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EVERYWHERE OF SECOND CATEGORY SETS

Abstrat

The main result of this paper states the following. For eah natural

number i, let G

i

be a proper additive subgroup of the reals, A

i

a set

that ontains no arithmeti progression of length three, H

i

a basis for

the vetor spae R over the �eld of rationals, and E

+

(H

i

) the set of all

�nite linear ombinations from the elements of H

i

with nonnegative

rational oeÆients. Then the omplement of a �nite union of sets

G

i

[A

i

[E

+

(H

i

) is everywhere of seond ategory. We also prove that

the omplement of a union of fewer than ontinuum many translates

of sets that have distint distanes is everywhere of seond ategory.

1 Introdution

P. Erd�os and S. Kakutani [3℄ showed that the ontinuum hypothesis is equiv-

alent to the statement that the set R of real numbers an be partitioned into

ountably many piees suh that eah piee has distint distanes. (That is,

if x; y; z; w are real numbers with j x� y j=j z � w j; then fx; yg = fz; wg.)

Under the assumption of the ontinuum hypothesis, K. Kunen [6℄ generalized

that, for eah positive integer n, R

n

an be partitioned into ountably many

piees suh that eah piee has distint distanes. It is interesting to note

that, by using the fat that the set R an be partitioned into ountably many

sets suh that eah set ontains no arithmeti progression of length three [1,

Thm 1.1℄, K. Ciesielski [2, Thm 3℄ showed that there exists a uniformly

anti-Shwartz funtion from the reals R to the natural numbers N .
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It is natural to look at the thikness of the omplement of a �nite union

of the above mentioned sets. Suppose H is a basis for the vetor spae R over

the �eld of rationals, P is a subset of R that has distint distanes, A is a

subset of R that has no arithmeti progression of length three, G is a proper

additive subgroup of R, and E

+

(H) is the set of all �nite linear ombinations

from the elements of H with nonnegative rational oeÆients. Note that any

H set is a P set and any P set is an A set.

In this paper we prove that the omplement of a �nite union of sets

of the form A [ G [ E

+

(H) is everywhere of seond ategory. This is a

generalization of a lassial result of Sierpi�nski \the omplement of a Hamel

basis is everywhere of seond ategory" and a result in [9℄ \the omplement

of a �nite union of Hamel bases is everywhere of seond ategory." We

also prove that the omplement of a union of fewer than ontinuum many

translates of sets of the form P + G is everywhere of seond ategory and

this is a generalization of Theorem 7 in [7℄ that the omplement of a union

of fewer than ontinuum many translates of Hamel bases is everywhere of

seond ategory.

It is interesting to note that there is an additive subgroup, namely, the

group generated by the set H; whih is everywhere of seond ategory. The

proof of this follows from the proof of Theorem 1 in [4℄ with minor suitable

modi�ation. Under the assumption of the ontinuum hypothesis, E

+

(H)

is a Lusin set for some set H (see [4℄). Under the assumption of Martin's

axiom, E

+

(H) is a meager set for some set H (see [8℄).

2 Notation

R denotes the set of all real numbers, N is the set of all natural numbers

and Q is the set of all rational numbers. Let A and B be subsets of R. The

symbols A � B and AB stand for the sets fx � y : x 2 A and y 2 Bg and

fxy : x 2 A and y 2 Bg, respetively. For r 2 R; A + r = fx + r : x 2 Ag.

The notation AnB stands for the set-theoreti di�erene of sets A and B.

All sets onsidered in this paper are subsets of reals.
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3 Results

Theorem 1 For eah i 2 N, let G

i

be a proper additive subgroup of the reals,

A

i

a set that ontains no arithmeti progression of length three, H

i

a basis

for the vetor spae R over the �eld of rationals, and E

+

(H

i

) the set of all

�nite linear ombinations from the elements of H

i

with nonnegative rational

oeÆients. Then the omplement of a �nite union of sets G

i

[A

i

[E

+

(H

i

)

is everywhere of seond ategory.

First, we prove the following lemmas.

Lemma 1 Let I be a nonempty open interval and let F be a meager subset

of R. Then the set N(InF ) ontains a translated opy of every ountable

bounded subset of R.

Proof. Let B be a ountable bounded subset of R. Then for some nonempty

open interval J , J + B � mI for suÆiently large m 2 N. Sine NF � B

is meager, J is not ontained in the set NF � B. Let j be an element of

Jn(NF � B). Then j +B � (NI)n(NF ) � N(InF ). 2

Lemma 2 Let � be an in�nite ardinal number smaller than the ardinality

of the ontinuum and let B be a subset of R of size �. If a subset C of R

ontains a translated opy of every bounded subset of R of size �, then so

does the set Cn(E

+

(H) +B): (Note that E

+

(H) is de�ned in Theorem 1.)

Proof. Assume that the onlusion of the lemma is false. Then, for some

bounded subset D of R of size �, the set (D+ r)\ (E

+

(H)+B) is nonempty

for every r in ft 2 R : D+ t � Cg. For simpliity denote ft 2 R : D+ t � Cg

by Tr(D;C).

(1) Hene Tr(D;C) � E

+

(H) + B �D.

Eah nonzero real number an be written uniquely as a �nite linear om-

bination of elements ofH with nonzero rational oeÆients. For eah nonzero

t 2 B � D, let supp(t) = fh 2 H : q

h

6= 0g, where t =

P

h2H

q

h

h. Let X be

a bounded subset of �(Hn

S

t2B�D

supp(t)) of size �. Sine j D + X j= �,

by the de�nition of C, we have D +X + r � C for some r in R and hene

X + r � Tr(D;C). (In fat Tr(D;C) ontains a translated opy of every

bounded subset of R of size �.) Aording to (1),
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(2) X + r �E

+

(H) +B �D for some r in R.

Sine supp(r) is �nite and X is an in�nite subset of �H, there exists an

element h

1

in H suh that �h

1

2 X and h

1

=2 supp(r): It follows from the

de�nition of X that h

1

=2 supp(t) for all t 2 (B �D). By (2),

�h

1

+ r 2 E

+

(H) +B �D;

whih is impossible, beause every element of E

+

(H) is a �nite linear om-

bination from the elements of H with nonnegative rational oeÆients and

h

1

=2 supp(r) [

S

t2(B�D)

supp(t). 2

Lemma 3 If a subset C of R ontains a translated opy of every �nite subset

of R, so does CnG, where G is any proper additive subgroup of R.

Proof. Let X be a �nite subset of R and let

Tr(X;C) = fr 2 R : X + r � Cg:

It is easy to see that Tr(X;C)� Tr(X;C) = R. If (X + r)\G is nonempty

for every element r 2 Tr(X;C), then

R = Tr(X;C)� Tr(X;C) � (G�X)� (G�X) = G�X +X;

whih ontradits the fat that the index of any proper additive subgroup of

R is in�nite. (To see this fat, assume that R = G+M , where G is a proper

subgroup of R andM is a �nite subset of R. Then for eah m 2M; 9n

m

2 N

suh that n

m

m 2 G. Let n be the least ommon multiple of the integers n

m

.

Then R = nR = nG+ nM � G+ nM = G; whih is a ontradition.) Thus

X + t � CnG for some t in Tr(X;C). 2

Lemma 4 Let I be a nonempty open interval and let F be a meager subset

of R. Given a positive integer n, let M be a �nite subset of N so that if M

is partitioned into n lasses, then at least one lass ontains an arithmeti

progression of length three. (Existene of suh a set M follows from Van

der Waerden's Theorem, see [5, p.28℄.) Then there exists a nonzero rational

number d and a nonempty open interval J suh that dM + j � InF for all j

in J exept for a meager subset of J .
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Proof. Let a and b be two distint elements of I. Then there exist a

nonzero rational number d and a real number r suh that dM + r � (

a

2

;

b

2

).

Let F

1

= (

a

2

;

b

2

) \ (F � dM � r). Then F

1

is meager and, 8x 2 (

a

2

;

b

2

)nF

1

;

we have dM + r + x � InF . Consequently, if we let J = (

a

2

;

b

2

) + r, then

dM + j � InF for all j in J exept for a meager subset of J . 2

Lemma 5 For some j in J , we have (dM + j) � (InF ) and

(dM + j) \

n

[

i=1

(G

i

[ E

+

(H

i

)) = ;

where d;M; F; I; J are de�ned in Lemma 4 and G

i

; E

+

(H

i

) are de�ned in

Theorem 1.

Proof. Assume that the onlusion of the lemma is false. Then, aording

to Lemma 4, (dM + j) \

n

S

i=1

(G

i

[ E

+

(H

i

)) is nonempty for all j in J exept

for a meager subset of J . This implies that, for some meager set F

2

;

JnF

2

�

n

[

i=1

(G

i

[ E

+

(H

i

))� dM:

Consequently, beause N(G

i

[ E

+

(H

i

)) � (G

i

[ E

+

(H

i

)); we have

N(JnF

2

) �

n

[

i=1

(G

i

[ E

+

(H

i

))� NdM:

Aording to Lemma 1, N(JnF

2

) ontains a translated opy of every ount-

able bounded subset of R. By applying Lemma(2) n times, we obtain that

the set

N(JnF

2

)n

n

[

i=1

(E

+

(H

i

)� NdM)

ontains a translated opy of every ountable bounded subset of R. Note

that for any proper additive subgroup G of R; the set G�NdM is ontained

in a proper additive subgroup of R: For, sine M is a subset of N , the set

G � NdM is ontained in the subgroup G + Zd: If G + Zd = R, sine d is

rational, G+Z = R; whih is impossible. (For, if R = G+Z, then

1

2

= g+x

for some g 2 G and x 2 Z. Consequently, 0 6= 2x� 1 2 G. This implies that
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the index of G is �nite, whih is a ontradition.) Now by applying Lemma

3 to N(JnF

2

)n

n

S

i=1

(E

+

(H

i

)� NdM); we obtain that the set

(N(JnF

2

)n

n

[

i=1

(E

+

(H

i

)� NdM))n

n

[

i=1

(G

i

� NdM)

ontains a translated opy of every �nite subset of R, but

(N(JnF

2

)n

n

[

i=1

(E

+

(H

i

)� NdM))n

n

[

i=1

(G

i

� NdM) =

N(JnF

2

)n

n

[

i=1

((G

i

[ E

+

(H

i

))� NdM)

is an empty set. This ontradition ompletes the proof of the lemma. 2

To onlude the proof of the theorem, suppose, to the ontrary, that

Rn

n

S

i=1

(G

i

[A

i

[E

+

(H

i

)) is meager in a nonempty open interval I: Then, for

some meager set F , the set InF is ontained in the set

n

S

i=1

(G

i

[A

i

[E

+

(H

i

)).

Consequently, (InF )n

n

S

i=1

(G

i

[ E

+

(H

i

)) �

n

S

i=1

A

i

: Now aording to Lemma

5, dM + j �

n

S

i=1

A

i

for some real numbers d; j and d 6= 0. Hene

M �

1

d

(

n

[

i=1

A

i

� j):

By the de�nition ofM (see Lemma 4), for some i, the set

1

d

(A

i

�j) ontains an

arithmeti progression of length three, whih is impossible by the de�nition

of A

i

. 2

Theorem 2 Let G be a subset of R with ardinal smaller than the ardinality

of the ontinuum and let P

1

; :::; P

n

be subsets of R that have distint distanes.

(That is, if fx; y; z; wg � P

n

and j x� y j=j z � w j, then fx; yg = fz; wg:)

Then (P

1

+G) [ : : : [ (P

n

+G) annot be residual in an interval.

First, we prove the following lemma.
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Lemma 6 Let � be an in�nite ardinal number smaller than the ardinality

of the ontinuum and let G be a subset of the reals suh that j G j<j R j. If

P is a set that has distint distanes and C is a set that ontains a translated

opy of every set of size �, so does Cn(P +G).

Proof. Assume that the onlusion of the lemma is false. Then, for some

subset X of R of size �, the set (X + r) \ (P + G) is nonempty for every

r 2 ft 2 R : X + t � Cg. Denote the set ft 2 R : X + t � Cg by Tr(X;C)

and the set G � X by Y . Then Tr(X;C) � P + G � X � P + Y . Let

a 2 RnQ(Y � Y ) and let B = ft 2 R : fa;�ag + t � Tr(X;C)g. Then

fa;�ag+B � Tr(X;C) � P + Y:

Claim. j B j=j R j

To justify the laim, assume that j B j<j R j. Let S be the group

generated by the set B. Then j S j<j R j : Let d 2 RnS. Sine j X +

fa;�ag+ f0; dg j= �, by the de�nition of C, for some r 2 R, we have

X + fa;�ag+ f0; dg+ r � C:

This implies that fa;�ag + f0; dg + r � Tr(X;C). Now, by the de�nition

of B; 0 + r and d + r belong to the set B and hene r and d + r are in the

additive subgroup S: Consequently, d 2 S, whih ontradits the hoie that

d 2 RnS: Thus j B j=j R j : To onlude the proof of the lemma, reall that

(3) fa;�ag+B � P + Y; j Y j<j R j and j B j=j R j.

For y in Y , let B(y) = fb 2 B : a+b 2 P+yg. Sine

S

y2Y

B(y) = B, by (3),

there exists y

1

2 Y suh that j B(y

1

) j>j Y j. Note that a+B(y

1

) � P + y

1

:

Now, �a+B(y

1

) � P +Y and j B(y

1

) j>j Y j imply that there exists y

2

2 Y

and an in�nite subset E of B(y

1

) suh that �a + E � P + y

2

. We have

a + E � P + y

1

and �a + E � P + y

2

. For eah e 2 E; a + e � y

1

and

�a + e� y

2

are distint points in P and

j (a+ e� y

1

)� (�a+ e� y

2

) j=j 2a� y

1

+ y

2

j

is a onstant, whih ontradits the property of P: 2

To onlude the proof of the theorem, assume that the onlusion of the

theorem is false. Then for some nonempty open interval I and a meager set

F; we have InF �

n

S

i=1

(P

i

+G

i

). Now,
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(4) Rn(F + Q ) = (I + Q)n(F + Q) � (InF ) + Q �

n

S

i=1

(P

i

+G

i

+ Q ).

Sine F+Q is meager, it is easy to see that Rn(F+Q ) ontains a translated

opy of every ountable subset of R: By applying Lemma 6 n times, we

obtain that (Rn(F +Q ))n

n

S

i=1

(P

i

+G

i

+Q ) ontains a translated opy of every

ountable subset of R, but aording to (4), (Rn(F + Q))n

n

S

i=1

(P

i

+G

i

+ Q )

is an empty set. 2
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