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A family of 9 of open subsets of the real line is called an w-cover of a set X iff every finite 

subset of X is contained in an element of 9. A set of reals X is a y-set iff for every w-cover 9 
of X there exists (D,: n < o)E~~ such that 

X E U n D,,. 
n ?“>” 

In this paper we show that assuming IMartin’s axiom there is a y-set X of cardinality the continuum. 

AMS Subj. Class. (1980): Primary 03E50, 54A35, 04A30; Secondary 54D55, 54~10 

y-set Martin’s axiom 

w-cover Frkhet space 

In the papers of Gerlits-Nagy [4] and McCoy [6] a study is made of properties 

of a space X which imply or are equivalent to other properties of the space C(X) 

(i.e. space of continuous real-valued functions on X with the topology of pointwise 

convergence). A family 2 of open subsets of X is an w-cover of X iff every finite 

subset of X is contained in an element of 9. A space X has the y-property iff for 

every w-cover 9 of X there exists a sequence (D,,: n < u)E~~ such that 

XSU n D,. 
m “>nl 

In McCoy [6] and Gerlits-Nagy [4] it is shown that C(X) is Frkhet iff X has the 

y-property. (Actually a gap in the proof of McCoy [6], Theorem 1 was found by 

Galvin and a correct proof was found by Gerlits.) 

A space X is a Frkchet space if whenever x E x E X, there exists a sequence in 

A which converges to x. 

The main result of this paper is: 

Theorem 1. Assuming Martin’s axiom, there exists a y-set of reals X of cardinality 
the continuum. 
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Some set theoretic hypothesis is necessary since Gerlits-Nagy [4] show that y-sets 
have Rothberger’s property C” (and hence have strong measure zero). A set of 
reals X has property C” iff for every sequence (8”: n < w) of open covers of X 
there exists D, E jn such that 

Xr U 0,. 
“<W 

They also note that the y-property implies “always of first category”. It is not hard 
to see that the continuous image of a y-set is a y-set. Therefore we have the 
following corollary. 

Corollary. Assuming MA, there is a set of reals X of cardinality the continuum such 

that every continuous image of X has property C” and is always of the first category. 

This answers a question of Sierpiriski [7]. 
It is not hard to see that “every subspace of the real line of cardinality less than 

c has property y” is equivalent to the statement: “if A c P(w), IAl < c, and [f&l = w 
for every finite AOs A, then there is a set X E [w]” such that X- Y is finite for all 
YE A”. What we show is in fact that if every subspace of the real line of cardinality 
< c has property y, then some subspace of the real line of cardinality c has property 
y. This was pointed out to us by Alan D. Taylor. 
Theorem 1 was also proved (independently) by Ryszard Frankiewicz. 

To prove Theorem 1 we will need the following Lemma. 

Lemma 1.1. (MA) Suppose X is a set of reals of cardinality less than the continuum. 
Then X is a y-set. 

Proof. This is due to Gerlits-Nagy [4]. IJ 

We work in Cantor space 2” which is the countably infinite product of the two 
point discrete space. In fact, identify 2” with P(w) (the set of all subsets of 
w={O,1,2,...)) via characteristic functions. Let [WI<” be the set of finite subsets 
of w. For Y E w define Y* = {X c w I Y\X is finite} and let [ Ylw be the set of infinite 
subsets of Y. 

Lemma 1.2. Suppose X E [o]- and ,$ is an open w-cover of [WI<“. Then there exists 
(0, : n < o) E 2 and Y E [XJW such that 

Y*EU f-l 0,. 
n m>n 

Proof. Construct an increasing sequence (k,. * n <w> from X and a sequence 
(D,:n<~)fromdtsuchthatforeachnandA~wifAn(k,,k,+,)=OthenA~D, 
((k,, kn+,) ={I E W: k, c I< k,,,}). To see that this can be done suppose that we 
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already have (D,, Dz, . . . , II,_,) and (k,, k2,. . . , k,). Let O={q,: i< 2’*+‘} be all 
elements of [w]<” contained in k, + 1. Since &t is an w-cover of [WI<“’ there exists 
0, E 2 which covers 0. Now since D, is open there issome kntl E X such that for 
all 4 E 0 

{Arw:Ank,+,=qnk,+,}~D “. 

This does the construction. We claim that Y = { k,: n < w} has the required proper- 
ties. To see this suppose Z- YE k,. But then for all m > n: Zn (k,, k,+l) =0 and 
hence ZE D,. Cl 

Now we prove Theorem 1. 

Proof of Theorem 1. Let $a for (Y < c be all of the countable families of open sets. 
Note that any open w-cover can be refined to a countable open w-cover consisting 
of clopen sets. Construct X, E [w]” for (Y < c so that if a < p, then X,\X,, is finite. 
At stage (Y use MA to get X, E [w]” with X,\X, finite for all /? < LZ. If f. is an 
w-cover of 

[WI<” u{X,: p G a}, 

then use Lemma 1.1 to obtain (D,: n < W)E 8;: such that 

{x~:P++[~]+~u n 0,. 
n mz-n 

Since {Dn: n < w} is a w-cover of [WI<” by Lemma 1.2 there exists k, for n <w 

and Xatl E[X,]~ such that 

x:+, Cu n Dk_ 
n m>n 

and hence 

{x,:~~a}ux:+~Cu n Dk,. 0 
n m>n 

Let X = {X,: (Y < c}. The y-set [WI<” u X is c-concentrated on [w]<~, i.e. for 
any open U 2 [wlcU, X\U has cardinality less than c. This implies that X is not a 
y-set. 

Theorem 2. If X is any y-set and G is a G, set containing X, then there exists an 
F, set F with XE FE G. 

Proof. Let G =n,<, 0, where 0, is open and O,,+i E 0,. For each FE [XICo let 
GF be open with 

Fc GFs &S OIF,. 
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Since X is a y-set there would exist F,, such that 

xcu n G,GU n GFm. 
” m>n ” In>” 

To make sure that Unnm,n Gr, is contained in G it is enough to insure that 

{IF,/: n CO} is infinite. To get this let (x “: n < w) be a sequence of distinct elements 
of X and instead choose for each n and F E[X\{X,}]” an open set GF with 

and x, E GP Since x, must be in all but finitely many G,” at most finitely many F, 

have cardinality n. c] 

It is true that the y-property is hereditary for F, subsets of a y-set. 

Theorem 3. Suppose X is a y-set and Y an F--set. Then Xn Y is a y-set. 

Proof. Let Y = lJn,, Y, with Y, closed and Y, s Y,,,,. Suppose 9 is an open 
w-cover of Xn Y. Consider 

~;*={Du(-Y,,): DE$aandnCw). 

Then $* is an open w-cover of X hence there exists Dk, such that 

XcU f-l (Dk.u(-Yk.)). 
m n>m 

To insure that {k, : n < w} is infinite the same trick as in Theorem 2 can be employed, 

i.e. (Du(-Y,,))\{x,}. 0 

In answer to a question of ours S. Todorfevic showed that it is consistent to have 
a y-set of cardinality c all of whose subsets are a y-set. With his permission we 
include this result here. 

Theorem 4. (S. Todorfevid). Assuming O,, there exists a y-set of X of cardinality 
w, = c all of whose subsets are also a y-set. 

Proof. For p a perfect subtree of 2<“’ let [p] denote the infinite branches of p. Let 
D(p) denote any canonical element of [p] (i.e. for example the branch which is 
left most). The set X will be equal to {D(p): p E T} where T is some Aronszajn 
tree of perfect sets. For n < w define pi .q iff p E q and p n 2” = q n 2”. Inductively 
build the tree T so that for all (Y c p, n < w, and p E T, there exists q E T, such that 
qS .p. First let us note how this hypothesis allows us to construct a Aronzajn tree 
of perfect subsets. Suppose A is a limit > wi and T, for cy < A has been constructed. 
Choose a, for n < w increasing and cofinal in r\. Suppose p0 E Tpo and construct a 



F Galtin, A. W. ,Wller / Singular sers of real numbers 119 

sequence P,,+~ E T,“_, and an increasing sequence k, < w so that 

Pn+l G k,Pn 

and L+, has the property that for all SE p,,+, n2k- there are two incompatible 

extensions to, t, of s in pn+, n 2kn-I. Then by the standard fusion argument n,,, p,, 

is itself of perfect subtree of 2’“. This would be one of the nodes at level A. By 

doing it for all p E T,, and n < w we can preserve the inductive hypothesis. In order 

to make the set and all its subsets into a y-set we will need to strengthen the 

inductive assumption. While the next Lemma will not be used to prove the Theorem, 

its proof will suggest what we do next. 

Lemma 4.1. Suppose p is a perfect tree, and 9 is an open w-cotter of [p]. Then there 

exists a perfect tree q E p and D, E 3 such that 

[qls f-l 0,. “<W 

Proof. Build a sequence of perfect trees pn (with p = p,,), D, E 9, and increasing k, 
such that: 

(1) Pn+1 Sk”& and every s E pn n Zkn has two incompatible extensions in p,,+, n 
2k-~; and 

(2) [P~+IIc Dn+l. 
Suppose we have k, and pn. Let X s [pJ be finite and such that pn n 2kn = 

{x 1 k,: x E X}. Since 9 is an w-cover there exists Dncl E f with Xc D,,+l. Now 
choose kntl > k, large enough so that (1) is satisfied and also 

{YET”: 3xeX xl k,+,=yr k,,+,)E D,,+,. 

Now let 

P n+, = {t E pn: 3x E X t and x 1 k,,+, are comparable}. 

Then letting q =n,<, p,, we see that by (1) q is a perfect tree and by (2) it has 

the property that 

[qlG f--l 0,. •I 
II-C&J 

Define for R E q n 2” and p and q perfect trees, ps Rq iff p n 2” = R and p c_ q. 
In order to do the above argument as we inductively construct our Aronzajn tree 

of perfect subsets we will demand that for any a < /3, q E T,, m < w, and R E q n 2”, 

there exists PE T, such that p< Rq. Now suppose we build our tree T and defined 

X = {D( p): p E T}. And also YE X and we are trying to show Y is a y-set. So 

suppose 9 is an open countable w-cover of Y and for each PE T let 

C, = closure of Y n [p]. 
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What OUI allows us to assume is that there are sequences 9m, CC,” : PE Q,), and B” 

for a < wI such that for any YE X and 9 there are stationarily many a < wi such 

that 

Q,=T<,; 

c; = C, for all p E T,, ; and 

B”= Yn{D(p):p~ T,,}. 

This is possible because B” is a countable set, 9 is a countable set of open sets and 

so it can be coded by a subset of w, and CF is a closed set for each PE T,,. 

Let us assume that (Y is a limit ordinal for which our O,, sequence has caught Y 

and f and for notational convenience drop the sub and superscript a. It is thus 

necessary to build T, and 0, E$ so that 

BEU n 0,; 
m n>m 

and for each PE T, 

Yn[plcU f-l D”; 
m n>m 

as well as preserving our inductive hypothesis on T. First note that since 9 is an 

w-cover of Y for any FE [B]‘” there exists DE 9 such that F s D. Also for any 

/30CP1<cY,q0c Tp,,andRzqn2”,thereexistsq,E T,,andDE$suchthatq,SRqo 

and C,, E D. To see how to do this let 

R’={sER: C(qJn[s]fO}. 

Since C(qe) =cl([qO] n Y) it must be true that for some D E 9 for all s E R’, C(qo) n 
[s] n D # 0. Now find m > n and T s 2” n q. such that for all s E R there exists a 

unique t E T such that s c t and if s E R’, then [t] c D. Then if q1 s-q0 (whose 
existence is guaranteed by our inductive hypothesis), we have that C,, c D. 

Note by the same argument we can show that given FE [I?]‘” and finitely many 

q6 E T,;, Ri s q; n 2”1, and p’, for i < N we can find DE f and qi E T,; such that 

Fu U C(qf)sD. 
i<N 

Thus by dovetailing all we want to do into w many steps, we construct T, with the 

required properties. Cl 

For X E [0, l] let 

x+1 =(x+1: XEX}. 

Theorem 5. Suppose A E Xc_ [0, l] and (X\A) u (A + 1) is a y-set. Then A is Gs 
and F, in X. 
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Proof. For each F E [( X\A) u (A + l)]‘” let C,, DF c [0, l] be open sets with 

disjoint closures such that 

FE C,u(D,+l). 

By the y-property there exists F, for II <w such that 

(X\A)u(A+l)cU n (C&%+1)). 
” lnsn 

Since CF. and 6, are disjoint 

are disjoint, and they show that X\A and A are F, in X. 0 

Thus as a corollary to TodorEevic’s result we have that it is consistent that there 
are y-sets X and Y such that neither XX Y nor Xu Y is a y-set. (Note that 
X u ( Y + 1) is homeomorphic to the closed subset of X X Y, (X X {yO}) u ({x0} X Y).) 
To see this, let X be a y-set of cardinality c all of whose subsets are y-sets. Let 
A c X be neither G, nor F, in X. Then by Theorem 5, (X\A) u (A + 1) is not a 
y-set while both X\A and A + 1 are y-sets. 

Our method of construction is very similar to that employed by Friedman- 
Talagrand [2] and Erdos-Kunen-Mauldin [l]. In these two papers it is shown that 
assuming Martin’s axiom there is a set of reals X of cardinality the continuum with 
the property that for every Y of measure zero the set X+ Y has measure zero and 
for every Y of first category the set X-t Y has first category. 

Next we show that if X is a y-set, then for every Y of first category the set 
X+ Y has first category. 

Theorem 6. Suppose X is a y-set. Then for every Y first category, X + Y has first 
category. 

Proof. Let I and J always denote intervals and C a finite union of intervals. R is 
the real line. 

Lemma 6.1. Suppose P is a compact nowhere dense set, FE [RI<” and Ii for i < n 
arbitrary. Then there exists C 2 F and Ji E Ii for i c n with 

&7@++)=0. 

Proof. Let Ci for i < w be decreasing with F c Ci and ni<, Ci = F. Since F + P is 
closed nowhere dense there exists Ji E 1i for i c n with x n (F + P) ~0. Since 

( > fpm +P= n (cm+p) 
mew 
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by compactness there exists m for every i c n 

Jn(C,+P)=0. cl 

Clearly it is enough to prove Theorem 6 for Y = P a compact nowhere dense set. 
Let {I,,: n c w} list all intervals with rational end points. Let 1. be a family of open 
sets such that for all C E $e, there exists Z,,, E I,,, for m < n such that 

and 8,, covers the n element subsets of X Let {x,: n < w} be distinct elements of 
X and let 

B = v {C\{xnl: c E 9”). 

9 is an open w-cover of X and thus there exists C, 

XCU n cm 
n In=-” 

and we may assume C,,, E & where the k, are distinct. But by construction, for 
all n < w 

n C,+P 
IPlS” 

is nowhere dense. El 

We are unable to prove Theorem 6 with measure zero in place of first category. 
But we are able to if the y-property is replaced by the strong y-property. We say 
that X is a strong y-set iff there exists an increasing sequence (k,: n < w) such that 
for any sequence (9”: n < w) where 9” is an open cover of [X]“m there exists 
(C,,: n<o) with C,,E$‘, and 

XGU n cm. 
n m>n 

Theorem 7. Zf X is a strong y-set, then for any measure zero Y, X + Y has measure 

zero. 

Proof. Let C, D stand for sets which are finite unions of intervals and let Z, .Z stand 
for intervals. p is Lebesgue measure and we assume XC [0, 11. 

Lemma 7.1. For every n < w and F E [0, l]“, D, and e > 0 there exists C 1 Fsuch that 

p(C+D)cnp(D)+e. 

Proof. Suppose D=U LcN & where the &. are disjoint intervals, so p(D) = 
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Ekd Pu(Jk). Since p(z+J)=~(z)+p(J), 

++xl;l, Jk) s ,& (&I) +p(Jk)) s h(z) +I*(D). 

Let I,, Z,, . . . , Z,, cover F and 

c NJ(Zi) cc. 
lsirn 

Then 

Lemma 7.2. Zf p( Y) = 0, then for any sequence E, > 0 for n < w there exists D, such 

that ~(D,,)<E,, and Y cn, U,,,, 0,. 

Proof. Well known. 0 

We now show that p(X f Y) = 0. For any sequence E, > 0 let D, be as from 
Lemma 7.2. For each n let $.n be a cover of [Xlkn such that for all C, ~2, 

By the strong y-property there exists C, l dt,, such that 

XCU n c,. 
n m>n 

Then 

X+YGU n C,+n u D,,,cU(Cn+D,,). 
n In>” n m>n n 

Since 1, (k, + 1)~” can be made arbitrarily small X + Y has measure zero. q 

The definition of strong y-set was completely motivated by Theorem 7. We now 
indicate how to modify the proof of Theorem 1 to get large strong y-sets. 

Theorem 8. (MA). There exists a set of reals X of cardinality c which is a strong y-set. 

Proof. Let kntl 3 2 - k, + n - 2”. 

Lemma 8.1. (MA). Suppose F is a set of reals of cardinal&y < c, XE [u]“, and 
(9”: n < o) is a sequence such that 3,, is an open cover [F u [~]<~]‘n. Then there 
exists YE [Xlw and 0, E 3, such that 

Fu Y*cU n 0,. 
n In==-n 
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Proof. Let F,, for n < w list [WI<” with infinite repetitions and F,, E 

W,l,L..., n - 1). We can assume each 9,, is countable. Consider the partial order 
P consisting of the set of all triples (s, 0, G) satisfying: 

(1) s=(s,,sz ,...) s;j is an increasing sequence from X; 

(2) D = (D,, Dz, . . . , II,,> where Di E 9i; 
(3) Ge[F]“n; and 
(4) if i<jsn and A\{s,,s,,...,s,}=F;,, then AED, 

We define (s’, D’, C’) s (s, D, G) iff 
(1) s’ extends s; 
(2) D’ extends D; 
(3) G’ 2 G; and 

(4) G z f7n<irn, 0:. 
First we note that every condition {s, 0, G) can be extended in the (s, 0) part. 

Suppose f=(s*, sz,. . . , S”) and D=(D,,D* ,... ,D,,). Let Q= 

{q E [WI’“: q\{s,, sz, * * * , sn} = Fi for some i 2 n}, then lOl= n - 2”. Then k,,+, 2 IG u 
01, so choose D,,+l E $“+, which covers G u 0. Since Dntl is open and covers 0, 
there exists s,.+~ > s, so that for any q E Q, 

{x~w:xn{O,1,2 I..., s,+i}=qn{0,1,2 ,..., s,,+~}}cD,+~. 

Thus(4)issatisfiedforthiss,+,.1fs’=(s,,s2,. . . ,s,+,)andD’=(D,,&,. . . ,Dn+l), 

then (s’, D’, G) s (s, 0, G). This shows that for each n < w 

{(s, D, G): length of s and D is at least n} 

is dense in P. Similarly for 

{(s, 0, G): x E G} 

is dense in P, since 

any XE F 

(s, 0, G u {xl) s (s, 0, G) 

as long as IG u {x)1 s k,,. To see that P has the countable chain condition consider 
any family of w1 conditions. Suppose each (s, D) part has length n and G E [Flk-. 
Extend each (s, D) part to have length n + 1, without increasing G. Since there are 
only countably many possible (s, D) parts, there must be two conditions (s, 0, G) 
and (s, 0, G’). Since k,+l 2 2k, we have that (s, 0, G u G’) is a condition extending 
them both. By Martin’s axiom we can find a generic filter meeting our dense sets. 
Let Y = {s,: 1 s n < w} and (Dn: 1 s n < w) be given by it. Clearly by the definition 
of extension 

FrU f-j 0,. 
” m>n 

Suppose AE Y* (i.e. Y\A is finite). Then there exists infinitely many i so that 
AnY=Fi.Butthenforalljandn,i<j~n,An{s,,s,,...,s,}=FiandsoAEDi. 
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Hence 

y*cu n 0,. 
” rn=-n 

This proves the Lemma. The standard transfinite induction completes the proof of 

the Theorem. 
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