BULLETIN DE L'ACADÉMIE POLONAISE DES SCIENCES Série des sciences mathématiques Vol. XXVII, No. 10, 1979

SET THEORY

On Generating the Category Algebra and the Baire Order Problem

by

Arnold W. MILLER

Presented by K. KURATOWSKI on February 26, 1979

Summary. Let B denote the complete boolean algebra of Borel subsets of 2^{ω} modulo the σ -ideal of meager sets. It is shown that for every α with $1 \le \alpha < \omega_1$, B can be countably generated in exactly α steps. As a corollary to this we prove a theorem of Kunen that assuming the continuum hypothesis there are separable metric spaces of all Baire orders less than or equal to ω_1 .

B is also isomorphic to the regular open algebra of 2^{ω} . Given G included in **B** and closed under finite boolean combinations define $G_0 = G$ and for $\alpha \ge 1$ let G_{α} be the collection of ΣD for D such that for every A in D, -A is in G_{β} for some $\beta < \alpha$. It is easily checked that for all α , G_{α} is closed under finite intersections and for all $\alpha < \beta$, $G_{\alpha} \subseteq G_{\beta}$. Since **B** satisfies the countable chain condition all infinite sums (or products) are countable. Thus G_{ω} is the complete subalgebra generated by G.

THEOREM 1. For every α , $1 \le \alpha < \omega_1$, there exists a countable G included in B such that α is the least such that $G_{\alpha} = B$.

Proof. For clarity we first prove Theorem 1 for the case α is finite and afterwards we indicate the changes necessary to prove the general case. Note that $\alpha = \omega_1$ is impossible because the clopen sets modulo meager must be generated at some countable stage. Fix N with $1 \le N < \omega$.

Let ω^n denote the set of finite sequences of elements of ω of length n. Let $S = \omega^{\leq N} = \bigcup \{ \omega^n : n \leq N \}$ (including the empty sequence \emptyset). Given s in ω^m and $n < \omega$ let sn be the unique extension, of s in ω^{m+1} whose last element is n. Let X be $\{x \in 2^s : \forall s \in S - \omega^N \ \forall n < \omega \ (x(sn) = 1 \text{ implies } x(s) = 0) \}$. It easily checked that X is a perfect closed subset of 2^s , whence X is homeomorphic to 2^ω , so B is isomorphic to Borel (X) modulo meager (X).

Let **P** be the set of maps p into 2 with domain F(F = dom(p)) such that F is a finite subset S, and if s and sn are in F then p(sn) = 1 implies p(s) = 0. The topology on X is given by basic clopen neighborhoods $N(p) = \{x \in X : x \text{ extends } p\}$ for p in **P**. Let G be the class of clopen subsets of X which are finite unions of N(p)'s for p in **P** such that dom (p) is included in ω^N . Note that G is also closed under complementation. Define $G_0 = G$ and let G_{n+1} be the set of countable unions

of complements of elements of G_n . Note that for each n, G_n is closed under finite intersections and $G_n \subseteq G_{n+1}$. Let $A \triangle B$ denote $(A-B) \cup (B-A)$.

LEMMA 1. For every Borel set A there exists B in G_{N+1} such that $A \triangle B$ is meager.

Proof. For s in S and i equal to 0 or 1 let $N(s,i) = \{x \in X : x(s) = i\}$. These are the subbasic clopen sets and note that N(s,i) = X - N(s,1-i). $N(s,0) - \bigcup \{N(sn,1) : n < \omega\}$ is closed nowhere dense. This is true since given any p in P with p(s) = 0 we can find $n < \omega$ so that no extension of sn is in dom (p), hence there is a q in P extending p with q(sn) = 1, and thus $N(q) \subseteq N(p) \cap N(sn, 1)$. On the other hand, N(sn, 1) is included in N(s, 0) by the definition of X. Hence an easy induction shows that for every s in ω^{N-n} there exists A in G_n such that $A \triangle N(s, 0)$ is meager. For p in P $N(p) = \bigcap \{N(s, p(s)) : s \in \text{dom}(p)\}$. G_{N+1} contains G_N and complements of elements of G_N and is closed under finite intersection and countable union, thus since every Borel set in X is equivalent modulo meager to an open set, the lemma is proved.

Define for s in S, |s|=N-n where s is in ω^n . For p in P let $|p|=\max\{|s|:s\in \text{edom }(p)\}$. For $p,q\in P$ we say p and q are compatible just in case $N(p)\cap N(q)\neq \emptyset$.

Lemma 2. Suppose $1 \le n \le N$ and $p \in \mathbf{P}$, then there exists \hat{p} compatible with p, $|\hat{p}| \le n$, and for all q if |q| < n then $(\hat{p} \text{ and } q \text{ are compatible implies } p \text{ and } q \text{ are compatible}).$

Proof. Let $D = \{s \in \text{dom } (p) : |s| \le n\}$ and let $\hat{p} = p \upharpoonright D$. Suppose |q| < n and p and q are not compatible. Then there are $s \in \text{dom } (p)$ and $t \in \text{dom } (q)$ which demonstrate their incompatibility.

Case 1. s=t and $p(s) \neq q(t)$. Since |q| < n, |t| < n, and so $s \in \text{dom}(\hat{p})$.

Case 2. t = sm for some m and p(s) = q(t) = 1. Since |t| < n, $|s| \le n$, and again $s \in \text{dom } (\hat{p})$.

Case 3. s=tm for some m and p(s)=q(t)=1. But |s|=|t|-1 so $s \in \text{dom }(\hat{p})$. In all three cases $s \in \text{dom }(\hat{p})$ and so \hat{p} and q are incompatible.

LEMMA 3. Suppose $1 \le n \le N$, $p \in \mathbf{P}$ and $A \in G_n$. If $N(p) \cap A$ is not meager then there is $\hat{p} \in \mathbf{P}$ such that $|\hat{p}| < n$, \hat{p} and p are compatible, and $N(\hat{p}) - A$ is meager.

Proof. The proof is by induction on n.

Case 1. n=1. Since G_0 is closed under complementation and $A \in G_1$ then $A = \bigcup \{N(p_i): o < \omega\}$ where $||p_i| = 0$ for each i. Let \hat{p} be any p_i compatible with p.

Case 2. n+1. Suppose $A = \bigcup \{X - A_m : m < \omega\}$ where each $A_m \in G_n$. Then there is m such that $N(p) \cap (X - A_m)$ is not meager. Choose q extending p so that $N(q) - (X - A_m)$ is meager. By Lemma 2 there is \hat{p} compatible with q, $|\hat{p}| \le n$, and for every $r \in \mathbf{P}$ if |r| < n then (\hat{p}) and r compatible implies q and r compatible).

CLAIM. $N(\hat{p}) - (X - A_m) = N(\hat{p}) \cap A_m$ is meager.

If not then by induction there is |r| < n compatible with \hat{p} (and hence with q) such that $N(r) - A_m$ is meager. But then $N(q \cup r) \subseteq (N(q) \cap A_m) \cup (N(r) - A_m)$ is meager, contradiction.

Finally to prove Theorem 1 we show that for every A in G_N , $A \triangle N(\emptyset, 1)$ is not meager (\emptyset denotes the empty sequence). If it were meager then by the lemma there exists p in P with $|p| \le N-1$ and N(p)-A meager. Since $|p| \le N-1$, $\emptyset \notin \text{dom } (p)$, so if q is the one element extension of p defined by letting $q(\emptyset)=0$, then q is in P. But then N(q)-A is meager and $N(q)\cap N(\emptyset, 1)$ is empty, contradiction.

To prove Theorem 1 for any $\alpha < \omega_1$ proceed as follows. Construct $T_{\alpha} \subseteq \omega^{<\omega}$ for $\alpha < \omega_1$ by induction. For $\alpha = 0$ let $T_0 = \{\emptyset\}$. For $\alpha = \beta + 1$ let $T_\alpha = \{ns: n < \omega \text{ and } \}$ $s \in T_{\beta}$. For α a limit ordinal choose a strictly increasing sequence β_n for $n < \omega$ cofinal in α with $0 < \beta_0$ and let $T = \{ns: n < \omega \text{ and } s \in T_{\beta_n}\}$. Fix $\alpha < \omega_1$ and $T = T_{\alpha}$. Let $X = \{x \in 2^T : \forall s \in T - \{\emptyset\} \text{ if } sn \in T \text{ then } (x(sn) = 1 \text{ implies } x(s) = 0)\}.$ Define by induction for any $s \in T$ $|s| = \sup \{|sn|+1 : n < \omega\}$, and $|p| = \max \{|s| : s \in \text{dom }(p)\}$ for $p \in \mathbf{P}$ where \mathbf{P} is defined analogously. Let $G = G_0$ be the family of finite unions of N(p)'s with |p|=0. For any $\beta < \omega_1$ define G_{β} to be the family of countable unions of complements of elements of $\cup \{G_{\gamma}: \gamma < \beta\}$. It is easy to generalize Lemma 1 to show that for every A Borel in X there is B in G such that $A \triangle B$ is meager. Lemma 2 can be generalized to show that given any β , $1 \le \beta \le \alpha$, and p in P, $\exists \hat{p}$ compatible with p, $|\hat{p}| \leq \beta$, and for every q in **P** if $|q| < \beta$ then $(\hat{p} \text{ and } q \text{ compatible})$ implies p and q compatible). To see this let $F = \{sn: s \in \text{dom}(p), p(s) = 1, |s| = \lambda\}$ a limit ordinal $>\beta$, and $|sn|<\beta$. By the construction of T, F is finite and $\forall t \in F$ $\forall m < \omega \ tm \in T$. Thus we can find r extending p so that $\forall t \in F \exists m < \omega \ tm \in dom \ (r \in T)$ and r(tm)=1. Let $D=\{s\in \text{dom}(r):|s|\leqslant \beta\}$ and $\hat{p}=r\upharpoonright D$, then \hat{p} works as before except for Case 2.

Case 2. t = sm and p(s) = q(t) = 1. Since $|t| < \beta$ either $|s| \le \beta$ and so $s \in \text{dom } (\hat{p})$ or $|s| = \lambda$ a limit ordinal $> \beta$ in which case $t \in F$ so there exists $n < \omega$ such that r(tn) = 1 and thus $tn \in \text{dom } (\hat{p})$ and so \hat{p} and q are incompatible. The proof of Lemma 3 is the same except for $A \in G_{\beta}$ for β a limit ordinal in which case it is easy since if $A = \bigcup \{X - A_n : n < \omega\}$ where each $A_n \in G_{\beta_n}$ with $\beta_n < \beta$, then for each $n < \omega X - A_n \in G_{\beta_{n+1}}$ where $\beta_n + 1 < \beta$.

For X a separable metric space define ord (X) (the Baire order of X) to be the least ordinal $\alpha \leqslant \omega_1$ such that every Borel in X subset of X is Σ_{α}^0 . Recall that Σ_{α}^0 is the additive Borel class of rank α ; that is, Σ_1^0 is the class of open sets, and for $\alpha > 1$, Σ_{α}^0 is the class of countable union of complements of elements of $\cup \{\Sigma_{\beta}^0 : \beta < \alpha\}$. Note that since the Borel sets are closed under complementation, we could have equally as well define ord (X) in terms of Π_{α}^0 (the α^{th} multiplicative class) or Δ_{α}^0 (the α^{th} ambiguous class). Note that X is discrete iff ord (X) = 1. For \mathbb{Q} (the rationals) ord $(\mathbb{Q}) = 2$ and in general for X countable ord $(X) \leqslant 2$. It is a classical theorem of Lebesque (see [2]) that for X an uncountable Polish space (or more generally X analytic, since every uncountable analytic space contains a perfect subset) the Baire order of X is ω_1 . Mazurkiewicz (see [5]) asked for which α does there exist X such that ord $(X) = \alpha$.

Assuming the continuum hypothesis we prove the following theorem of Kunen's.

THEOREM 2. For every $\alpha \leq \omega_1$ there exists X a separable metric space with ord $(X) = \alpha$.

Proof.

LEMMA 3. For all $\alpha < \omega_1$ there exists I a σ -ideal in Borel (2^{ω}) such that α is the least ordinal such that $\forall A \in \text{Borel } (2^{\omega}) \exists B \in \Sigma_{\alpha}^{0} \ (A \triangle B) \in I$.

Proof. For $\alpha=1$ let I be the ideal of meager sets. Again we assume $\alpha=N+1$ and $1 \le N < \omega$. Let $\omega^N = \{s_n \ \tilde{n} < \omega\}$ and define $h: X \to 2^{\omega}$ by $h(x)(n) = x(s_n)$. For $A \subseteq 2^{\omega}$ let $H(A) = h^{-1}(A)$. H maps G_0 1-1, onto the clopen subsets of 2^{ω} and preserves unions and complements, and so for each α it maps the levels G_{α} 1-1, onto Σ_{α}^0 . Let I be defined by $A \in I$ iff H(A) is meager in X. Given A Borel in 2^{ω} let B be in G_{N+1} such that $H(A) \triangle B$ is meager, then $H^{-1}(B) \triangle A$ is in I and $H^{-1}(B)$ is in Σ_{N+1}^0 . Also if B_s in G_{N+1} and there exists D in Σ_N^0 such that $H^{-1}(B) \triangle D$ is in I, then $B \triangle H(D)$ is meager and I and I is in I in I in I and the general case is similar.

LEMMA 4. (Luzin [3]) Assuming the continuum hypothesis if I is a σ -ideal in the Borel subsets of 2^{ω} with $2^{\omega} \notin I$ and $\{x\} \in I$ for all $x \ 2^{\omega}$, then there exists Y contained in 2^{ω} such that for every Borel A $(A \cap Y)$ is countable iff A is in I).

Proof. Let $\{C_{\alpha} \ \alpha < \omega_1\} = I$ and $\{\beta_{\alpha} \ \alpha < \omega_1\} = Borel(2^{\omega}) - I$ (where each element is listed uncountably often). Choose x_{α} in $B_n - (\bigcup \{C_{\beta} \ \beta < \alpha\} \bigcup \{x_{\beta}, \beta < \alpha\})$, and let $Y = \{x_{\alpha} : \alpha < \omega_1\}$.

Note that the ideal given by Lemma 3 satisfies the hypothesis of Lemma 4 since $H(\{x\})$ is closed nowhere dense in X. To prove Theorem 2 let $3 \le \alpha < \omega$, and let Y be contained in 2^{ω} be the set given by Lemma 4 for I the ideal given by Lemma 3 for α . Then in its relative topology ord $(Y) = \alpha$. For every Borel set A there is B in Σ_{α}^{0} such that $A \triangle B$ is in I, so $(A \triangle B) \cap Y = F$ is countable, $(B \triangle F) \cap Y = A \cap Y$, and since $\alpha \ge 3$, $B \triangle F$ is in Σ_{α}^{0} . On the other hand, if β is less than α there is a Borel set A such that for every Σ_{β}^{0} set B, $A \triangle B$ is not in I, hence $(A \triangle B) \cap X$ is uncountable and so $A \cap X \ne B \cap X$.

REMARKS

- (1) A set Y as in Lemma 3 for I the ideal of meager sets is called a Luzin set. In [5] Poprougenko and Sierpiński showed that a Luzin set has Baire order 3. This is because every Borel set is equal to a G_{δ} (Π_2^0) set union a meager set, and no countable dense subset of a Luzin set is G_{δ} in the relative topology. A set Y as in Lemma 3 for I the ideal of measure zero sets is called a Sierpiński set. In [6] Szpilrajn showed that a Sierpiński set has Baire order 2. This is because every Borel set is equal to an F_{σ} (Σ_2^0) set union a set of measure zero.
- (2) The author had previously shown that it is consistent with ZFC that for every $\alpha \le \omega_1$ there exists Y contained in 2^{ω} with ord $(Y) = \alpha$ using a much more difficult proof than the proof of Theorem 2 given here. In [4] it is shown that it is also consistent with ZFC that for every Y an uncountable separable metric space,

- ord $(Y) = \omega_1$, and hence the only Baire orders in that model of set theory are 1,2, and ω_1 . This confirms a conjecture of Banach (see [6]).
- (3) Kunen also points out that Kolmogorov's problem ([1]) is solved. Given $\alpha < \omega_1$ let I be the σ -ideal in the Borel sets given by Lemma 3. Let $R = \{C: C \text{ is Borel in } 2^{\omega} \text{ and there exists } D \text{ clopen such that } C \triangle D \text{ is in } I\}$, then for all $\beta < \omega_1$ and $A \subseteq 2^{\omega}$ (A is in R_{β} iff there exists B in Σ_{β}^{0} with $A \triangle B$ in I), and so the hierarchy generated by R has exactly α levels.
- (4) In [4] it is also shown that for every $\alpha \leqslant \omega_1$ there exists a complete boolean algebra **B** with the countable chain condition such that there is C included in **B** countable with $C_\alpha = \mathbf{B}$ and for every D included in **B** of cardinality less than the continuum and $\beta < \alpha$ $D_\beta \neq \mathbf{B}$. This answers a question of Tarski's. It can be generalized to show, for example, that if the continuum is at least \aleph_n then there is a complete boolean algebra **B** such that for every m if $1 \leqslant m \leqslant n < \omega$ then m is the least number such that there is C included in **B** with cardinality \aleph_{n-m} and $C_m = \mathbf{B}$.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706 (USA)

REFERENCES

- [1] A. Kolmogorov, Problem 65, Fund. Math., 25 (1935), 578.
- [2] K. Kuratowski, Topology, vol. 1, Academic Press, 1966.
- [3] N. Luzin, Sur un problème de M. Baire, C. R. Acad. Paris, 158 (1914), 1258-1261.
- [4] A. Miller, On the length of Borel hierarchies, Annals Math. Logic, 16 (1979), 233-267,
- [5] G. Poprougenko, Sur un problème de M. Mazurkiewicz, Fund. Math., 15 (1930), 284-286.
 - [6] E. Szpilrajn [Marczewski], Sur un problème de M. Banach, ibid., 212-214.

А. В. Миллер, О порождении категорной алгебры и проблеме порядка Бэра

Содержание. Показаноi что полная булева алгебра борелевских множеств 2^{ω} по модулю σ -идеала множеств I-ой категории может быть счетно порождена ровно за α шаговi где α —произвольный ординал меньший ω_1 . В качестве следствия доказана теорема Кунена: предполагая континуум-гипотезйi можно построить сепарабельные метрические пространства, все бэровские порядки которых меньше или равны ω_1 .