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Abstract

In this paper we prove that it is consistent that every γ-set is
countable while not every strong measure zero set is countable.
We also show that it is consistent that every strong γ-set is count-
able while not every γ-set is countable. On the other hand we
show that every strong measure zero set is countable iff every set
with the Rothberger property is countable.

A set of reals X has strong measure zero iff for any sequence (εn : n < ω) of
positive reals there exists a sequence of intervals (In : n < ω) covering X with
each In of length less than εn. Laver [8] showed that it is relatively consistent
with ZFC that the Borel conjecture is true, i.e., every strong measure zero
set is countable.

Sets of reals called γ-sets were first considered by Gerlits and Nagy [5].
They showed that every γ set has strong measure zero and that Martin’s
Axiom implies every set of reals of size smaller than the continuum is a γ-
set. A γ-set of size continuum is constructed in Galvin and Miller [4] using
MA.

Next we define γ-set. An open cover U of a topological space X is an
ω-cover iff for every finite F ⊆ X there exists U ∈ U with F ⊆ U and X /∈ U .
An open cover U of X is a γ-cover iff U is infinite and each x ∈ X is in all
but finitely many U ∈ U . Finally, X is a γ-set iff X is a separable metric
space in which every ω-cover contains a γ-subcover.

Paul Szeptycki asked if it was possible to have a sort of weak Borel con-
jecture be true, i.e., every γ-set countable, while the Borel conjecture is false.
We answer his question positively. We use Hechler [6] forcing, H, for adding
a dominating real, an analysis of it due to Baumgartner and Dordal [1],
properties of Laver forcing L, and a characterization of H due to Truss [11].

1Thanks to Boise State University for support during the time this paper was written
and to Alan Dow for some helpful discussions and to Boaz Tsaban for some suggestions
to improve an earlier version.
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Theorem 1 If H is iterated ω2 times with finite support, Hω2, over a model
of CH, then in the resulting model every γ-set is countable but every set of
reals of cardinality ω1 has strong measure zero.

Proof
For f ∈ ωω, define Uf to be the following family of clopen subsets of 2ω.

Uf = {CF : ∃n F ⊆ 2f(n), |F | ≤ n} where CF = {x ∈ 2ω : x � f(n) ∈ F}}

Note that for any finite A ⊆ 2ω there exists C ∈ Uf with A ⊆ C. Also
2ω /∈ Uf provided that 2f(n) > n all n. Let L denote Laver forcing [8].

Lemma 2 Suppose M is a model of set theory, f is L-generic over M , and
X ⊆ 2ω is in M . Then

M [f ] |= ∀C ∈ [Uf ]
ω |

⋂
C ∩X| ≤ ω

Proof
For a tree p ⊆ ω<ω and s ∈ p we define

ps = {t ∈ p : t ⊆ s or s ⊆ t}

A Laver condition (or Laver tree) is a tree p ⊆ ω<ω with a special node
s ∈ p, called the stem of p, which has the properties that

1. ps = p and

2. for every t ∈ p with |t| ≥ |s| there exist infinitely many n < ω with
tn ∈ p.

The order is p ≤ q iff p ⊆ q. As usual we define p ≤0 q iff p ≤ q and
stem(p) = stem(q). Somewhat nonstandardly let us write

leaves(p) = {r ∈ p : stem(p) ⊆ r}

and for each s ∈ leaves(p) define

split(p, s) = {n ∈ ω : sn ∈ p}

Suppose that the lemma is false. Let p∗ be a Laver condition such that

p∗ “
⋂ ◦

C ∩X =
◦
Y is uncountable and

◦
C⊆ Uf is infinite”
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By cutting C down (if necessary) we may suppose that C = {CFn : n ∈ Q}
where Fn ⊆ 2f(n) with |Fn| ≤ n and Q ∈ [ω]ω.

Working in M using standard arguments of Laver forcing [8] we can prove
the following Claims.

Claim. Suppose that p is an arbitrary condition such that

p {◦si: i < k} ⊆ 2f(k)

where k = |s| and s = stem(p). Then there exists r ≤0 p and (xi ∈ 2ω : i < k)
such that for any m < ω for all but finitely many n ∈ split(r, s) for every
i < k

rsn xi � m =
◦
si� m

Proof
One of the basic properties of Laver forcing is that if p is any Laver tree
and θ any sentence in the forcing language, then there exists q ≤0 p, which
decides θ, i.e.,

q θ or q ¬θ.

Note that for sn ∈ p we have that psn f(k) = n. Hence we can find
q ≤0 p and (sn

i ∈ 2n : i < k, n ∈ split(q, s)) so that for each n ∈ split(q, s) we
have that

qsn “sn
i =

◦
si for all i < k”

It follows by compactness that there exists xi ∈ 2ω and an infinite set
E ⊆ split(q, s) so that for every m < ω we have that for all but finitely many
n ∈ E that

sn
i � m = xi � m for all i < k.

Now let r =
⋃
{qsn : n ∈ E} so that r ≤0 q. This proves the Claim.

QED
Note that if y ∈ 2ω \ {xi : i < k}, then

rsn y /∈ C{si:i<k}

for all but finitely many n ∈ split(r, s). By the usual fusion arguments we
obtain:

Claim There exists q ≤0 p∗ and (Ks ∈ [2ω]≤|s| : s ∈ leaves(q)) such that
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1. for each s ∈ leaves(q) either qs |s| ∈
◦
Q or qs |s| /∈

◦
Q, and

2. for each s ∈ leaves(q) if qs |s| ∈
◦
Q then for any x ∈ 2ω \Ks for all but

finitely many n if sn ∈ q, then

qsn x /∈
◦
CF|s|

Proof
We repeat the first Claim at each node starting at the stem and continuing
with longer and longer nodes; and finally taking the fusion.
QED

Now since p∗ forces that Y is uncountable we must be able to find

x /∈ ∪{Ks : s ∈ leaves(q)}

and r ≤ q such that r x ∈ Y . But this is a contradiction, since there must
be some s ∈ leaves(r) such that

rs “|s| ∈
◦
Q ”

and then for all but finitely many n ∈ split(r, s) we have that

rsn x /∈
◦
CF|s|

But even one such n gives a contradiction. This proves the Lemma.
QED

Now we note that this property is preserved when we add a Cohen real.

Lemma 3 Suppose N is a model of set theory, x ∈ ωω is a Cohen real over
N , X ⊆ 2ω in N , and U ∈ N is a family of sets such that

N |= “∀C ∈ [U ]ω |
⋂
C ∩X| ≤ ω”

Then
N [x] |= “∀C ∈ [U ]ω |

⋂
C ∩X| ≤ ω
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Proof
Suppose not and let

◦
C be name for some C ∈ [U ]ω and p a Cohen condition

so that
p X ∩

⋂ ◦
C is uncountable and

◦
C∈ [U ]ω.

Working in N since the Cohen partial order is countable, there would exist
q ≤ p so that

Y = {x ∈ X : q x ∈
⋂ ◦

C}

is uncountable. Let C ′ = {U ∈ U : Y ⊆ U}. Note that C ⊆ C ′ so C ′ is infinite,
C ′ ∈ N and

⋂
C ′ ∩X contains Y which is uncountable. This contradicts the

assumption that

N |= “|
⋂
C ′ ∩X| ≤ ω”

QED
It follows from the two Lemmas that if f is Laver over M , x is Cohen

over N = M [f ], and X ⊆ 2ω is an uncountable set in M , then in M [f, x]
every infinite C ⊆ Uf has the property that

⋂
C ∩X countable.

The following Lemma applies to the Laver real f since it is dominating.

Lemma 4 (Truss [11]) Suppose f is a dominating real over M , i.e., g ≤∗ f
for every g ∈ M ∩ωω and x ∈ ωω is a Cohen real over M [f ], then h = f + x
is H-generic over M .

Lemma 5 Let f be L-generic over M , x ∈ ωω a Cohen real over M [f ], and
h = f + x. Then for every uncountable X ⊆ 2ω in M

M [h] |= “∀C ∈ [Uh]
ω

⋂
C ∩X is countable ”.

Proof
Since M [h] ⊆ M [f, x] the lemma follows from the stronger claim that

M [f, x] |= “∀C ∈ [Uh]
ω

⋂
C ∩X is countable ”.

If this were false, then working in M [f, x] we could obtain Q ⊆ ω infinite
and (CHn : n ∈ Q) with Hn ⊆ 2h(n) and |Hn| ≤ n such that

⋂
n∈Q CHn ∩X

uncountable. Define Fn = {s � f(n) : s ∈ Hn}. Now since h(n) ≥ f(n) we
have that CHn ⊆ CFn . The set {CFn : n ∈ Q} must be infinite because f is
increasing and |Fn| ≤ n (if nothing else their measures, µ(CFn) ≤ n

2f (n)
, go

to zero).
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QED
Note that the lemma applies to every Hechler generic real and not just

the sum of a Laver and a following Cohen. This is because if it is false it must
be forced false by a particular Hechler condition. Then just take a Laver real
in that condition and follow it with a Cohen to get a contradiction. In more
detail let

H = {(n, f) : f ∈ ωω, n ∈ ω}

and define the Hechler neighborhoods

[n, f ] = {g ∈ ωω : g � n = f � n and ∀i g(i) ≥ f(i)}

Then (m, g) ≤ (n, f) iff m ≥ n and g ∈ [n, f ]. Also for G H-generic over M
the Hechler real is

h =
⋃
{f � n : (n, f) ∈ G}

and it has the property that

G = {(n, f) ∈ H : h ∈ [n, f ]}

The lemma must be true in every Hechler extension, If not, there would
exist some condition (n, g) forcing it is false. It is easy to find a Laver real
f ∈ [n, g] and letting x ∈ ωω be a Cohen real over M [f ] with x � n constantly
zero, we would get a Hechler real h = f + x with h ∈ [n, g] which gives a
contradiction.

Question 6 (Ramiro de la Vega) Given a countable transitive model of set
theory M , is it true that for every Hechler real h over M there exists a Laver
real f over M and a Cohen real x over M [f ] such that h = f + x?

Define (aα ∈ [ω]ω : α < ω1) is eventually narrow iff for every b ∈ [ω]ω

there exists α < ω1 so that b \ aβ is infinite for all β > α.

Lemma 7 (Baumgartner and Dordal [1]) Suppose N is a model of set theory
and

N |= (aα ∈ [ω]ω : α < ω1) is eventually narrow.

Then for any Gω2 which is Hω2-generic over N , we have that

N [Gω2 ] |= (aα ∈ [ω]ω : α < ω1) is eventually narrow.
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Now we prove that every γ-set in M [Gω2 ] countable. Since γ-sets are zero
dimensional we need only worry about uncountable Y ⊆ 2ω. Let X ⊆ Y be
a subset of size ω1. Construct g : ω → ω so that for every n < ω if m = g(n),
then

|{x � m : x ∈ X}| > n

By the usual ccc finite support iteration arguments we can find α < ω2 so
that X, g ∈ M [Gα] and letting h = hα be the next Hechler real added we
have that h(n) > g(n) for all n. From Lemma 5 and the remark following it
we see that in N = M [Gα+1] the set

⋂
C ∩X is countable for every infinite

C ⊆ Uh. Now since h(n) > g(n) there is no U ∈ Uh which covers X, however
Uh is an ω-cover of 2ω and hence of Y .

Now let X = {xα : α < ω1} and Uh = {Un : n < ω}. In the model
N = M [Gα+1] define aα = {n < ω : xα ∈ Un}. Note that

N |= (aα ∈ [ω]ω : α < ω1) is eventually narrow.

Otherwise if b ⊆∗ aα for uncountably many α, then for some infinite c ⊆ b

Z = {xα : c ⊆ aα}

is uncountable. But then Z ⊆
⋂
{Un : n ∈ c} which contradicts Lemma 5.

Since the tail of a finite iteration of H is itself a finite support iteration
of H, the Baumgartner-Dordal Lemma applies and so,

N [G[α+2,ω2)] = M [Gω2 ]

models that (aα : α < ω1) is eventually narrow. But this implies that Y is
not a γ-set since if (Un ∈ U : n ∈ b) is a γ-cover of X ⊆ Y , then for some
infinite c ⊆ b, we would have that X ∩

⋂
{Un : n ∈ c} is uncountable, which

implies that for uncountably many α that c ⊆ aα. Contradicting the fact the
aα are eventually narrow.

On the other hand, it is well known that forcing with H adds Cohen reals
and adding Cohen reals makes sets of reals of small cardinality into strong
measure zero sets. To see this suppose that (εn > 0 : n < ω) ∈ M a model of
set theory. In M let (Inm : m < ω) list all intervals with rational end points
and of length less than εn. If x : ω → ω is a Cohen real over M , then it is an
easy density argument to prove that

M ∩ R ⊆
⋃
n<ω

Inx(n)
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The usual arguments show that in the iteration every set of reals of car-
dinality ω1 has strong measure zero. This proves Theorem 1.
QED

Remark. It is also true in the Hechler real model that every set of reals
of size ω1 is both in S1(Γ, Γ) and S1(Ω, Ω). For definitions, see Just, Miller,
Scheepers, and Szeptycki [7]. This follows from the fact that b > ω1 and
cov(M) > ω1, see Figure 4 [7].

Define. X is C ′′ iff for every sequence (Un : n < ω) of open covers of X
there exist (Un ∈ Un : n < ω) an open cover of X. Equivalent terminology
for C ′′ is the Rothberger property or S1(O,O).

Define. C ′′-BC to be the statement that every set of reals with the prop-
erty C ′′ is countable and let SMZ-BC denote the standard Borel conjecture,
every strong measure zero set is countable.

Proposition 8 SMZ-BC is equivalent to C ′′-BC.

Proof
It is only necessary to prove right to left.

If b = ω1, then there exists an uncountable set of reals Z concentrated on a
countable subset of itself, i.e., there exist countable Q ⊆ Z with the property
that Z \ U is countable for every open set U containing Q (Besicovitch [2],
Rothberger [10]). Any such set has property C ′′. To see these two results,
let

X = {fα ∈ ωω : α < ω1}

be well ordered by ≤∗ and unbounded. Let h : ωω → [0, 1] be a homeo-
morphism with range the irrationals in [0, 1]. We claim that Y = h(X) is
concentrated on Q where Q is the set of rationals in [0, 1]. Note that for
any open U ⊆ [0, 1] containing Q the set [0, 1] \ U is compact and therefore
C = h−1([0, 1]\U) is a compact subset of ωω. Since compact sets correspond
to finitely branching trees, there exists f ∈ ωω such that g ≤ f for every
g ∈ C. Since X is unbounded we have that C ∩X is countable, hence Y \U
is countable. Hence Z = Y ∪ Q is concentrated on Q. To see that con-
centrated sets have property C ′′, suppose Z is concentrated on a countable
subset of itself Q. Let (Un : n < ω) be a sequence of open covers of Z. Let
(U2n ∈ U2n : n < ω) cover Q and then choose (U2n+1 ∈ U2n+1 : n < ω) to
cover the countably many elements of Z \

⋃
n<ω U2n.
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So assume b > ω1.
Suppose there is an uncountable strong measure zero set. Then by stan-

dard arguments there exists an X ⊆ 2ω with |X| = ω1 such that for every
f ∈ ωω there exists (sn ∈ 2f(n) : n < ω) such that for every x ∈ X there are
infinitely many n with sn ⊆ x.

Claim. X has property C ′′.
Proof
Let (Un : n < ω) be open covers of X. Without loss we may assume each
element of each Un is of the form [s] for some s ∈ 2<ω. Since |X| < b we
can find finite An ⊆ 2<ω so that s ∈ An implies [s] ∈ Un and for each x ∈ X
for all but finitely many n there exists s ∈ An with s ⊆ x. Let f : ω → ω
be such that f(n) > max{|s| : s ∈ An}. Using strong measure zero of X
choose sn ∈ 2f(n) so that every element of X is in infinitely many [sn]. Define
tn ∈ An as follows. If there exists t ∈ An with t ⊆ sn then let tn be such. If
there isn’t, choose tn arbitrarily. We claim that {[tn] : n < ω} covers X. For
any x ∈ X for all but finitely many n we have that there exists t ∈ An with
t ⊆ x. But for infinitely many n we have that sn ⊆ x. Since |sn| > |tn| it
must be the case that tn ⊆ x for infinitely many tn.

This proves the Claim and the Proposition.
QED

Define X is a strong γ-set iff there exists an increasing sequence of integers
(kn : n < ω) so that for every sequence (Un : n < ω) where Un is a kn-cover
of X (i.e., covers every kn element subset of X) there exists a γ-cover of
the form (Un ∈ Un : n < ω). These were first defined in Galvin and Miller
[4]. Tsaban [12] has shown that an equivalent definition results if we always
require kn = n.

Theorem 9 In the Cohen real model, i.e., ω2 Cohen reals added to a model
of CH, every strong γ-set is countable but there is an uncountable γ-set.

Proof
First we construct an uncountable γ-set. This proof is a modification of

the construction from Just, Miller, Scheepers, and Szeptycki [7] section 5.
Without loss of generality we may rearrange the generic set of ω2 Cohen

reals to have order type ω2 + ω1 and assume that

N = M [xα ⊆ ω : α < ω1]

9



where M is determined by the first ω2 Cohen reals. Note that M fails to
satisfy CH. Construct yα ∈ [ω]ω descending mod finite so that (yβ : β < α) ∈
M [xβ : β < α] as follows:

At stage α + 1 let
yα+1 = xα+1 ∩ yα

This is infinite because xα+1 is Cohen generic over yα At limit stages choose
yα ∈ M [xβ : β < α] so that yα ⊆∗ yβ all β < α.

The choice of yα can be made in some canonical way so that the sequence

of names (
◦
yα: α < ω1) is in M . For y ∈ [ω]ω let [y]∗ω = {x ∈ [ω]ω : x ⊆∗ y}.

Claim. Suppose (Un : n < ω) ∈ M [xβ : β ≤ α] is a family of ω-covers of

[ω]<ω ∪ {yβ : β ≤ α}

Then there exists a sequence (Un ∈ Un : n < ω) in M [xβ : β ≤ α + 1]
which is a γ-cover of

[ω]<ω ∪ {yβ : β ≤ α} ∪ [yα+1]
∗ω

Proof
Let

⋃
n Fn = [ω]<ω ∪ {yβ : β ≤ α} be an increasing union of finite sets

and define Vn = {U ∈ Un : Fn ⊆ U} and note that they are ω-covers. Next
inductively define Wn by W0 = V0 and

Wn+1 = {U ∩ V : U ∈ Vn, V ∈ Wn}

and note that they are ω-covers which refine each other. Working in the
ground model M [xβ : β ≤ α] construct an increasing sequence kn and Un ∈
Wn so that

{x ⊆ ω : x ∩ [kn, kn+1) = ∅} ⊆ Un

this can be done since Wn is an ω-cover of [ω]<ω. Now since xα+1 is Cohen
real the following set will be infinite:

A = {n < ω : xα+1 ∩ [kn, kn+1) = ∅}

The same or larger set will work for yα+1 and so (Un : n ∈ A) will be a
γ-cover of [yα+1]

∗ω. The refining conditions on Wn means we can fill it in on
the complement of A and the choice of Vn means it is a γ-cover of the rest.
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QED
The Claim shows that [ω]<ω ∪ {yα : α < ω1} is a γ-set.

Next we show that there are no uncountable strong γ-sets. Suppose
for contradiction that X ⊆ 2ω is an uncountable strong γ-set witnessed by
(kn : n < ω) in the model N . By the usual ccc arguments we may suppose
that X, (kn : n < ω) ∈ M where M ⊆ N is some model of CH. Let u ∈ N∩ωω

be Cohen generic over M and v ∈ N ∩ ωω Cohen generic over M [u] so that
if we let

Un = {[s] : s ∈ 2u(n)}
then (using that N thinks X is strong γ) there exists

(Vn ∈ [Un]≤kn : n < ω) ∈ M [u, v]

so that ∀x ∈ X∀∞n x ∈ ∪Vn. Let P denote Cohen forcing and since it is
countable there must be some (p, q) ∈ P× P and N < ω such that

(p, q) (
◦
Vn∈ [

◦
Un]≤kn : n < ω)

and
Y = {x ∈ X : (p, q) ∀n > N x ∈ ∪

◦
Vn}

is uncountable. Fix n > N, |p|. Now since Y is uncountable there exist some
level l < ω with

|{x � l : x ∈ Y }| > kn

Let r ⊇ p be an extension with r(n) = l. But this is a contradiction since

• (r, q) “Vn ⊆ 2l and |Vn| ≤ kn”, and

• (r, q) “x ∈ Vn” for every x ∈ Y and so (r, q) “{x � l : x ∈ Y } ⊆ Vn”

QED
Remark. T. Bartoszyński has shown that in the iterated superperfect

real model every strong γ-set is countable. Superperfect forcing is also called
rational perfect set forcing, see Miller [9]. The principle ♦(b) (see Džamonja,
Hrušák, and Moore [3]) implies that there is an uncountable γ-set. Since
♦(b) holds in the iterated superperfect real model, we get another model for
the consistency of strong γ-BC but not γ-BC.

Remark. Tsaban and Weiss [13] have shown that the following are equiv-
alent:
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1. Every set of reals of strong measure zero is countable (Borel conjecture).

2. Every set of reals with the property S1(Ω, Ω) is countable.

References

[1] Baumgartner, James E.; Dordal, Peter; Adjoining dominating functions.
J. Symbolic Logic 50 (1985), no. 1, 94–101.

[2] Besicovitch, A.S.; Concentrated and rarified sets of points, Acta. Math.
62(1934), 289-300.
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Appendix

This is not intended for publication but only for the electronic version.

Theorem 10 (T. Bartoszynski) In the iterated superperfect forcing model,
every strong γ-set is countable.

Proof
This model is obtained by the countable support iteration of length ω2 of
superperfect forcing over a model of CH.

First we consider one-step. Let f be superperfect generic over M a model
of set theory. Define (Un : n < ω) by

Un = {[s] : s ∈ 2f(n)}.

Claim. Let g ∈ ωω ∩M and (Vn ∈ [Un]<g(n) : n < ω) ∈ M [f ]. Then

M [f ] |= |{x ∈ M ∩ 2ω : ∀∞n x ∈ ∪Vn)| ≤ ω.

Proof
For p a superperfect tree, define s ∈ splitnode(p) iff ∃∞n sn ∈ p. Superper-
fect trees are those trees in which the split nodes are dense. Suppose

p (
◦
Vn∈ [Un]<g(n) : n < ω)

By the usual fusion arguments we can obtain a superperfect tree q ≤ p
and (Ks ⊆ 2ω : s ∈ splitnode(q)) so that

1. |Ks| < g(|s|) for each s ∈ splitnode(q)

2. for each s ∈ splitnode(q) and x ∈ 2ω \ Ks for all but finitely many
n ∈ split(q, s)

qsn x /∈
◦
V |s|

It follows that

q “M ∩ (∪m<ω ∩n>m ∪
◦
Vn) ⊆ ∪{Ks : s ∈ splitnode(q)}”

QED
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Now suppose for contradiction that X is an uncountable strong γ-set in
the model M [fα : α < ω2]. By the ω2 chain condition and a Lowenheim-
Skolem argument there must be an α0 < ω2

with X, (kn : n < ω) ∈ M [fα : α < α0] such that

M [fα : α < α0] |= X is a strong γ-set with witness (kn : n < ω)

Denote M [fα : α < α0] as M0. Now using fα0 (the next superperfect real)
Let Un = {[s] : s ∈ 2fα0 (n)}. By the one step argument for any g ∈ M0 ∩ωω

M0[fα0 ] |= ∀(Vn ∈ [Un]g(n)|{x ∈ X ∩ 2ω : ∀∞n x ∈ ∪Vn)| ≤ ω.

Denote M0[fα0 ] as M1. Our final model M2 = M [fα : α < ω2] satisfies
the Laver property over the intermediate models. . This means for any
f ∈ M2 ∩ ωω such that there exists h ∈ M1 ∩ ωω which bounds f , i.e.,
f(n) < h(n) all n, there exists (Hn : n < ω) ∈ M1 with |Hn| ≤ 2n and
f(n) ∈ Hn for all n. The reason this is true is that the Laver property holds
in the one-step superperfect model by essentially the same argument as for
Laver forcing. It also holds in the iteration by either the same argument Laver
employed or by the general fact that it is preserved by countable support
iteration of proper forcings (see Bartoszynski and Judah; Set theory. On
the structure of the real line. A K Peters, Ltd., Wellesley, MA, 1995.).

But now we get a contradiction. Let U∗
n to be the family of kn unions of

elements of Un. Since M2 thinks that X is a strong γ-set there is a γ-cover
of X of the form (Vn ∈ U∗

n : n < ω). But by the Laver property this means
there exists (Vn ∈ [Un]kn2n

: n < ω) ∈ M1 with Vn ⊆ ∪Vn. But this is a
contradiction for g(n) = kn2n and M1 = M0[fα0 ].
QED

Next we show that there is an uncountable γ-set in the superperfect
model. We construct it using the principle ♦(b). This is stronger than
b = ω1 and is defined in Dzamonja, Hrusak, and Moore [3]. They prove that
it holds in any model of b = ω1 which is obtained by the ω2-iteration with
countable support of proper Borel orders which are reasonably homogeneous.
Hence, ♦(b) is true in the iterated superperfect set forcing model.

I do not know if b = ω1 is enough to construct an uncountable γ-set.

Define ♦(b): For every F : 2<ω1 → ωω such that each F � 2α is Borel for
α < ω1 there exists g : ω1 → ωω so that for every f ∈ 2ω1 such ∃∞n F (f �
δ)(n) < g(δ)(n) for stationarily many δ < ω1.
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Theorem 11 ♦(b) implies there is an uncountable γ-set.

Proof
Let Hδ : ([ω]ω)δ → [ω]ω) be Borel so that for any (xα : α < δ) if and

α < β implies xβ ⊆∗ xα, then for y = H(xα : α < δ) we have that y ⊆∗ xα

for every α < δ. By using the first ω-coordinates to code a countable family
of open sets we may assume that the domain of F is sets of the form (Un :
n < ω), (xα ⊆ ω : α < δ) where the Un are families of open subsets of 2ω and
we are to define

F ((Un : n < ω), (xα : α < δ)) = h ∈ ωω

Suppose

1. xα ∈ [ω]ω for each α < δ,

2. xα ⊆∗ xβ for each β < α < δ, and

3. Un is an ω-cover of [ω]<ω ∪ {xα : α < δ} for each n.

(If any of these fail to be true, just define h to be the constant zero function.)
Let {δi : i < ω} = δ be some previously chosen enumeration of δ and

define for each n

Vn = {U ∈ Un : {xδi
: i < n} ⊆ U}

It is easy to check that each Vn is an ω-cover of [ω]<ω ∪ {xα : α < δ}. Also
choosing an element of each will automatically γ-cover {xα : α < δ}. Next
define inductively Wn as follows:

1. W0 = V0,

2. Wn+1 = {U ∩ V : U ∈ Wn, V ∈ Vn}

It is easy to check that the intersections of elements of two ω-covers is an
ω-cover, so by induction each Wn is an ω-cover of [ω]<ω∪{xα : α < δ}. Since
Wn+1 is a refinement of Wn, if for some A ∈ [ω]ω we have (Un ∈ Wn : n ∈ A)
is a γ-cover, then we can choose Un for n /∈ A by looking forward to the next
element of A so that (Un ∈ Wn : n ∈ ω) is a γ-cover.
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Apply H to get H(xα : α < δ) = {kn : n < ω} (Note that this does not
depend on the covers Un.) Construct an infinite B ⊆ ω so that for every
successive pair of elements of B, say n < m, there exists Un ∈ Wn so that

{x ⊆ ω : x ∩ [kn, km) = ∅} ⊆ Un

This only uses that Wn is an ω-cover of [ω]<ω: choose U to cover [kn]<ω and
then using that U is open make sure that km is sufficiently large. Now we
make sure that h ∈ ωω is such that h eventually dominates the enumeration
function of B \ N for each N < ω. We leave to the reader the details of
showing that h can be obtained using a Borel function on (Un : n < ω), (xα :
α < δ). But note the following: Suppose g ∈ ωω has the property that
∃∞n g(n) > h(n), then there must be infinitely many i so that there exists
n < m elements of B so that g(i) ≤ n < m ≤ g(i + 1). Otherwise the
enumeration function of some B \N would dominate g which is impossible.

Applying ♦(b) to our function F we get a g : ω → ωω. Construct our
γ-set X = [ω]<ω ∪ {xα : α < ω1} as follows:

Given {xα : α < δ} and descending sequence in ⊆∗ apply H to get H(xα :
α < δ) = {kn : n < ω}. Let g = g(δ) ∈ ωω and put xδ = {kg(n) : n < ω}.
Now we verify that X is a γ-set. Suppose that (Un : n < ω) are open ω-covers
of X. By the definition of ♦(b) there are stationarily many δ < ω1 such that

F ((Un : n < ω), (xα : α < δ)) = h ∈ ωω

and if g = g(δ), then ∃∞n g(n) > h(n). Note that xδ = {kg(i) : n < ω}. So
as we have remarked there are infinitely many i (say i ∈ C) so that there
exists elements of ni < mi of B with g(i) < ni < mi < g(i + 1). The way the
elements of B were construct means that there exists Uni

∈ Wni
such that

{x ⊆ ω : x ∩ [kni
, kmi+1

) = ∅} ⊆ Uni

But this means that (Uni
: i ∈ C) is a γ-cover of {x : x ⊆∗ xδ}. But the

construction of (Wn : n ∈ ω) guarantees that we can define them on all n so
that (Un ∈ Wn : n < ω) is an γ-cover of

[ω]<ω ∪ {xα : α < δ} ∪ {x : x ⊆∗ xδ}

which includes X.
QED

Corollary 12 In the iterated superperfect model we have
(strong γ)- BC and not( γ-BC)
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