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Summary. Let B denote the complete boolean algebra of Borel subsets of 29 modulo the o-ideal
of meager sets. It is shown that for every o with I <a<w;, B can be countably generated in exactly
a steps. As a corollary to this we prove a theorem of Kunen that assuming the continuum hypo-
thesis there are separable metric spaces of all Baire orders less than or equal to w;.

B is also isomorphic to the regular open algebra of 2¢. Given G included in B and
closed under finite boolean combinations define Go=G and for «>1 let G, be the
collection of ZD for D such that for every 4 in D, — A4 is in G, for some f<w. It is
easily checked that for all «, G, is closed under finite intersections and for all a< g,
G.< Gy. Since B satisfies the countable chain condition all infinite sums (or products)
are countable. Thus G, is the complete subalgebra generated by G.

THEOREM 1. For every «, 1<a<w,, there exists a countable G included in B
such that o is the least such that G,=B.

Proof. For clarity we first prove Theorem 1 for the case o is finite and afterwards
we indicate the changes necessary to prove the general case. Note that a=w, is
impossible because the clopen sets modulo meager must be generated at some coun-
table stage. Fix N with 1<N<w. (

Let " denote the set of finite sequences of elements of w of length n. Let S=
=0 V=) {®": n<N} (including the empty sequenée @). Given s in @™ and n<®
let sn be the unique extension, of s in w™*! whose last element is #. Let X be
{xe2%: Vse S—w" Vn<w (x (sn)=1 implies x (s)=0)}. It easily checked that X
is a perfect closed subset of 25, whence X is homeomorphic to 2%, so B is isomorphic
to Borel (X) modulo meager (X).

Let P be the set of maps p into 2 with domain F (F =dom (p)) such that
F is a finite subset S, and if s and sn are in F then p (sn)=1 implies p (s)=0.
The topology on X is given by basic clopen neighborhoods N (p)={x € X: x extends
p} for p in P. Let G be the class of clopen subsets of X which are finite unions of
N (p)'s for p in P such that dom (p) is included in w". Note that G is also closed
under complementation. Define Gy=G and let G, ; be the set of countable unions
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of complements of elements of G,. Note that fora each n, G, 1s .closed Iunder.'ﬁ.nite
intersections and G,<G,,,. Let 4 4 B denote’ (4—B)uU (B— 4).

LEMMA 1. For every Borel set A there exists Bin Gy, , such that A5 B is meager.

Proof: For s in § and i equal to 0 or 1 let N(s,i)={x e X:x (s)=i}. These
are the subbasic clopen sets and note that N(s,i)=X~N(s,1—i). N(s,0)—
|LJ {N (sn, 1):n<w} is closed nowhere dense. This is true since given any p in P
with p(s)=0 we can find n < so that no extension of sz is in dom (p), hence there
is a g in P extending p with g (sn)=1, and thus N (g)=N(p) "N (sn, 1). On the
other hand, N (sn, 1) is included in N (s,0) by the definition of X. Hence an easy
induction shows that for every s in "~ " there exists 4 in G, such that 4 4 N (s, 0)
is meager. For p in P N (p)=nN{N (s,p (s)): sedom (p)}. Gy, contains Gy
and complements of elements of Gy and is closed under finite intersection and coun-
table union, thus since every Borel set in X is equivalent modulo meager to an open
set, the lemma is proved. ‘ [ |

Define for s in S, |s|=N—n where s is in »". For p in P let |p|=max{|s|:se
e dom (p)}. For p, g€ P we say p and ¢ are compatible just in case N(p)nN(q) #0.

LeMMA 2. Suppose 1<n<N and p e P, then there exists 13 compatible with p,

|pl<n, and for all q if |q|<n then (p and q are.compatible implies p and q are
compatibile).

Proof. Let D= {sedom (p) Is|<n} and let p=p TD Suppose |g| <nr and p
and ¢ are not compatible. Then there are sedom (p) and 7edom(q) which
demonstrate their incompatibility.

Case 1. s=t and p(s)#qg (¢). Since |q|<n, |z\<n and so sedom (p).

Case 2. t=sm for some m and p (s)=q (t)=1. Since |t|<n, |s|<n, and agam
sedom (p).

Case 3. s=tm for some m and p (s)=q(¢t)=1. But [s|=]t|—1 so sedom (p).

In all three cases sedom(p) and so § and ¢ are incompatible. [ ]

LemMMaA 3. Suppose 1<n<N, peP and Ae G,. If N(p)N A is not meager then
there is p € P such that |p|<n, p and p are compatible, and N(p)— A is meager.
Proof. The proof is by induction on a. '

Case 1. n=1. Since G, 1s closed under complementatlon and AeG, then A=
= U{N(p)):0<w} where ||p;|=0 for each /. Let p be any p; compatible with p.
Case 2. n+1. Suppose A= U {X—A4,:m<w} where each 4,,€G,. Then there
is m such that N (p) N (X — A4,) is not meager. Choose ¢ extending p so that N (¢g)—
—(X—A,) is meager. By Lemma 2 there is p compatible with g, [p|<n, and
for every reP if |r|<n then (p and r compatible implies ¢ and » compatible).

Cram. N (P)—(X—A,)=N{(p)N A4, is meager.

If not then by induction there is || <n compatible with § (and hence with ¢)
such that N (r)—A4,, is meager. But then N (gur)=(N (q)mA,,,) (N (n—A,) is
meager, ‘contradiction.
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Finally to prove Theorem 1 we show that for every 4 in Gy, A AN (9, 1) is not
meager (9 denotes the emply sequence). If it were meager then by the lemma there
exists p in P with [p|<N—1 and N(p)—A meager. Since |p|<N—1,0 ¢ dom (p),
so if ¢ is the one element extension of p defined by letting ¢ (#)=0, then ¢ is in P.
But then N (g)—A is meager and N (q) "N (®, 1) is empty, contradiction.

To prove Theorem 1 for any a<w, proceed as follows. Construct T,<w~®
for e<c; by induction. For «=0 let To={0}. For a=8+1 let T,={ns:n<w and
s€ Ty} For « a limit ordinal choose a strictly increasing sequence f3, for n<w cofinal
in o with 0<f, and let T={ns:n<w and seT;}. Fix «<w, and T=T,. Let
X={xe2T:VseT—{0} if sneT then (x(sn)=1 implies x (s)=0)}. Define by
induction for any seT [s|=sup {[sn|+1: n<a>} and [p|=max {ls|:s e dom (p)}
for p e P where P is defined analogously Let G=G, be the family of finite unions
of N (p)'s with |p|=0. For any f<w, define G, to be the family of countable
unions of complements of elements of U {G,:y<f}. It is easy to generalize Lemma 1
to show that for every 4 Borel in X there is B in G such that Ao B is meager.
Lemma 2 can be generalized to show that given any 8, 1<f<«, and p in P, 3p
compatible with p, | 5| <, and for every ¢ in P if |g| <p then (§ and g compatible
implies p and ¢ compatible). To see this let F={sn:sedom (p), p(s)=1, |s|=
a limit ordinal > f, and [sn|<f}. By the construction of T, F is finite and Vi€ F
Vm<w tme T. Thus we can find r extending p so that V¢ e Fim<w tm € dom (r
and r (tm)=1. Let D={se dom (r):|s|<B} and p=r | D, then p works as before
except for Case 2.

Case 2. t=sm and p(s)=q(t)=1. Since |t|<f either |s|<B and so se dom (p)
or |s|=24 a limit ordinal > f§ in which case ¢ € F so there exists n<w such that r (tr)=1
and thus tn € dom (p) and so j and ¢ are incompatible. The proof of Lemma 3 is
the same except for 4 € G, for # a limit ordinal in which case it is easy since if
A= U{X—A,:n<w} where each 4, e G, with ,<p, then for each n<w X—4,¢€
€ Gy 4 where f,-+1<8.

For X a separable metric space define ord (X) (the Baire order-of X) to be the
least ordinal a<w, such that every Borel in X subset of X is &2. Recall that Z?
is the additive Borel class of rank «; that is, Z¢ is the class of open sets, and for

a>1, Z¢ is the class of countable union of complements of elements of U {E7: f<a}.
Note that since the Borel sets are closed under complementation, we could have
equally as well define ord (X) in terms of II? (the «'™ multiplicative class) or A?
(the «'® ambiguous class). Note that X is discrete iff ord (X)=1. For Q (the rationals)
ord (Q)=2 and in general for X countable ord (X)<2. It is a classical theorem of
Lebesque (see [2]) that for X an uncountable Polish space (or more genérally X
analytic, since every uncountable analytic space contains a perfect subset) the Baire
order of X is w,. Mazurkiewicz (see [5]) asked for which o does there exist X such
that ord (X)=a.

Assuming the continuum hypothesis we prove the following theorem of Kunen’s.
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THEOREM 2. For every a<w; thereexists X a separable metric space with ord
X)=ua.

Proof.

LemMa 3. For all a<w, there exists I a g-ideal in Borel (2°) such that « is the
least ordinal such that VA e Borel(2°)3BeZ) (44B)el

Proof. For a=1 let I be the ideal of meager sets. Again we assume a=N-+1
and 1<N<w. Let o¥={s, n<ow} and define h: X->2° by h(x) (n)=x(s,). For
AS2? let H(A)=h""'(4). H maps G, 1-1, onto the clopen subsets of 2% and
preserves unions and complements, and so for each a it maps the levels G, 1-1,
onto Z?. Let I be defined by 4 e I iff H (A) is meager in X. Given 4 Borel in 2°
let B be in Gy, , such that H (4) 4 B is meager, then H-! (B) 2 A is in Iand H~*(B)
is in 5, . Also if B, in Gy,, and there exists D in % such that H~! (B)4D is
in I, then B & H(D) is meager and H (D) is in Gy. This proves the lemma for « finite
and the general case is similar. [ |

Lemma 4. (Luzin [3]) Assuming the continuum hypothesis if I is a a-ideal in the
Borel subsets of 2° with 2° ¢ I and {x} € I for all x 2°, then there exists Y contained
in 2° such that for every Borel 4 (ANY is countable iff Aisinl).

.Proof. Let {C, a<w,}=1and {f, a<w,}=Borel (2°)—I (where each element
is listed uncountably often). Choose x, in B,—({_J{Cs <o}l J{xs.B<«}), and
let Y={x,ia<w,}.

Note that the ideal given by Lemma 3 satisfies the hypothesis of L.emma 4 since
H ({x}) is closed nowhere dense in X. To prove Theorem 2 let 3<a<w, and let ¥
be contained in 2 be the set given by Lemma 4 for I the ideal given by Lemma 3
for o. Then in its relative topology ord (Y)=w«. For every Borel set 4 there is B
in Z? such that A 2B is in I, so (4 2B)N Y=Fis countable, (B2 F)NY=ANY,
and since a>3, B4 Fisin Z. On the other hand, if g is less than o there is a Borel
set 4 such that for every ZF set B, 4 4 B is not in I, hence (A4 4 B) N X is uncountable
and so ANX#BNX. :

REMARKS

(1) A set Y as in Lemma 3 for 7 the ideal of meager sets is called a Luzin set.
In [5] Poprougenko and Sierpinski showed that a Luzin set has Baire order 3. This
is because every Borel set is equal to a G; (II3) set union a meager set, and no coun-
table dense subset of a Luzin set is G, in the relative topology. A set Y as in Lemma 3
for I the ideal of measure zero sets is called a Sierpinski set. In [6] Szpilrajn showed
that a Sierpifiski set has Baire order 2. This is because every Borel set is equal to
an F, (Z3) set union a set of measure zero.

(2) The author had previously shown that it is consistent with ZFC that for
every o<, there exists Y contained in 2® with ord (Y)=« using a much more
difficult proof than the proof of Theorem 2 given here. In [4] it is shown that it is
also comnsistent with ZFC that for every Y an uncountable separable metric space,



On Generating the Category Algebra 755

ord (Y)=w,, and hence the only Baire orders in that model of set theory are 1,2,
and @,. This confirms a conjecture of Banach (see [6]).

(3) Kunen also points out that Kolmogorov’s problem ([1]) is solved. Given
a<w, let I be the o-ideal in the Borel sets given by Lemma 3. Let R={C:C is Borel
in 2¢ and there exists D clopen such that CaD is in I}, then for all f<ew,
and A<2® (4 is in R, iff there exists B in ) with 4 4B in I), and so the hie-
rarchy generated by R has exactly « levels.

(4) In [4] it is also shown that for every a<w, there exists a complete bo-
olean algebra B with the countable chain condition such that there is C included
in B countable with C,=B and for every D included in B of cardinality less than the
continuum and <« Dg#B. This answers a question of Tarski’s. It can be genera-
ized to show, for example, that if the continuum is at least N, then there is
a complete boolean algebra B such that for every m if 1<m<n<w then m is the
least number such that there is C included in B with cardinality N,_,, and C,,=B.
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A. B. Mrnnep, O nopokaeHsH KareropHoii anre6psl  npodieme mopsaka Bapa

Conepxanne. TToxa3a"o/ urto nosmas Oynesa anredbpa GOpeNEeBCKHX MHOXECTB 2° IO MOIYIIIO
o-Exeana MHOXeCTB [-oit kareropus Moxer GBITh CISTHO HOPOXAEHA POBHO 32 o INATOBI rae o—
NPOM3BOJIbHBIN OPIMHAN MEHBIIMR ;. B xadecTBe CaeACTBAS Aoka3zana Teopema Kymema: mpen-
nonaras KOHTHHYYM-THIOTE3#/ MOXHO NOCTPOHTH cemapabelbHble METPHYECKHAE IPOCTPAHCTBA,
BCe 0IPOBCKHE HOPANKE KOTODHIX MEHBINE MM PABHBI (0q.



