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1986] UNSOLVED PROBLEMS 279 

It is worth noting that (b) generalizes: if -1 = Hi in K and t is chosen so that 2' < n < 2t +, 

then -1 = X in K. In particular the level of a field, if finite, is a power of two. This 

generalization fails for rings in general, however. For example -1 is a sum of three squares, but 
not a sum of two, in the ring of integers modulo 12. 

The implication " " in (c) is trivial, and "=* " is nearly so: -1 = (a + b - m )2 entails 

a2 _ mb2 = - and ab = 0; but b * 0 since - I H in Q; hence a =0 , and then mb2 = 1 

forces m = 1 since m is squarefree. 

This completes the proof of Lemma 8, and we now use it to show that Theorem 5 follows from 
Theorem 1 (Gauss' Theorem), or from its special case Corollary 2. From Lemma 8 we know that 
s(Q(-i-m)) = 1 for m = land S(Q( -m )) = 2 or 4 for all m > 1. With Lemma 7, Corollary 2 
gives s(Q (| - )) = 4 mi 7 (mod 8), and this secures Theorem 5. 

The proof of the equivalence of Theorem 1 and Theorem 5 is now complete, and one may ask 
for the moral of the story. The interpretation in [R] is that Theorem 5, which first appears (as far 
as I know) as Theorem 7 in [FGS], gives a new proof of Gauss' Theorem. Alternatively, one can 
start with Gauss and view the equivalence as providing a very simple demonstration of Theorem 
5. From a slightly loftier (?) point of view, one might use the equivalence to put Theorem 5 in 
perspective: Gauss' Theorem, however one approaches it, is a substantial result, and the same may 
therefore be said of Theorem 5 which computes the levels of quadratic number fields. 
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UNSOLVED PROBLEMS 

EDITED BY RICHARD GuY 

In this department the MONTHLY presents easily stated unsolved problems dealitng with, otionis ordinar-ily 
encountered in undergraduate mathematics. Each problem should be accompanied by relevant references (if any 
acre known to the author) and by a brief description of known partial results. Mauiuscripts should be sent to 
Richar-d Guy, Department of Mathematics and Statistics, The University of CUalgary, Calgary, Alberta, Canada 
T2N lN4. 

ANY ANSWERS ANENT THESE ANALYTICAL ENIGMAS? 

RICHARD K. GUJY 

Several unsolved problems have been submitted recently, which are brief to state. Neither the 
referees nor your editor were able to find relevant references. Here are four examples from 
analysis. 

Alan A. Grometstein, Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, 
MA 02173-0073, asks about the function 
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280 RICHARD K. GUY [April 

f(x y) =yxY{yx - (y - 1)X} - xyxt{XY - (x - 1)Y}, 

He notes that it is antisymmetric: f(x, y) = -f(y, x) and f(x, x) = 0. 

If x, y are integers, x > y > 1, is f(x, y) > 0? 

He says that there is a good deal of numerical evidence. The restriction to integers may be 
inessential. 

Louis Funar, Department of Mathematics, University of Craiova, Craiova, A.l. Cuza nr. 13, 
1100 Romania, asks if, given an arbitrary function f: R --R 

Do there exist functions g: RF -- lR and h: RlF - R, 

the first one bijective and the second one injective, such that f = g + h? 

Boguslav Tomaszewski, Department of Mathematics, Oklahoma State University, OK 74078, 
considers n real numbers a,,..., a1 such that E/'=ja7 = 1. Of the 2" expressions 

IE,al + +e,-anJ with ei = ?1,1 < i < n, 

Can there be more with value > 1 than with value < 1? 

Carl Ponder, Computer Science Division, University of California, Berkeley, CA 94720, defines 

Ph (x) by the differential equation 

dxgh ( X) 
= 

t'9h-l (X) } dx 

with boundary conditions (pO(x) = Ph (0) = 1, and asks 

What is the asymptotic behavior of Ph(l) as h -- oo? 

It is not hard to see that Ph (X) is a polynomial in x of degree 2h - 1. For example 

T1(X) = 1 + X, 

T2(X) = 1+ X + X2 + -X3, 3 

X) = 2+ X + X2 + X3 +14 
1 

16 7 
3 3 9 63 

If (Ph (x) = Y$-L ah, ix, then, for h > 0, ahO = ah1 =. = ah h = 1, and ah,h+ = ah?1,h?3 
= 1 - 2h/(h + 1)! However, the formulas 

2h-3 2h 5 *2h 

ah,h?3 -+ (h >2) 
ah = 1 (h - 1)! 3(h!) (h + 3)! 

2h-4 2h-I 2h-2 5 2h-I 5 2h+1 
ah,h?4l - ______ - + + 3 

3((h - 2)!) 3((h - 1)!) h! (h + 2)! (h + 4)! ( ) 

2h-7 2h-3 13 - 2h-3 2' 
a h ,h ? 5 = _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

3(( h-3)!) 3(( h-2)!) 9(( h-1)!) 5( h!) 

5 - 2h-3 5 * 2 h 5 * 2 h 119 * 2h 

(h + 1)! 3((h + 2)!) (h + 3)! (h + 5)! ( ) 
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1986] NOTES 281 

are increasingly disappointing, though we can say that 

a =1/(2 -1)2' (22 _ 1)2 2h(23 1)2 
h - 

(2h-2 _ 1)2 (2h-1 - 1)2 - 1) 

It is also not hard to show that 0 < ah i < 1, so we immediately have the bounds 

h + 1 < 99h( 1) < 2 

Calculation of the first few values: 

h= 01 2 3 4 5 6 7 8 
1 8 

99h(1) - 1 2 3- 56 7.533 10.747 15.019 20.674 28.131 
3 63 

suggests that, for h >, 2, P9h (1) > (3/2)h , but your editor was unable to obtain a convincing proof. 

NOTES 

EDITED BY SABRA S. ANDERSON, SHELDON AXLER, AND J. ARTHUR SEEBACH, JR. 

For inistructionis about submitting Notes for publication in this department see the inside front couer. 

A SIMPLE PROOF OF THE DIRICHLET-JORDAN CONVERGENCE TEST 

GEORGES A. LION 

Dipartement de Mathnimatiques, U. E. R. des Sciences de Limoges, 87060 Limoges Cedex, France 

Let f be a compiex-valued integrable function on the interval [0,2 7], and recall that the 
Fourier coefficients of f are defined by 

ak = (1/2T) 2T (t) e ktdt, 

and that the partial sums of the Fourier series of f are defined by 
N 

SNf (x) E ak e 
k= -N 

The Dirichlet-Jordan convergence test states that if f has bounded variation, then for each x the 
limit of S1f(x), as n tends to infinity, exists and is equal to (f(x+) + f(x-))/2. Here f(x+) and 
f(x-) denote the right and left hand limits of f at x, and as usual we will extend f to be a 
2 n-periodic function defined on the whole real line. 

The original proof of the Dirichlet-Jordan convergence test, as given by Dirichlet for a 
monotonic function [1], and extended by Jordan to functions of bounded variation ([2], pp. 
264-289), is based upon the second mean value theorem (presented, for example, in [3], p. 245). 
This method is used again by Zygmund ([4], pp. 57-58), who also gives another proof using tools 
from Cesaro summability theory. 

The proof presented here is more straightforward and involves slightly less work than the usual 
proofs. However, the usual proofs have the advantage of giving the extra information that if f is 
continuous in addition to having bounded variation, then the partial sums S, f converge uniformly 
to f, rather than just pointwise. 

We begin our proof by recalling that the usual elementary classical computations produce the 
familiar integral formula for S,f(x): 

sn + 2u) ?f(x - 2u)} sin(2n + 1)u du. J7 fkxsinu 
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