℄). Let H be any maximal linearly independent subset of X, then


learly span(H) = span(X) = R.

Our 
onstru
tion (without CH) of a Mar
zewski null Hamel basis is

slightly simpler for the plane, so we do it �rst.

Theorem 8 There exists a Hamel basis, H, for R � R, i.e. a basis for the

plane as a ve
tor spa
e over Q , whi
h is a Mar
zewski null set, i.e., every

perfe
t set 
ontains a perfe
t subset disjoint from H.

Lemma 9 Suppose V with jV j < 
 is a subspa
e of R�R as a ve
tor spa
e

over Q (not ne
essarily 
losed), p 2 R � R, y 2 R, and

U � U

y

= (fyg � R) [ (R � fyg)

with jU j < 
. Then there exists a �nite F � (U

y

n U) with p 2 span(F [ V )

and su
h that F is linearly independent over Q and independent over V ,

i.e., span(F ) meets V only in the zero ve
tor.

Proof:

Case 1. p = (u; 0).

Let y

1

and y

2

be so that

y

2

� y

1

= u; (y

1

; y) =2 U and (y

2

; y) =2 U:

Clearly p 2 span(f(y

1

; y); (y

2

; y)g). Let

F � f(y

1

; y); (y

2

; y)g � U

y

n U

be minimal su
h that p 2 span(V [ F ), then F works.

Case 2. p = (0; v)

Obviously this 
ase is symmetri
.
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Case 3. p = (u; v)

Apply 
ase 1 to (u; 0) obtaining F

1

. Let

V

0

= span(V [ F

1

)

and apply 
ase 2 to V

0

obtaining F

2

(and let F = F

1

[ F

2

) so that

(u; 0); (0; v) 2 span(V [ F

1

[ F

2

):

2

The theorem is proved from the Lemma as follows. Let fB

�

: � < 
g

list all un
ountable Borel subsets of R�R whi
h have the property that for

every y the set B

�

\ U

y

is 
ountable. And let fp

�

: � < 
g = R � R and

fy

�

: � < 
g = R. Constru
t an in
reasing sequen
e H

�

� R � R for � < 


so that

1. H

�

are linearly independent over the rationals,

2. � < � implies H

�

� H

�

,

3. H

�

=

S

�<�

H

�

at limit ordinals �,

4. (H

�+1

nH

�

) � U

y

�

is �nite,

5. p

�

2 span(H

�+1

)

6. H

�

\ B

�

� H

�+1

whenever � < �.

7. H

�

\ U

y

�

� H

�+1

whenever � < �.

At su

essor ordinals � + 1 apply the lemma with p = p

�

, V = span(H

�

),

and

U = fp 2 U

y

�

: 9� < � (p 2 B

�

or p 2 U

y

�

)g:

Then let H

�+1

= H

�

[ F .

The set H =

S

�<


H

�

is a Hamel basis and note that for every y

�

2 R

we have that H \ U

y

�

� H

�+1

and so

jH \ U

y

�

j < 


and similarly for every � we have that

jH \B

�

j < 
:
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To see that H is Mar
zewski null, suppose that P is any perfe
t subset of

the plane. If for some y 2 R we have that P \U

y

is un
ountable and 
losed,

then sin
e jH \ U

y

j < 
 and every perfe
t set 
an be split into 
ontinuum

many perfe
t subsets, there exists a perfe
t set P

0

� P \ U

y

disjoint from

H.

On the other hand if there is no su
h y then P = B

�

for some � and

so jP \ Hj < 
. Thus again by splitting P into 
ontinuum many pairwise

disjoint perfe
t subsets, there must be a perfe
t subset of P disjoint from

H.

2

Theorem 10 There exists a Hamel basis, H, for the reals whi
h is a Mar-


zewski null set.

Obviously, this implies Theorem 8, sin
e

(H � f0g) [ (f0g �H)

is a Mar
zewski null Hamel basis for the plane. But the proof is a little

messier so we 
hose to do the one for the plane �rst.

For p; q 2

!

2 de�ne

�(p; q) =

1

X

n=0

p(n)

2

2n+1

+

1

X

n=0

q(n)

2

2n+2

So we are basi
ally looking at the even and odd digits in the binary expan-

sion. The fun
tion �(p; q) maps

!

2 �

!

2 onto the unit interval [0; 1℄. For

any p 2

!

2 de�ne

U

p

= f�(p; q) : q 2

!

2g

The following is the analogue of Lemma 9.

Lemma 11 Suppose we have a subspa
e, V � R, with jV j < 
 and 1 2 V ,

p 2

!

2, U � U

p

with jU j < 
, and z 2 R. Then there exists a �nite

F � U

p

n U su
h that

z 2 span(V [ F ) and span(F ) \ V is trivial:
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Proof:

Case 1. z = �(0; q). (0 2

!

2 is the 
onstantly zero fun
tion.)

We may assume that there are in�nitely many n su
h that q(n) = 0,

be
ause otherwise z 2 Q and so we may take F to be empty. Let

A = fn : q(n) = 0g:

For any B � A de�ne the pair q

B

; q

0

B

2

!

2 as follows:

q

B

(n) =

�

q(n) if n =2 B

1 if n 2 B

q

0

B

(n) =

�

0 if n =2 B

1 if n 2 B

Sin
e q(n) = 0 for ea
h n 2 B, it follows that q(n) = q

B

(n) � q

0

B

(n) for

every n. Sin
e we never do any \borrowing" we have that

z = �(0; q) = �(p; q

B

)� �(p; q

0

B

)

Sin
e jU j < 
 there are 
ontinuum many B � A su
h that neither �(p; q

B

)

nor �(p; q

0

B

) are in U . Fix one of these B's and let

F � f�(p; q

B

); �(p; q

0

B

)g � U

p

n U

be minimal, su
h that z 2 span(V [ F ).

Case 2. z = �(q; 0)

Sin
e

1

2

z =

1

2

�(q; 0) = �(0; q)

this follows easily from 
ase 1.

To prove it for general z 2 R n Q �rst we may assume that z = �(q

1

; q

2

)

for some q

1

; q

2

2

!

2 sin
e a rational multiple of z is in [0; 1℄. Next we may

apply 
ase 1 to �(0; q

2

) and then iteratively (as in the proof of Lemma 9)

to �(q

1

; 0). Then sin
e z = �(q

1

; 0) + �(0; q

2

) the Lemma is proved.

2

Note for any distin
t p

1

; p

2

2

!

2 if neither is eventually one, then U

p

1

and U

p

2

are disjoint. The proof of Theorem 10 is now similar to that of

Theorem 8, using the family of U

p

for p 2

!

2 whi
h are not eventually one.

2
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Remark 12 Similar proofs 
an be given to produ
e Mar
zewski null Hamel

bases for R

n

, Q

!

, and R

!

. For R

n

one 
an either modify the proofs of

Theorem 8 and Lemma 9, or else observe (for example when n = 3) that if

H is a Mar
zewski null Hamel basis for R, then

(H � f0g � f0g) [ (f0g �H � f0g) [ (f0g � f0g �H)

is a Mar
zewski null Hamel basis for R

3

. If X = Q

!

or X = R

!

then X is

isomorphi
 to X �X and the proofs are similar to the proof for the plane.

Conje
ture 13 Suppose X is an un
ountable 
ompletely metrizable sepa-

rable metri
 spa
e whi
h is also a ve
tor spa
e with respe
t to a �eld F and

s
alar multipli
ation and ve
tor sum are Borel maps. Then there exists a

basis H for X over F su
h that H is Mar
zewski null.

Note that our 
onje
ture redu
es to the 
ase that the �eld F is either

Q or Z

p

for some prime p. This is be
ause if K is a sub�eld of F and

H is a Mar
zewski null basis for X over K , then some maximal linearly

independent over F subset of H is a Mar
zewski null basis for X over F.

F.B. Jones [4℄ 
onstru
ted a Hamel basis 
ontaining a perfe
t set and at-

tributed the 
onstru
tion of what might be 
alled Vitali-independent perfe
t

set to R.L. Swain.

Theorem 14 There is a Hamel basis for R whi
h is Mar
zewski measurable

and perfe
tly dense.

Proof: Let C be a linearly independent Cantor set and H

0

be a Mar
zewski

null Hamel basis. Split C into 
ountably many Cantor sets C

0

; C

1

; : : :, �x a

basis fB

n

: n < !g for the topology of the real line and for ea
h n pi
k a

non-zero rational q

n

su
h that q

n

C

n

interse
ts B

n

. Note that

C

0

=

[

fq

n

C

n

: n < !g

is still linearly independent (though not a Cantor set) and for all open sets

U there exists a perfe
t P � C

0

\ U . Let H

1

� H

0

be maximal su
h that

H = C

0

[H

1

is linearly independent. It is easy to see that H works.

2

10



Borel Additive mappings

We might hope to get Theorem 10 as a 
orollary to Theorem 8 getting

a Borel linear isomorphism between R � R and R. Sin
e a Borel bije
tion

preserves the Mar
zewski null sets, we would be able to obtain a Mar
zewski

null Hamel basis for the reals from one for the plane.

This will not work be
ause of the following result. A mapping is 
alled

additive i� f(x+y) = f(x)+f(y) for any x and y. Note that it f is additive,

then f(rx) = rf(x) for any rational r.

Theorem 15 Any additive Borel map f : R�R ! R fails to be one-to-one.

Lemma 16 Suppose g : R ! R is an additive Borel map. Then there exists

a 
omeager G � R and a real a su
h that g(x) = ax for every x 2 G.

Proof: This is due to F.Burton Jones [4℄. Sin
e g is additive it is not hard

to prove that for every rational a 2 Q and real x that g(ax) = ag(x). Also

sin
e g is Borel there exist a 
omeager G su
h that the restri
tion of g to

G is 
ontinuous. Sin
e aG is 
omeager for any nonzero a we may without

loss assume that aG � G for every nonzero rational a. Let x

0

be any �xed

nonzero element of G. For any a 2 Q we have that g(ax

0

) = ag(x

0

) and

ax

0

2 G. So by the 
ontinuity of g we have that g(yx

0

) = yg(x

0

) for any y

with yx

0

2 G. Now for any x 2 G

g(x) = g(

x

x

0

x

0

) =

x

x

0

g(x

0

) = x

g(x

0

)

x

0

and so a =

g(x

0

)

x

0

works.

2

Assume that f is an additive map. By the Lemma there exists 
omeager

G

i

and reals a

i

, i = 0; 1, su
h that for every x 2 G

0

we have f(x; 0) = a

0

x

and for every y 2 G

1

we have f(0; y) = a

1

y. Sin
e f is additive it follows

that for every x; y 2 G = G

0

\G

1

we have that

f(x; y) = a

0

x + a

1

y:

If either a

i

is zero, then of 
ourse f is not one-to-one. So assume both are

nonzero. Let x and x

0

be arbitrary distin
t elements of G and de�ne

z = �

a

0

a

1

(x� x

0

)

11



Sin
e G is 
omeager, so is G + z and so we 
an 
hoose y in both G and

G+ z. If we let y

0

be so that y = y

0

+ z, then y

0

= y � z 2 G and

f(x; y) = a

0

x+ a

1

y = a

0

x + a

1

y

0

� a

0

(x� x

0

) = a

0

x

0

+ a

1

y

0

= f(x

0

; y

0

)

and f is not one-to-one.

2

We use similar Baire 
ategory arguments to prove the following theorem:

Theorem 17 There is no Borel (or even Baire) 1-1 additive fun
tion f of

the following form for any n = 1; 2; : : :

1. f : R

n+1

! R

n

2. f : R

n

! Q

!

, or f : R

n

! Z

!

( even for any 1-1 additive f )

3. f : Q

!

! R

n

, or f : Z

!

! R

n

.

Proof:

(1) f : R

n+1

! R

n

This argument is a generalization of Theorem 15. There exists a 
omea-

ger G � R and a linear transformation L : R

n+1

! R

n

with the property

that

f(x

1

; : : : ; x

n+1

) = L(x

1

; : : : ; x

n+1

) for any x

1

; : : : ; x

n+1

2 G

Sin
e L 
annot be 1-1 there must be distin
t ve
tors u and v with L(u) =

L(v). Sin
e G is 
omeager there exists a ve
tor w su
h that u

i

+w

i

; v

i

+w

i

2

G for all 
oordinates i = 1; : : : ; n+1 (
hoose w

i

2 (G� u

i

)\ (G� v

i

)). But

then

f(u+w) = L(u+w) = L(u)+L(w) = L(v)+L(w) = L(v+w) = f(v+w)

implies that f is not 1-1.

(2) f : R

n

! Q

!

; or f : R

n

! Z

!

( even for any 1-1 additive fun
tion f ).

It is enough to prove this for the 
ase f : R

1

! Q

!

, sin
e there are su
h

maps from R

1

into R

n

and from Z

!

into Q

!

. Let f(x)(m) 2 Q refer to

the m

th


oordinate of f(x). If f is 1-1 and additive, then for ea
h non-zero

12



x 2 R there is some m su
h that f(x)(m) 6= 0. By Baire 
ategory there

must exists some q

0

2 Q with q

0

6= 0, 
oordinate m, open interval I and

H � I 
omeager in I su
h that

f(x)(m) = q

0

for every x 2 H:

But this is impossible be
ause we 
an �nd � 2 Q with � 
lose to 1 but

di�erent from 1 and some x we have x; �x 2 H but

f(x) + f(�x) = f(x + �x) = f((1 + �)x) = (1 + �)f(x)

Sin
e both x and �x are in H we have that f(x)(m) = f(�x)(m) = q

0

,


ontradi
ting 2q

0

6= (1 + �)q

0

.

(3) f : Q

!

! R

n

; or f : Z

!

! R

n

We show there is no su
h map f : Z

!

! R

n

. Sin
e there is a 1-1 additive

Borel map (in
lusion) from Z

!

into Q

!

, this suÆ
es. We start by giving the

proof for n = 1. Assume for 
ontradi
tion that G � Z

!

is a 
omeager G

Æ

-set

and f�G is 
ontinuous on G.

The topology on Z

!

is determined by the basi
 open sets

[s℄ = fx 2 Z

!

: s � xg

where s 2 Z

<!

| the set of �nite sequen
es from Z.

Claim. For any N 2 ! for any s 2 Z

<!

there exists t 2 Z

<!

with s � t and

for every x 2 G \ [t℄ we have f(x) > N .

proof: Let m = jsj the length of s (so s = hs(0); : : : ; s(m � 1)i). For

ea
h k 2 Z let x

k

2 Z

!

be the sequen
e whi
h is all zeros ex
ept on the m

th


oordinate where it is k. Sin
e f is additive and 1-1 it must be that either

lim

k!1

f(x

k

) =1 or lim

k!�1

f(x

k

) =1. Sin
e G is 
omeager there exists

u 2 [s℄ su
h that u+x

k

2 G for every k 2 Z (i.e, 
hoose u 2

T

k2Z

(�x

k

+G)).

Note that (u+x

k

) 2 [s℄ for every k and f(u+x

k

) = f(u)+ f(x

k

) and hen
e

for some k 2 Z we have that f(u+ x

k

) > N . Sin
e f is 
ontinuous on G we


an �nd the t as required.

This proves the Claim.

A

ording to the Claim for ea
h N there exists a dense open set D

N

su
h

that for every x 2 D

N

\ G we have f(x) > N . But this is a 
ontradi
tion

sin
e it implies

G \

\

N2!

D

N

= ;

13



For the 
ase that f : Z

!

! R

n

the argument is similar, we just prove a


laim that says: For any N 2 ! for any s 2 Z

<!

there exists t 2 Z

<!

with

s � t and for every x 2 G \ [t℄ we have f(x)(i) > N for some 
oordinate

i < n.

2

*
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