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EVERYWHERE OF SECOND CATEGORY SETS

Abstra
t

The main result of this paper states the following. For ea
h natural

number i, let G

i

be a proper additive subgroup of the reals, A

i

a set

that 
ontains no arithmeti
 progression of length three, H

i

a basis for

the ve
tor spa
e R over the �eld of rationals, and E

+

(H

i

) the set of all

�nite linear 
ombinations from the elements of H

i

with nonnegative

rational 
oeÆ
ients. Then the 
omplement of a �nite union of sets

G

i

[A

i

[E

+

(H

i

) is everywhere of se
ond 
ategory. We also prove that

the 
omplement of a union of fewer than 
ontinuum many translates

of sets that have distin
t distan
es is everywhere of se
ond 
ategory.

1 Introdu
tion

P. Erd�os and S. Kakutani [3℄ showed that the 
ontinuum hypothesis is equiv-

alent to the statement that the set R of real numbers 
an be partitioned into


ountably many pie
es su
h that ea
h pie
e has distin
t distan
es. (That is,

if x; y; z; w are real numbers with j x� y j=j z � w j; then fx; yg = fz; wg.)

Under the assumption of the 
ontinuum hypothesis, K. Kunen [6℄ generalized

that, for ea
h positive integer n, R

n


an be partitioned into 
ountably many

pie
es su
h that ea
h pie
e has distin
t distan
es. It is interesting to note

that, by using the fa
t that the set R 
an be partitioned into 
ountably many

sets su
h that ea
h set 
ontains no arithmeti
 progression of length three [1,

Thm 1.1℄, K. Ciesielski [2, Thm 3℄ showed that there exists a uniformly

anti-S
hwartz fun
tion from the reals R to the natural numbers N .
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It is natural to look at the thi
kness of the 
omplement of a �nite union

of the above mentioned sets. Suppose H is a basis for the ve
tor spa
e R over

the �eld of rationals, P is a subset of R that has distin
t distan
es, A is a

subset of R that has no arithmeti
 progression of length three, G is a proper

additive subgroup of R, and E

+

(H) is the set of all �nite linear 
ombinations

from the elements of H with nonnegative rational 
oeÆ
ients. Note that any

H set is a P set and any P set is an A set.

In this paper we prove that the 
omplement of a �nite union of sets

of the form A [ G [ E

+

(H) is everywhere of se
ond 
ategory. This is a

generalization of a 
lassi
al result of Sierpi�nski \the 
omplement of a Hamel

basis is everywhere of se
ond 
ategory" and a result in [9℄ \the 
omplement

of a �nite union of Hamel bases is everywhere of se
ond 
ategory." We

also prove that the 
omplement of a union of fewer than 
ontinuum many

translates of sets of the form P + G is everywhere of se
ond 
ategory and

this is a generalization of Theorem 7 in [7℄ that the 
omplement of a union

of fewer than 
ontinuum many translates of Hamel bases is everywhere of

se
ond 
ategory.

It is interesting to note that there is an additive subgroup, namely, the

group generated by the set H; whi
h is everywhere of se
ond 
ategory. The

proof of this follows from the proof of Theorem 1 in [4℄ with minor suitable

modi�
ation. Under the assumption of the 
ontinuum hypothesis, E

+

(H)

is a Lusin set for some set H (see [4℄). Under the assumption of Martin's

axiom, E

+

(H) is a meager set for some set H (see [8℄).

2 Notation

R denotes the set of all real numbers, N is the set of all natural numbers

and Q is the set of all rational numbers. Let A and B be subsets of R. The

symbols A � B and AB stand for the sets fx � y : x 2 A and y 2 Bg and

fxy : x 2 A and y 2 Bg, respe
tively. For r 2 R; A + r = fx + r : x 2 Ag.

The notation AnB stands for the set-theoreti
 di�eren
e of sets A and B.

All sets 
onsidered in this paper are subsets of reals.
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3 Results

Theorem 1 For ea
h i 2 N, let G

i

be a proper additive subgroup of the reals,

A

i

a set that 
ontains no arithmeti
 progression of length three, H

i

a basis

for the ve
tor spa
e R over the �eld of rationals, and E

+

(H

i

) the set of all

�nite linear 
ombinations from the elements of H

i

with nonnegative rational


oeÆ
ients. Then the 
omplement of a �nite union of sets G

i

[A

i

[E

+

(H

i

)

is everywhere of se
ond 
ategory.

First, we prove the following lemmas.

Lemma 1 Let I be a nonempty open interval and let F be a meager subset

of R. Then the set N(InF ) 
ontains a translated 
opy of every 
ountable

bounded subset of R.

Proof. Let B be a 
ountable bounded subset of R. Then for some nonempty

open interval J , J + B � mI for suÆ
iently large m 2 N. Sin
e NF � B

is meager, J is not 
ontained in the set NF � B. Let j be an element of

Jn(NF � B). Then j +B � (NI)n(NF ) � N(InF ). 2

Lemma 2 Let � be an in�nite 
ardinal number smaller than the 
ardinality

of the 
ontinuum and let B be a subset of R of size �. If a subset C of R


ontains a translated 
opy of every bounded subset of R of size �, then so

does the set Cn(E

+

(H) +B): (Note that E

+

(H) is de�ned in Theorem 1.)

Proof. Assume that the 
on
lusion of the lemma is false. Then, for some

bounded subset D of R of size �, the set (D+ r)\ (E

+

(H)+B) is nonempty

for every r in ft 2 R : D+ t � Cg. For simpli
ity denote ft 2 R : D+ t � Cg

by Tr(D;C).

(1) Hen
e Tr(D;C) � E

+

(H) + B �D.

Ea
h nonzero real number 
an be written uniquely as a �nite linear 
om-

bination of elements ofH with nonzero rational 
oeÆ
ients. For ea
h nonzero

t 2 B � D, let supp(t) = fh 2 H : q

h

6= 0g, where t =

P

h2H

q

h

h. Let X be

a bounded subset of �(Hn

S

t2B�D

supp(t)) of size �. Sin
e j D + X j= �,

by the de�nition of C, we have D +X + r � C for some r in R and hen
e

X + r � Tr(D;C). (In fa
t Tr(D;C) 
ontains a translated 
opy of every

bounded subset of R of size �.) A

ording to (1),
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(2) X + r �E

+

(H) +B �D for some r in R.

Sin
e supp(r) is �nite and X is an in�nite subset of �H, there exists an

element h

1

in H su
h that �h

1

2 X and h

1

=2 supp(r): It follows from the

de�nition of X that h

1

=2 supp(t) for all t 2 (B �D). By (2),

�h

1

+ r 2 E

+

(H) +B �D;

whi
h is impossible, be
ause every element of E

+

(H) is a �nite linear 
om-

bination from the elements of H with nonnegative rational 
oeÆ
ients and

h

1

=2 supp(r) [

S

t2(B�D)

supp(t). 2

Lemma 3 If a subset C of R 
ontains a translated 
opy of every �nite subset

of R, so does CnG, where G is any proper additive subgroup of R.

Proof. Let X be a �nite subset of R and let

Tr(X;C) = fr 2 R : X + r � Cg:

It is easy to see that Tr(X;C)� Tr(X;C) = R. If (X + r)\G is nonempty

for every element r 2 Tr(X;C), then

R = Tr(X;C)� Tr(X;C) � (G�X)� (G�X) = G�X +X;

whi
h 
ontradi
ts the fa
t that the index of any proper additive subgroup of

R is in�nite. (To see this fa
t, assume that R = G+M , where G is a proper

subgroup of R andM is a �nite subset of R. Then for ea
h m 2M; 9n

m

2 N

su
h that n

m

m 2 G. Let n be the least 
ommon multiple of the integers n

m

.

Then R = nR = nG+ nM � G+ nM = G; whi
h is a 
ontradi
tion.) Thus

X + t � CnG for some t in Tr(X;C). 2

Lemma 4 Let I be a nonempty open interval and let F be a meager subset

of R. Given a positive integer n, let M be a �nite subset of N so that if M

is partitioned into n 
lasses, then at least one 
lass 
ontains an arithmeti


progression of length three. (Existen
e of su
h a set M follows from Van

der Waerden's Theorem, see [5, p.28℄.) Then there exists a nonzero rational

number d and a nonempty open interval J su
h that dM + j � InF for all j

in J ex
ept for a meager subset of J .
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Proof. Let a and b be two distin
t elements of I. Then there exist a

nonzero rational number d and a real number r su
h that dM + r � (

a

2

;

b

2

).

Let F

1

= (

a

2

;

b

2

) \ (F � dM � r). Then F

1

is meager and, 8x 2 (

a

2

;

b

2

)nF

1

;

we have dM + r + x � InF . Consequently, if we let J = (

a

2

;

b

2

) + r, then

dM + j � InF for all j in J ex
ept for a meager subset of J . 2

Lemma 5 For some j in J , we have (dM + j) � (InF ) and

(dM + j) \

n

[

i=1

(G

i

[ E

+

(H

i

)) = ;

where d;M; F; I; J are de�ned in Lemma 4 and G

i

; E

+

(H

i

) are de�ned in

Theorem 1.

Proof. Assume that the 
on
lusion of the lemma is false. Then, a

ording

to Lemma 4, (dM + j) \

n

S

i=1

(G

i

[ E

+

(H

i

)) is nonempty for all j in J ex
ept

for a meager subset of J . This implies that, for some meager set F

2

;

JnF

2

�

n

[

i=1

(G

i

[ E

+

(H

i

))� dM:

Consequently, be
ause N(G

i

[ E

+

(H

i

)) � (G

i

[ E

+

(H

i

)); we have

N(JnF

2

) �

n

[

i=1

(G

i

[ E

+

(H

i

))� NdM:

A

ording to Lemma 1, N(JnF

2

) 
ontains a translated 
opy of every 
ount-

able bounded subset of R. By applying Lemma(2) n times, we obtain that

the set

N(JnF

2

)n

n

[

i=1

(E

+

(H

i

)� NdM)


ontains a translated 
opy of every 
ountable bounded subset of R. Note

that for any proper additive subgroup G of R; the set G�NdM is 
ontained

in a proper additive subgroup of R: For, sin
e M is a subset of N , the set

G � NdM is 
ontained in the subgroup G + Zd: If G + Zd = R, sin
e d is

rational, G+Z = R; whi
h is impossible. (For, if R = G+Z, then

1

2

= g+x

for some g 2 G and x 2 Z. Consequently, 0 6= 2x� 1 2 G. This implies that

5



the index of G is �nite, whi
h is a 
ontradi
tion.) Now by applying Lemma

3 to N(JnF

2

)n

n

S

i=1

(E

+

(H

i

)� NdM); we obtain that the set

(N(JnF

2

)n

n

[

i=1

(E

+

(H

i

)� NdM))n

n

[

i=1

(G

i

� NdM)


ontains a translated 
opy of every �nite subset of R, but

(N(JnF

2

)n

n

[

i=1

(E

+

(H

i

)� NdM))n

n

[

i=1

(G

i

� NdM) =

N(JnF

2

)n

n

[

i=1

((G

i

[ E

+

(H

i

))� NdM)

is an empty set. This 
ontradi
tion 
ompletes the proof of the lemma. 2

To 
on
lude the proof of the theorem, suppose, to the 
ontrary, that

Rn

n

S

i=1

(G

i

[A

i

[E

+

(H

i

)) is meager in a nonempty open interval I: Then, for

some meager set F , the set InF is 
ontained in the set

n

S

i=1

(G

i

[A

i

[E

+

(H

i

)).

Consequently, (InF )n

n

S

i=1

(G

i

[ E

+

(H

i

)) �

n

S

i=1

A

i

: Now a

ording to Lemma

5, dM + j �

n

S

i=1

A

i

for some real numbers d; j and d 6= 0. Hen
e

M �

1

d

(

n

[

i=1

A

i

� j):

By the de�nition ofM (see Lemma 4), for some i, the set

1

d

(A

i

�j) 
ontains an

arithmeti
 progression of length three, whi
h is impossible by the de�nition

of A

i

. 2

Theorem 2 Let G be a subset of R with 
ardinal smaller than the 
ardinality

of the 
ontinuum and let P

1

; :::; P

n

be subsets of R that have distin
t distan
es.

(That is, if fx; y; z; wg � P

n

and j x� y j=j z � w j, then fx; yg = fz; wg:)

Then (P

1

+G) [ : : : [ (P

n

+G) 
annot be residual in an interval.

First, we prove the following lemma.
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Lemma 6 Let � be an in�nite 
ardinal number smaller than the 
ardinality

of the 
ontinuum and let G be a subset of the reals su
h that j G j<j R j. If

P is a set that has distin
t distan
es and C is a set that 
ontains a translated


opy of every set of size �, so does Cn(P +G).

Proof. Assume that the 
on
lusion of the lemma is false. Then, for some

subset X of R of size �, the set (X + r) \ (P + G) is nonempty for every

r 2 ft 2 R : X + t � Cg. Denote the set ft 2 R : X + t � Cg by Tr(X;C)

and the set G � X by Y . Then Tr(X;C) � P + G � X � P + Y . Let

a 2 RnQ(Y � Y ) and let B = ft 2 R : fa;�ag + t � Tr(X;C)g. Then

fa;�ag+B � Tr(X;C) � P + Y:

Claim. j B j=j R j

To justify the 
laim, assume that j B j<j R j. Let S be the group

generated by the set B. Then j S j<j R j : Let d 2 RnS. Sin
e j X +

fa;�ag+ f0; dg j= �, by the de�nition of C, for some r 2 R, we have

X + fa;�ag+ f0; dg+ r � C:

This implies that fa;�ag + f0; dg + r � Tr(X;C). Now, by the de�nition

of B; 0 + r and d + r belong to the set B and hen
e r and d + r are in the

additive subgroup S: Consequently, d 2 S, whi
h 
ontradi
ts the 
hoi
e that

d 2 RnS: Thus j B j=j R j : To 
on
lude the proof of the lemma, re
all that

(3) fa;�ag+B � P + Y; j Y j<j R j and j B j=j R j.

For y in Y , let B(y) = fb 2 B : a+b 2 P+yg. Sin
e

S

y2Y

B(y) = B, by (3),

there exists y

1

2 Y su
h that j B(y

1

) j>j Y j. Note that a+B(y

1

) � P + y

1

:

Now, �a+B(y

1

) � P +Y and j B(y

1

) j>j Y j imply that there exists y

2

2 Y

and an in�nite subset E of B(y

1

) su
h that �a + E � P + y

2

. We have

a + E � P + y

1

and �a + E � P + y

2

. For ea
h e 2 E; a + e � y

1

and

�a + e� y

2

are distin
t points in P and

j (a+ e� y

1

)� (�a+ e� y

2

) j=j 2a� y

1

+ y

2

j

is a 
onstant, whi
h 
ontradi
ts the property of P: 2

To 
on
lude the proof of the theorem, assume that the 
on
lusion of the

theorem is false. Then for some nonempty open interval I and a meager set

F; we have InF �

n

S

i=1

(P

i

+G

i

). Now,
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(4) Rn(F + Q ) = (I + Q)n(F + Q) � (InF ) + Q �

n

S

i=1

(P

i

+G

i

+ Q ).

Sin
e F+Q is meager, it is easy to see that Rn(F+Q ) 
ontains a translated


opy of every 
ountable subset of R: By applying Lemma 6 n times, we

obtain that (Rn(F +Q ))n

n

S

i=1

(P

i

+G

i

+Q ) 
ontains a translated 
opy of every


ountable subset of R, but a

ording to (4), (Rn(F + Q))n

n

S

i=1

(P

i

+G

i

+ Q )

is an empty set. 2
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