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Abstra
t

We study 
ategori
ity in power for redu
ed models of �rst order logi


without equality.
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1 Introdu
tion

The obje
t of this paper is to study 
ategori
ity in power for theories in �rst order

logi
 without equality. Our results will reveal some surprising di�eren
es between

the model theory for logi
 without equality and for logi
 with equality.

When we 
onsider 
ategori
ity, it is natural to identify elements whi
h are indis-

tinguishable from ea
h other. We will do this by 
on�ning our attention to redu
ed

models, that is, models M su
h that any pair of elements whi
h satisfy the same

formulas with parameters in M are equal. We also 
on�ne our attention to 
om-

plete theories T in a 
ountable language su
h that all models of T are in�nite. T is

said to be �-
ategori
al if T has exa
tly one redu
ed model of 
ardinality � up to

isomorphism.

The 
lassi
al result about !-
ategori
ity for logi
 with equality is the Ryll-

Nardzewski theorem, whi
h says that T is !-
ategori
al if and only if T has only

�nitely many 
omplete n-types for ea
h �nite n. This result fails for logi
 with-

out equality. Another relevant result whi
h fails for logi
 without equality is the

L�owenheim-Skolem-Tarski theorem, that T has at least one model of every in�nite


ardinality. Con
erning un
ountable 
ategori
ity,  Lo�s [ L℄ 
onje
tured that if T is

�-
ategori
al for some un
ountable �, then T is �-
ategori
al for every un
ountable

�. The  Lo�s 
onje
ture was proved for logi
 with equality by Morley [M℄. We will

show that this result also holds for logi
 without equality.

Some basi
 fa
ts about redu
ed models are stated in Se
tion 2. Se
tion 3 
on-

tains several examples of !-
ategori
al theories in logi
 without equality whi
h have

in�nitely many 
omplete 1-types or 2-types. The reason for this di�erent behavior
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is 
lari�ed in Se
tion 4, where we see what happens to the Omitting Types Theorem

in logi
 without equality. In Se
tion 5 we apply the Omitting Types Theorem to

study !-
ategori
ity and the existen
e of prime models in logi
 without equality.

Se
tion 3 also 
ontains examples of bounded theories, i.e. theories for whi
h the


lass of 
ardinalities of in�nite models is bounded. In Se
tion 6 we show that there

are just three possibilities: All models of T are 
ountable, the maximum 
ardinality

of a model of T is the 
ontinuum, or T has models of all in�nite 
ardinalities (i.e.

T is unbounded). This shows that the Hanf number of �rst order logi
 without

equality is (2

!

)

+

. In Se
tion 7 we show that no bounded theory is 
ategori
al in

an un
ountable 
ardinal. Finally, the  Lo�s 
onje
ture for logi
 without equality is

proved in Se
tion 8.

We thank the National S
ien
e Foundation and the Vilas Trust Fund for support

of this resear
h.

2 Preliminaries

Throughout this paper, L will be a 
ountable �rst order predi
ate logi
 without

equality. In 
onsidering isomorphisms between models of logi
 without equality, it

is natural to identify elements whi
h are indistinguishable from ea
h other. That is,

it is natural to restri
t attention to models whi
h are redu
ed in the following sense

(see [BP℄,[CDJ℄, [D℄, [DJ℄).

De�nition 2.1 A model M for L is said to be redu
ed if for any pair of elements

a; b 2M , we have a = b if and only if for every formula �(x; ~y) of L,

M j= 8~u[�(a; ~u) , �(b; ~u)℄: (1)

In general, two elements a; b 2M are said to be Leibniz 
ongruent, in symbols

a � b, if 
ondition (1) holds for all formulas � of L. Thus M is redu
ed if and only if

its Leibniz 
ongruen
e relation is the equality relation on M . It is well known that

for every model M for L, the quotient stru
ture M=� of M modulo its Leibniz


ongruen
e is a redu
ed model, and the mapping a 7! a=� preserves the truth values

of all formulas of L. Moreover, if 
ondition (1) holds for all atomi
 formulas �, then

it holds for all formulas �. We are primarily interested in the 
ase that the Leibniz


ongruen
e relation is not de�nable in M.

It follows from the pre
eding remarks that the 
ompa
tness and (downward)

L�owenheim-Skolem theorems hold for redu
ed models. That is,

Proposition 2.2 If � is a set of senten
es of L and every �nite subset of � has a

model, then � has a redu
ed model of 
ardinality at most !.

2
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For ea
h n, the set of all 
omplete types in a theory T with at most n free

variables (i.e. the Stone spa
e of T in n variables) is denoted by S

n

(T ). It is a


ompa
t Hausdor� spa
e whose 
lopen sets are determined by formulas in n free

variables.

Given a set X �M , we let L

X

be the expansion of L obtained by adding a new


onstant symbol for ea
h a 2 X, and let M

X

be the 
orresponding expansion of M.

As usual, we say that M is �-saturated if for ea
h X �M of 
ardinality less than

�, every 1-type in Th(M

X

) is satis�able in M

X

. The following existen
e theorem

is proved exa
tly as in the 
ase of logi
 with equality.

Proposition 2.3 (i) For ea
h in�nite 
ardinal �, every 
onsistent theory in L has

a �

+

-saturated redu
ed model of 
ardinality at most 2

�

.

(ii) A 
omplete theory T has an at most 
ountable !-saturated redu
ed model if

and only if S

n

(T ) is �nite or 
ountable for ea
h n.

2

We shall say that a theory T in L is �-
ategori
al if it has exa
tly one redu
ed

model of 
ardinality � up to isomorphism.

Redu
ed stru
tures 
an also be viewed as stru
tures whi
h omit a 
ertain set

of formulas in logi
 with equality. Given a logi
 L without equality, we let L

=

be

the 
orresponding logi
 with equality, obtained by adding the equality symbol to

L. Every stru
ture for L, whether or not it is redu
ed, is also a stru
ture for L

=

with the natural interpretation of =. Thus a stru
ture M is redu
ed if and only if

it omits the following set �(x; y) of formulas of L

=

:

�(x; y) = f:x = yg [ f8~u[�(x; ~u) , �(y; ~u)℄ : � is in Lg:

We remark that two redu
ed stru
tures are isomorphi
 in the sense of L if and

only if they are isomorphi
 in the sense of L

=

. However, as we shall see in the next

se
tion, there are redu
ed stru
tures whi
h are elementarily equivalent in the sense

of L but not in the sense of L

=

.

Blanket Hypothesis: Hereafter it will be understood that all models mentioned

are redu
ed. Also, T will always denote a 
omplete theory of L with in�nite models.

3 Examples

In this se
tion we give some examples of 
ategori
al theories in logi
 without equality

whi
h behave oddly.
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The theorem of Ryll-Nardzewski (see [V℄) shows that for a 
omplete theory T

with in�nite models in �rst order logi
 with equality, the following three 
onditions

are equivalent:

(a) S

n

(T ) is �nite for ea
h n 2 !.

(b) T is !-
ategori
al.

(
) Every 
ountable model of T is prime.

For logi
 without equality, it is easily seen that (a) implies (b) and (b) implies

(
). But the following examples show that the reverse impli
ations do not hold in

logi
 without equality. In ea
h example, we will des
ribe a 
ountable model M and

let T be the 
omplete theory of M without equality, T = Th(M).

Note that if the vo
abulary L is �nite and has no fun
tion symbols, then there are

essentially only �nitely many atomi
 formulas, and the Leibniz equivalen
e relation

is de�nable (take the 
onjun
tion of the formulas in 
ondition (1) where � is atomi
).

Thus in this 
ase 
onditions (a)-(
) are still equivalent. For this reason, all of our

examples must either have an in�nite vo
abulary or fun
tion symbols.

Example 3.1 (Binary nested equivalen
e relations). Let L have 
ountably many

binary relations E

n

; n < !. Let M be a 
ountable model su
h that ea
h E

n

is an

equivalen
e relation, E

0

has �nitely many 
lasses, and for every n, ea
h equivalen
e


lass for E

n

is the union of two equivalen
e 
lasses for E

n+1

.

In this example, T is !-
ategori
al, but the Stone spa
e S

2

(T ) is in�nite, so (b)

holds but (a) fails. Another interesting property of this example is that every model

has 
ardinality at most 
ontinuum; the upward L�owenheim-Skolem-Tarski theorem

fails for (redu
ed models of) logi
 without equality.

Example 3.2 (In�nite nested equivalen
e relations). Let M be as in the pre
eding

example, ex
ept that ea
h equivalen
e 
lass for E

n

is the union of 
ountably many

equivalen
e 
lasses for E

n+1

.

Again, T is !-
ategori
al, but the Stone spa
e S

2

(T ) is in�nite. But this time

every model of T has elementary extensions of arbitrarily large 
ardinality.

Example 3.3 Let L have 
ountably many binary relations E

n

; n < !, a unary

relation U , and a unary fun
tion symbol f . Let M be a 
ountable model su
h that

(U;E

n

)

n2!

is the stru
ture from the �rst example, f is the identity on U , and for

ea
h n,

M j= 8y U(f(y)) ^ 8x[U(x) ) 9y[:U(y) ^ E

n

(x; f(y))℄℄:

That is, f maps the 
omplement of U to a dense subset of U .
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The theory T is not !-
ategori
al, be
ause there are 
ountable models M where

range(f) = U and N where range(f) 6= U . But every 
ountable model of T is

prime. Thus (
) holds but (b) fails. We also remark that the models M and N are

elementarily equivalent in the sense of L but are not elementarily equivalent with

respe
t to the 
orresponding equality logi
 L

=

.

Example 3.4 (An example with �nite vo
abulary). Let L have a unary relation U ,

a unary fun
tion symbol f , and a 
onstant symbol 
. In the model M,

M = f
g [ fx

n

: n 2 !g

with 
 and all the x

n

's distin
t, U = fx

0

g, and

f(
) = 
; f(x

0

) = x

0

; f(x

n+1

) = x

n

for ea
h n 2 !:

Here the theory T is !-
ategori
al but the Stone spa
e S

1

(T ) is in�nite. In fa
t,

all models of T are 
ountable, so M is the only model of T up to isomorphism.

Another 
elebrated result for logi
 with equality is Vaught's theorem [V℄ that

no 
omplete theory 
an have exa
tly two 
ountable models. This result fails in

logi
 without equality. By removing the 
onstant symbol 
 from the vo
abulary in

the pre
eding example, we get a 
omplete theory in logi
 without equality whi
h

has exa
tly two 
ountable models up to isomorphism (and no un
ountable models).

Hint: there is at most one element z su
h that :U(f

n

(z)) for all n.

Example 3.5 Let M be a model with a unary relation V , a 
opy of the model from

Example 3.4 on V , and an equivalen
e relation with in�nitely many 
lasses on the


omplement of V .

In this example, T is �-
ategori
al for every in�nite �, but the interpretation

of V is 
ountably in�nite for every model of T . To see this, observe that the

theory of equality with in�nitely many elements is �-
ategori
al for every in�nite �.

This example is an artifa
t of the failure of the upward L�owenheim-Skolem-Tarski

theorem. In a �-
ategori
al theory in logi
 with equality, all in�nite de�nable sets

in a model of 
ardinality � have 
ardinality �.

4 Omitting Types

The 
ulprit behind the odd examples of !-
ategori
al theories is the Omitting Types

Theorem. The usual formulation of the theorem does not hold without equality; the

problem is that in the proof, one must 
onstru
t a model out of 
onstant terms rather

than 
onstant symbols. We now give a version of the Omitting Types Theorem whi
h

holds for logi
 without equality.
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De�nition 4.1 We say that a set of formulas q(~y) with n free variables ~y is lo
ally

realized by a theory U if for some m, there is a formula �(~x) with m free variables

~x and an n-tuple of terms ~�(~x) su
h that �(~x) is 
onsistent with U and

U j= 8~x[�(~x) )  (~�(~x))℄

for all  2 q(~y). We also say that �(~x) and ~� witness the lo
al realization.

Theorem 4.2 (Omitting Types without Equality) Let U be a 
onsistent theory and

let q(~y) be a set of formulas in �nitely many free variables ~y. Suppose that

(i) q(~y) is realized in every model of U .

Then

(ii) U lo
ally realizes q(~y).

Note that sin
e L is 
ountable, (i) holds if and only if q is realized in every


ountable model of U .

Here is a topologi
al formulation of lo
al realizing. An n-tuple of terms ~�(~x) in

m free variables ~x indu
es the 
ontinuous mapping

�̂ : S

m

(U) ! S

n

(U)

de�ned by

�̂(p) = f (~y) :  (~�(~x)) 2 pg:

We shall 
all the mapping �̂ a term mapping from S

m

(U) into S

n

(U). In logi
 with

equality, ea
h term mapping is open, but in logi
 without equality term mappings

need not be open. Then U lo
ally realizes q(~y) if and only if:

(iii) For some m, there is a term mapping

�̂ : S

m

(U) ! S

n

(U)

su
h that �̂

�1

(q) has a nonempty interior.

In the 
lassi
al Omitting Types Theorem for logi
 with equality, ~�(~x) is just ~x,

and �̂ is the identity mapping on S

n

(U). The present statement is di�erent even in

the 
ase that the vo
abulary L has only relation symbols.

In Examples 3.1 and 3.2, n = 2 with ~y = (y

1

; y

2

), and m = 1 with ~�(x) = (x; x).

In these examples, 
ondition (iii) holds for the nonisolated 2-type

q = fE

n

(y

1

; y

2

) : n 2 !g, and �̂ maps the one-point spa
e S

1

(T ) to q.

In Example 3.4, n = 1, and m = 0 with the 
onstant term � = 
. Condition

(iii) holds for the nonisolated 1-type q = f:U(f

n

(y)) : n 2 !g, and �̂ maps the

one-point spa
e S

0

(T ) to q.
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Proof of the Omitting Types Theorem. We assume that (ii) fails and prove

that (i) fails. To do this we must 
onstru
t a model M of U whi
h omits (i.e. does

not realize) q(~y). Let n = j~yj.

Let C be a 
ountable set of 
onstant symbols whi
h are not in L. Then L

C

is


ountable, and we may arrange all the senten
es in a list

 

m

; m < !:

We also arrange all the n-tuples of variable-free terms in a list

~�

m

; m < !:

We will form an in
reasing 
hain of theories U

m

for L

C

su
h that for ea
h m:

(a) U

m

is 
onsistent and is a �nite extension of U ;

(b) If  

m

is 
onsistent with U

m

then  

m

2 U

m+1

;

(
) If  

m

= 9x�(x) and  

m

is 
onsistent with U

m

, then there exists 
 2 C su
h

that �(
) 2 U

m+1

;

(d) There is a formula '(~y) 2 q(~y) su
h that (:'(~�

m

)) 2 U

m+1

.

These 
onditions are the same as in the usual proof of the Omitting Types

Theorem for logi
 with equality (e.g. see [CK℄, p.80) ex
ept that 
ondition (d) has

terms instead of a 
onstant symbols from C. The 
onstru
tion of the 
hain U

n

is

routine and is left to the reader, with the hint that the hypothesis \U does not

lo
ally realize q(~y)" is used to get 
ondition (d).

The union U

!

=

S

m

U

m

is a 
omplete theory in L

C

. In view of (
), U

!

has a

model M

0

= (M; 


M

)


2C

su
h that ea
h element of M is the interpretation of a

variable-free term � of L

C

. By (d), the redu
t M of M

0

to L is a model of U whi
h

omits q(~y).

2

Corollary 4.3 Let T be a 
omplete theory and let q(~y) be a set of formulas with n

free variables ~y. Then 
onditions (i) and (ii) of the Omitting Types Theorem are

equivalent.

2

As in the 
ase of logi
 with equality, a minor modi�
ation of the proof gives the

following Extended Omitting Types Theorem.

Theorem 4.4 Let U be a 
onsistent theory and for ea
h m < ! let q

m

be a set

of formulas with �nitely many free variables. Suppose that for ea
h m, U does not

lo
ally realize q

m

. Then U has a model whi
h omits ea
h q

m

.

2
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5 !-
ategori
al Theories

In this se
tion we will use the Omitting Types Theorem to 
hara
terize !-
ategori
al

theories. Let us say that U is a simple expansion of T if U = Th(M;~a) for some


ountable M j= T and �nite tuple ~a in M .

Corollary 5.1 The following are equivalent.

(i) T is !-
ategori
al.

(ii) Every 
ountable model of T is !-saturated.

(iii) For ea
h simple expansion U of T , every type q 2 S

n

(U) is lo
ally realized

by U .

Proof. As in the 
ase of logi
 with equality, (i) ) (ii) is proved using the 
ompa
t-

ness theorem, and the 
onverse is proved with a ba
k and forth argument.

By the de�nition of !-saturation, (ii) holds if and only if for every simple expan-

sion U of T , every type q 2 S

n

(U) is realized in every 
ountable model of U . By the

Omitting Types Theorem, this is equivalent to 
ondition (iii).

2

We shall now give a ni
er 
hara
terization in the 
ase that the vo
abulary L

has no fun
tion symbols. L may still have in�nitely many relation and/or 
onstant

symbols.

Theorem 5.2 Suppose the vo
abulary L has no fun
tion symbols. The following

are equivalent.

(i) T is !-
ategori
al.

(ii) Every 
ountable model of T is prime.

(iii) For ea
h n, every type in S

n

(T ) is realized in every model of T .

(iv) For ea
h n, every type in S

n

(T ) is lo
ally realized by T .

Proof. Even without the hypothesis that L has no fun
tion symbols, it is 
lear

that (i) implies (ii) and (ii) implies (iii), and the equivalen
e of (iii) and (iv) follows

from the Omitting Types Theorem.

To 
omplete the proof we assume 
ondition (iv) and prove (i). Let U = Th(M;~a)

be a simple expansion of T , and let q 2 S

n

(U). By Corollary 5.1, it suÆ
es to prove

that q is lo
ally realized by U . Let k = j~aj. Then q(~y) = r(~a; ~y) for some type

r(~u; ~y) 2 S

k+n

(T ). Let p(~u) be the proje
tion of r to S

k

(T ). Then U = p(~a).

We may assume without loss of generality that the tuple ~a 
ontains no repeats or


onstants from L. By (iv), there is a tuple of terms (~�(~x); ~�(~x)) and a formula �(~x)

su
h that

T j= 9~x�(~x) ^ 8~x[�(~x) )

^

r(~�(~x); ~�(~x))℄:
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Sin
e L has no fun
tion symbols, ~� is a sequen
e of variables from ~x and 
onstant

symbols. Sin
e ~a 
ontains no repeats or 
onstants from L, ~� must be a k-tuple of

distin
t variables, whi
h we may take to be ~u. Let ~v be the variables in ~x whi
h do

not o

ur in ~u, so that ~x = (~u;~v).

We 
laim that the formula 9~v �(~u;~v) belongs to the type p(~u). Proof of 
laim:

Suppose not. Sin
e p is 
omplete, :9~v �(~u;~v) belongs to p(~u). But then

T j= �(~u;~v) ) :9~v �(~u;~v);

and this 
ontradi
ts the fa
t that

T j= 9~u9~v�(~u;~v):

Now repla
e the variables ~u with the 
onstant symbols ~a. The 
laim shows that

U j= 9~v �(~a;~v):

Sin
e U 
ontains T , we have

U j= 8~v[�(~a;~v) )

^

q(~�))℄:

This shows that U lo
ally realizes q(~y) and 
ompletes the proof.

2

In the general 
ase that L has fun
tion symbols, we know from Example 3.3 that

(ii) does not imply (i). However, we do not know whether (iii) implies (ii).

We now 
onsider the existen
e of prime models. Using the same argument as for

logi
 with equality, one 
an show that if S

n

(T ) is at most 
ountable for ea
h n, then

every simple expansion of T has a prime model. Here is a ne
essary and suÆ
ient


ondition for every simple expansion of T to have a prime model.

Proposition 5.3 The following are equivalent:

(i) Every simple expansion U of T has a prime model.

(ii) For every simple expansion U of T , every formula '(y) whi
h is 
onsistent

with U belongs to a 1-type q(y) whi
h is lo
ally realized by U .

Proof. The impli
ation from (i) to (ii) is an easy 
orollary of the Omitting Types

Theorem.

Assume (ii). Let U be a simple expansion of T and let K be the vo
abulary

of U . Add a 
ountable sequen
e 


n

; n < ! of new 
onstant symbols to K and let

K

0

= K[f


n

: n < !g. We 
an form a list '

k

(y); k < ! of all formulas of K

0

with the

property that for ea
h k, at most the 
onstants 


n

; n < k o

ur in '

k

. Let U

0

= U .

9



By re
ursion, 
hoose a sequen
e of simple expansions U

k

of U to K [ f


n

: n < kg

and 1-types q

k

over U

k

su
h that:

(a) q

k

(y) is lo
ally realized by U

k

,

(b) q

k

(y) 
ontains the formula 9z'

k

(z) ) '

k

(y),

(
) U

k+1

= q

k

(


k

).

The sequen
e fU

k

g is an in
reasing 
hain of 
omplete theories, so their union has

a model M

0

with vo
abulary K

0

. Let N

0

be the submodel of M

0

generated by the


onstants 


n

: n < !. By the 
riterion of Tarski and Vaught, N

0

� M

0

. Therefore

the redu
t N of N

0

to K is a model of U . By Corollary 4.3, q

k

(y) is realized in

every model of U

k

. It follows that every model O of U has a sequen
e of elements

b

n

; n < ! su
h that for ea
h k,

(O; b

0

; : : : ; b

k�1

) j= U

k

:

The mapping 


n

7! b

n

generates an elementary embedding of N into O, so N is

prime.

2

6 Bounded Theories

The usual proof of the downward L�owenheim-Skolem-Tarski theorem goes through

for logi
 without equality; that is, if ! � � � � and T has a model of 
ardinality �,

then T has a model of 
ardinality �. In fa
t, every model for L of 
ardinality � has

an elementary submodel of 
ardinality �.

We have already seen from our examples that the 
orresponding upward theorem

fails; there are 
omplete theories whi
h have models of 
ardinality ! but no larger,

and 
omplete theories whi
h have models of 
ardinality 2

!

but no larger. In this

se
tion we shall see that ! and 2

!

are the only 
ardinals where this happens. This

shows that (2

!

)

+

is the Hanf number of �rst order logi
 without equality. We will

then show that any theory whi
h is 
ategori
al in some un
ountable 
ardinal must

have models of arbitrarily large 
ardinality.

De�nition 6.1 T will be 
alled bounded if the 
lass of 
ardinalities of models of

T has an upper bound. Otherwise we say that T is unbounded.

By a fully saturated model we mean a model that is �-saturated for all 
ardinals

�. It is 
lear that M is fully saturated if and only if it is jM j

+

-saturated.

10



Lemma 6.2 (i) If M is a fully saturated model T , then every model of T is ele-

mentarily embeddable in M, and every fully saturated model of T is isomorphi
 to

M.

(ii) T is bounded if and only if it has a fully saturated model.

Proof. (i) follows from the following two fa
ts about a �-saturated model M of

T of 
ardinality at most � (see [CK℄, Se
tion 5.1). Any �-saturated model of T of


ardinality at most � is isomorphi
 to M, and any model of T of 
ardinality at most

� is elementarily embeddable in M.

(ii) Suppose T is bounded. Then for some �, all models of T have 
ardinality

at most �. But every T has a �

+

-saturated model M (of 
ardinality at most 2

�

).

Then M is jM j

+

-saturated and hen
e fully saturated.

Finally, suppose T has a fully saturated model M. By (i), every model of T

is elementarily embeddable in M and hen
e has 
ardinality at most jM j, so T is

bounded.

2

Lemma 6.3 Let M be a model of T . The following are equivalent:

(i) T is bounded.

(ii) Every equivalen
e relation de�nable without parameters in M has �nitely

many equivalen
e 
lasses.

(iii) Every equivalen
e relation de�nable with parameters in M has �nitely many

equivalen
e 
lasses.

Proof. We �rst prove that (i) implies (iii). Suppose that (iii) fails, so that M has

an equivalen
e relation with in�nitely many 
lasses de�ned by a formula �(x; y;~a)

with parameters ~a. Using the 
ompa
tness theorem, for ea
h 
ardinal �, M has an

elementary extension N in whi
h �(x; y;~a) de�nes an equivalen
e relation with at

least � 
lasses. Then jN j � �, so T is unbounded and (i) fails.

It is trivial that (iii) implies (ii).

We now assume (ii) and prove (i). The Leibniz 
ongruen
e relation is an in-

terse
tion of 
ountably many equivalen
e relations E

n

; n 2 ! whi
h are de�nable

without parameters in M. By (ii), ea
h E

n

has �nitely many 
lasses. Sin
e we are

restri
ting attention to redu
ed models, two elements of M whi
h are equivalent

with respe
t to ea
h E

n

are equal. Therefore jM j � 2

!

, and thus T is bounded.

2

Our next theorem will give a 
on
rete representation of the fully saturated model

of a bounded theory T and all its elementary submodels, up to an isomorphism.

By a �nitely bran
hing tree we mean a tree T whi
h has ! levels and �nitely

many nodes at ea
h level. We denote the set of all bran
hes of T by B(T ), and give

11



B(T ) the usual topology where the set of all bran
hes through a node is a basi



lopen set. This topology is 
ompa
t and Hausdor�.

For ea
h n 2 ! we give B(T )

n

the produ
t topology. By a 
lopen relation on

B(T ) we mean a relation whi
h is 
lopen on B(T )

n

for some n. By a 
ontinuous

fun
tion of n variables on B(T ) we mean a 
ontinuous fun
tion from B(T )

n

into

B(T ).

Proposition 6.4 Suppose T is bounded. Then there is a �nitely bran
hing tree T

and a fully saturated model M of T su
h that:

(i) M has universe B(T ).

(ii) A relation is de�nable with parameters in M if and only if it is 
lopen in

B(T ).

(iii) Ea
h fun
tion of �nitely many variables de�ned in M by a term is 
ontin-

uous on B(T ).

(iv) A subset M

0

� M is the universe of an elementary substru
ture of M if

and only if M

0

is dense in B(T ) and 
losed under ea
h fun
tion de�ned by a term.

Proof. Let E

n

; 0 < n < ! be a list of all equivalen
e relations de�nable without

parameters in M, and let D

n

= E

1

\ � � � \ E

n

. By Lemma 6.3, ea
h E

n

has �nitely

many equivalen
e 
lasses. Let D

0

= E

0

be the trivial equivalen
e relation with one


lass. Then ea
h D

n

has �nitely many equivalen
e 
lasses, and D

n+1

is a re�nement

of D

n

. Let T be the �nitely bran
hing tree su
h that the set of nodes of T at level

n is equal to the set of equivalen
e 
lasses of D

n

, and whose order relation is reverse

in
lusion. Identify ea
h element x 2M with the bran
h of T whose node at level n

is the D

n

-equivalen
e 
lass of x. It follows from full saturation that ea
h bran
h of

T is realized in M. Thus M has universe B(T ), and (i) holds.

(ii) Sin
e ea
h equivalen
e relation D

n

is de�nable in M, ea
h equivalen
e 
lass

of D

n

is de�nable with parameters in M. It follows that ea
h 
lopen relation is

de�nable with parameters in M.

For the 
onverse, suppose for example that a ternary relation R is de�ned by the

formula  (x; y; z;~a) with parameters ~a in M. Any de�nable equivalen
e relation in

M is re�ned by some D

n

. We may therefore 
hoose n large enough so that D

n

(b; 
)

implies

8y8z8~u [ (b; y; z; ~u) ,  (
; y; z; ~u)℄;

8x8z8~u [ (x; b; z; ~u) ,  (x; 
; z; ~u)℄;

8x8y8~u [ (x; y; b; ~u) ,  (x; y; 
; ~u)℄:

Now suppose that

D

n

(x; x

0

); D

n

(y; y

0

); D

n

(z; z

0

); and R(x; y; z):

12



It then follows in turn that  (x; y; z;~a),  (x

0

; y; z;~a),  (x

0

; y

0

; z;~a),  (x

0

; y

0

; z

0

;~a),

and R(x

0

; y

0

; z

0

). This shows that the relation R is 
lopen with respe
t to the produ
t

topology in B(T ), and (ii) is proved.

(iii) Let S be a 
lopen set in B(T ) and �(x; y; z) a term of L. By (ii), S is de�n-

able by a formula  (u;~a). Then �

�1

(S) is de�nable by the formula  (�(x; y; z);~a),

and is 
lopen in B(T ) by (ii).

(iv) Let M

0

� M. It is 
lear that the universe M

0

is 
losed under fun
tions

de�ned by terms of L. Sin
e ea
h relation D

n

has �nitely many equivalen
e 
lasses

and is de�nable without parameters in M, M

0

must meet ea
h equivalen
e 
lass of

D

n

. Therefore M

0

is dense in B(T ).

For the 
onverse, suppose M

0

is dense in B(T ) and 
losed under ea
h fun
tion

de�ned by a term of L. Then M

0

is a substru
ture of M. Suppose M j= 9x (x;

~

b)

where

~

b is in M

0

. Sin
e M

0

is dense and the set de�ned by  (x;

~

b) in M is nonempty

and 
lopen, there exists a 2 M

0

su
h that M j=  (a;

~

b). Thus M

0

� M by the


riterion of Tarski and Vaught.

2

Let us say that T is 
ountably bounded if all models of T are 
ountable, and

un
ountably bounded if T is bounded but has an un
ountable model.

Corollary 6.5 (i) T is 
ountably bounded if and only if T has a fully saturated

model of 
ardinality !.

(ii) T is un
ountably bounded if and only if T has a fully saturated model of


ardinality 2

!

.

(iii) T is unbounded if and only if every model of T has elementary extensions

of arbitrarily large 
ardinality.

Proof. By Lemma 6.2, T is bounded if and only if it has a fully saturated model.

By Proposition 6.4, if T is bounded then its fully saturated model 
an be identi�ed

with the set of bran
hes of a �nitely bran
hing tree. But any �nitely bran
hing tree

with un
ountably many bran
hes has 2

!

bran
hes. We 
on
lude that (i) and (ii)

hold. Part (iii) follows easily from Lemma 6.3.

2

Re
all that the Hanf number of a logi
 is the least 
ardinal � su
h that any

theory whi
h has a model of 
ardinality at least � has models of arbitrarily large


ardinality.

Corollary 6.6 The Hanf number of �rst order logi
 without equality is (2

!

)

+

.

2
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7 Un
ountable Categori
ity Implies Unbounded

In this se
tion we will show that a bounded theory 
annot be 
ategori
al in an

un
ountable 
ardinal. In fa
t, an un
ountably bounded theory T has the maximum

possible number 2

�

of nonisomorphi
 models in ea
h un
ountable 
ardinal � � 2

!

.

We �rst 
onsider the 
ase that � � 2

!

< 2

�

.

Theorem 7.1 Suppose T is un
ountably bounded and � � 2

!

< 2

�

. Then T has 2

�

nonisomorphi
 models of 
ardinality �.

Proof. By Corollary 6.5, T has a fully saturated model M, and jMj = 2

!

. Let A

be a 
ountable elementary submodel of M. By Proposition 6.4, distin
t elements

of M realize distin
t 1-types over A.

We will use the result of Shelah [S℄, Theorem VIII 1.5 (4). It shows that in logi


with equality, if there are un
ountably many 1-types over a 
ountable stru
ture A,

then there is a set S of 1-types over A su
h that jSj = 2

!

, and for ea
h R � S there

is a stru
ture B

R

� A whi
h realizes ea
h p 2 R and omits ea
h p 2 S n R. The

proof of this result still works in logi
 without equality. It follows that there is a

family of stru
tures K = fB

R

: R 2 [S℄

�

g su
h that A � B

R

� M, jB

R

j = �, and

for all distin
t Q;R 2 [S℄

�

, there is no isomorphism from B

Q

to B

R

whi
h is the

identity on A.

The family K has 
ardinality 2

�

, and the relation of being isomorphi
 partitions

K into equivalen
e 
lasses. To 
omplete the proof it suÆ
es to show that there are

2

�

di�erent equivalen
e 
lasses. Suppose not. Then there is an equivalen
e 
lass K

0

of 
ardinality 2

�

. Choose C 2 K

0

, and for ea
h B

R

2 K

0


hoose an isomorphism

f

R

: B

R

�

=

C. There are only 2

!

di�erent mappings from A into C, and sin
e

2

!

< 2

�

, there are distin
t B

Q

;B

R

2 K

0

su
h that the isomorphisms f

Q

and f

R

have the same restri
tion to A. But then by 
omposing isomorphisms we see that

B

Q

;B

R

are isomorphi
 by a mapping whi
h is the identity on A, and we have a


ontradi
tion.

2

We now 
onsider the 
ase that ! < � < 2

�

= 2

!

. Shelah in [S℄, Theorem VIII

1.8, proved that any theory T in logi
 with equality whi
h is not !-stable has at

least 2

!

nonisomorphi
 models of 
ardinality �. His argument 
an be applied to

logi
 without equality to show that any un
ountably bounded theory has at least 2

!

nonisomorphi
 models of 
ardinality �. We will now prove a slightly stronger result

in this dire
tion.

Theorem 7.2 Suppose T is un
ountably bounded. Then T has a family K of models

su
h that K has 
ardinality 2

!

, ea
h M 2 K has 
ardinality 2

!

, and whenever

14



M 2 K;N 2 K, and M 6= N , no un
ountable elementary submodel of M is

elementarily embeddable in N .

Given two distin
t bran
hes b; 
 of a �nitely bran
hing tree T , let Æ(b; 
) be the

level of the highest node on b\
. We say that a mapping h from a subset Y � B(T )

into B(T ) is level-preserving if Æ(h(b); h(
)) = Æ(b; 
) for all distin
t b; 
 2 Y . In

the fully saturated model M of Proposition 6.4, the relation Æ(x; y) = n says that n

is the least m for whi
h :E

m

(x; y), and hen
e is de�nable in M without parameters.

It follows that every elementary embedding from an elementary submodel of M into

M is level-preserving. Therefore Theorem 7.2 is a 
onsequen
e of Proposition 6.4

and the following topologi
al result on �nitely bran
hing trees.

Theorem 7.3 Let T be a �nitely bran
hing tree with un
ountably many bran
hes,

and let F be a 
ountable set of 
ontinuous fun
tions of �nitely many variables on

B(T ). Then there is a family fX

�

� B(T ) : � < 2

!

g su
h that ea
h X

�

is a

dense subset of B(T ) of size 
ontinuum whi
h is 
losed under all f 2 F and for

ea
h distin
t �; �, there is no level-preserving mapping from an un
ountable subset

of X

�

into X

�

.

Proof. For simpli
ity, we �rst 
onsider the 
ase that

T = 2

<!

and B(T ) = B(2

<!

)

Later we indi
ate how to do the more general 
ase.

In this 
ase

De�nition 7.4 For any x; y 2 B(2

<!

)

Æ(x; y) = minfn 2 ! : x(n) 6= y(n)g

De�nition 7.5 For any set X � B(2

<!

) de�ne

Æ(X) = fÆ(x; y) : x; y 2 Xg

Clearly, Æ(X) is in�nite for any in�nite X.

We will 
onstru
t X

�

and A

�

� ! su
h that the A

�

are pairwise almost disjoint,

i.e.

A

�

\ A

�

is �nite

whenever � 6= �, and for any � we 
an de
ompose X

�

into 
ountable many sets

X

�

=

[

fX

n

�

: n 2 !g

15



su
h that Æ(X

n

�

) � A

�

for ea
h n < !. This implies that there 
an be no level-

preserving map from any un
ountable subset of X

�

into X

�

. For suppose there were

a level-preserving bije
tion h : Y ! Z with Y � X

�

and Z � X

�

. By 
utting down

the un
ountable set Y we may assume that there exists n and m su
h that Y � X

n

�

and Z � X

m

�

. Level preserving implies that Æ(Y ) = Æ(Z), but then

Æ(Y ) = Æ(Z) � A

�

\ A

�

;


ontradi
ting the fa
t that A

�

and A

�

are almost disjoint.

The general 
ase is a little messy, but the ideas are fairly simple. For the 
onve-

nien
e of the reader we do a simple 
ase �rst.

We �rst do the 
ase that F is empty. In this 
ase we may take the family

fA

�

: � < 2

!

g to be any family of in�nite pairwise almost disjoint subsets of !.

Then de�ne

X

�

= fx 2 B(2

<!

) : 8

1

l (x(l) = 1 ) l 2 A

�

)g

8

1

l means \for all but �nitely many l". It is easy to see that X

�

is dense. Also, for

any n 2 ! and any s 2 2

n

, if we de�ne

X

�

(s) = fx 2 B(2

<!

) : s � x and 8l > n (x(l) = 1 ) l 2 A

�

)g

then

Æ(X

�

(s)) � fl 2 A

�

: l � ng and X

�

=

[

s22

<!

X

�

(s):

Now we 
onsider the general 
ase. We may assume that F is a family of 
ontinu-

ous operations whi
h 
ontains the identity fun
tion and is 
losed under 
omposition.

Also, we may as well assume that for ea
h s 2 2

<!

there is an operation f 2 F su
h

that f maps B(2

<!

) one-to-one into [s℄, where

De�nition 7.6 For s 2 2

<!

de�ne [s℄ = fx 2 B(2

<!

) : s � xg.

Thus it is unne
essary to guarantee that X

�

is dense; we will only need to


onstru
t Y

�

� B(2

<!

) of 
ardinality 
ontinuum and then let X

�

be the 
losure of

Y

�

under the operations of F .

Before diving into the details we give the general idea. Our plan is to 
onstru
t

a sequen
e k

m

< k

m+1

so that roughly speaking for ea
h n-ary operation f 2 F and

~x; ~y 2 Y

n

�

If

k

m

< Æ(f(~x); f(~y)) < k

m+1

then k

m

< Æ(u; v) < k

m+1

for some u; v from ~x [ ~y.
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De�nition 7.7 For s 2 2

l

and l < k, let hs; ki 2 2

k

be the unique element of 2

k

su
h that s � hs; ki and hs; ki(i) = 0 for all i with l � i < k. In other words, hs; ki

is the sequen
e of length k gotten by extending s with zeros.

Lemma 7.8 Suppose F � F is �nite and k < !. Then there exists l > k su
h that

for every n-ary f 2 F and (r

i

2 2

k

: i < n) there exists a t 2 2

k

su
h that

f(

Y

i<n

[hr

i

; li℄) � [t℄

Proof. This is easy, just use the 
ontinuity of the f 's.

2

Now write F = [fF

n

: n < !g as an in
reasing union of �nite sets. By iteratively

applying the last lemma we get:

There exist in
reasing sequen
es

(k

m

2 ! : m < !) and (l

m

2 ! : m < !)

with k

m

< l

m

< k

m+1

satisfying the following 
onditions:

Let

L = fl

m

: m < !g and T = fs 2 2

<!

: 8l (s(l) = 1 ) l 2 L)g:

Then for any m < !;

1. For every n-ary f 2 F

m

and

�

s

i

2 T \ 2

l

m

: i < n

�

there exists t 2 2

k

m

su
h

that

f(

Y

i<n

[s

i

℄) � [t℄:

2. For any n-ary f 2 F

m

and

(r

i

2 T \ 2

k

m+1

) : i < n) and (t

i

2 T \ 2

k

m+1

) : i < n);

if there exists k � k

m+1

with the property that there are distin
t r; t 2 2

k

with

f(

Y

i<n

[hr

i

; ki℄) � [r℄ and f(

Y

i<n

[ht

i

; ki℄) � [t℄;

then k

m+1

already has this property.
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This follows from the previous lemma. First we get l

m

> k

m

by applying Lemma

7.8 with k = k

m

and then we get k

m+1

as the maximum of �nitely many k's.

Given (B

�

: � < 2

!

) in�nite pairwise almost disjoint subsets, de�ne Y

�

as follows:

Y

�

= fx 2 B(2

<!

) : 8l < ! (x(l) = 1 ) 9m 2 B

�

l = l

m

)g

and de�ne

A

�

= fi : 9m 2 B

�

k

m

� i < k

m+1

g:

Lemma 7.9 Suppose m

0

2 B

�

, f 2 F

m

0

is n-ary, and ~x; ~y 2 Y

n

�

. Then

Æ(f(~x); f(~y)) 2 A

�

[ k

m

0

+1

Proof. Suppose for 
ontradi
tion that

k

m

� Æ(f(~x); f(~y)) < k

m+1

for some m > m

0

su
h that m =2 B

�

. By our 
onstru
tion l

m

has the following

property:

Let r

i

= x

i

j

l

m

and let s

i

= y

i

j

l

m

for ea
h i < n. Then there exists

r; s 2 2

k

m

su
h that

f(

Y

i<n

[r

i

℄) � [r℄ and f(

Y

i<n

[s

i

℄) � [s℄

Be
ause k

m

� Æ(f(~x); f(~y)), it must be that r = s.

Let m

1

� m

0

be the largest element of B

�

su
h that m

1

� m. So m

0

� m

1

< m

and note that there is there is no splitting going on in Y

�

between l

m

1

+ 1 and k

m+1

,

i.e., if u; v 2 Y

�

, then Æ(u; v) � l

m

1

or Æ(u; v) � l

m+1

.

Sin
e m =2 B

�

and x

i

; y

i

2 Y

�

it must be they are identi
ally zero on all l with

l

m

1

< l < l

m+1

. But l

m+1

has been 
hosen so that for some r

0

; s

0

2 2

k

m+1

f(

Y

i<n

[x

i

j

l

m+1

℄) � [r

0

℄ and f(

Y

i<n

[y

i

j

l

m+1

℄) � [s

0

℄

Sin
e we are assuming Æ(f(~x); f(~y)) < k

m+1

it must be that r

0

6= s

0

, but then

this 
ontradi
ts the way we have 
hoose k

m

1

+1

, i.e., it must be that m

1

= m and

therefore m 2 B

�

.

2

It follows from Lemma 7.9 that for any t 2 2

k

m

0

+1

and n-ary f 2 F

m

0

that

Æ ([t℄ \ f(Y

n

�

))) � A

�
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and sin
e the 
losure of Y

�

under the operations of F 
an be written as a 
ountable

union of su
h sets, Theorem 7.3 has been proven for the spe
ial 
ase that B(T ) =

B(2

<!

).

Now we indi
ate the modi�
ations ne
essary to prove the Theorem in general.

Let T

0

be the subtree of T 
onsisting of all those nodes of T whi
h have un
ountably

many bran
hes thru them. Clearly,

Q = B(T ) nB(T

0

)

is 
ountable. Without loss of generality, we may assume that F also 
ontains all

operations whi
h 
an be obtained by substituting elements of Q, e.g., if f 2 F is

binary and a 2 Q then the unary operation g(x) = f(x; a) would also be in F . Thus

we may 
hoose Y

�

� B(T

0

) and then take

X

�

= Q [

[

ff(Y

n

�

) : f 2 F ; n-ary for some n 2 !g

and then X

�

will be 
losed under the operations of F .

In the proof, we need to de�ne hs; ki where s 2 T

0

is at level l and k � l. Put

a linear ordering on T

0

and then take hs; ki to be the node of T

0

at level k whi
h

extends s and whi
h is obtained by always taking the leftmost immediate bran
h.

The only other pla
e in the proof that needs �xing is that we 
an not ne
essarily

assume that the tree bran
hes between level l

n

and l

n

+ 1. Hen
e, we would 
hoose

l

0

n

> l

n

so that

� ea
h s 2 T

0

at level l

n

has at least two in
ompatible extension in T

0

at level

l

0

n

and

� k

n

< l

n

< l

0

n

< k

n+1

Then we would take Y

�

= B(T

�

), where T

�

is the subtree of T

0

, where nodes 
an

be extended arbitrarily between levels l

n

and l

0

n

if n 2 B

�

, but otherwise must be

extended by using hs; ki, i.e., the leftmost path. The 
hoi
e of k

n

is exa
tly the same

and so is the rest of the proof.

2

Combining Theorems 7.1 and 7.2, we have

Theorem 7.10 Suppose T is un
ountably bounded. Then for every un
ountable


ardinal � � 2

!

, T has 2

�

nonisomorphi
 models of 
ardinality �.

Corollary 7.11 If T is un
ountably bounded, then for every un
ountable 
ardinal

�, T is not �-
ategori
al.

2
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8 The  Lo�s Conje
ture

In this se
tion we show that the  Lo�s Conje
ture, whi
h was proved for logi
 with

equality by Morley [M℄, also holds for logi
 without equality. The proof follows the

same outline as the proof in [CK℄, whi
h uses a two-
ardinal omitting type theorem.

We will refer to arguments from [CK℄ when we 
an, and indi
ate the modi�
ations

that are needed for logi
 without equality.

Re
all that T is �-stable if for every model M of T and every subset X �M of


ardinality �, the theory Th(M

X

) has � 1-types.

Proposition 8.1 If T is �-
ategori
al in some un
ountable 
ardinal �, then T is

!-stable.

Proof. By Corollary 7.11, T is unbounded, so by Lemma 6.3, there is a formula

E(x; y) whi
h de�nes an equivalen
e relation with in�nitely many 
lasses in every

model of T . One 
an now follow the proof of the 
orresponding result for logi
 with

equality (Lemma 7.1.4 in [CK℄) but repla
e equality by E(x; y).

2

Lemma 8.2 If T is !-stable, then for every model M of T , regular 
ardinal � > !,

and set Y � M of 
ardinality �, there is an equivalen
e relation E(x; y) whi
h is

de�nable in T without parameters su
h that the restri
tion of E

M

to Y � Y has �

equivalen
e 
lasses.

Proof. Suppose the result fails for a model M of T and set Y � M of regular


ardinality � > !. Let E

n

; 0 < n < ! be a list of all equivalen
e relations de�nable

without parameters in T , and let D

n

be the restri
tion of E

1

\ � � � \ E

n

to Y � Y .

Let T be the tree whose nodes at level n are the D

n

-equivalen
e 
lasses and whose

ordering is reverse in
lusion. Call a node t of T large if there are at least � bran
hes

through t. Then the root of T is large, but at ea
h level, T has fewer than � nodes.

It follows that for ea
h large node t of T there are two disjoint large nodes above

t. But then T has a subtree with 
ountably many nodes and un
ountably many

bran
hes. Therefore M has a 
ountable subset X su
h that there are un
ountably

many types over M

X

, so T is not !-stable.

2

Proposition 8.3 If T is !-stable, then T is �-stable for every in�nite 
ardinal �.

Proof. Suppose T is not �-stable, so T has a model M whi
h realizes �

+

types

over some set X � M of power �. By Lemma 8.2, there is an equivalen
e relation
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E(x; y) de�nable in T and a subset Y � M su
h that jY j = �

+

, the restri
tion of

E

M

to Y � Y is the equality on Y , and any two distin
t elements a; b 2 Y realize

di�erent types in M

X

. One 
an now repeat the proof of the 
orresponding result

for equality logi
 (Lemma 7.1.3 in [CK℄) but with the relation E(x; y) in pla
e of

equality.

2

De�nition 8.4 A model M of T is said to be primary over a subset A � M if

there is a sequen
e hb

�

: � < �i of elements of M su
h that

(i) A [ fb

�

: � < �g generates M,

(ii) For ea
h formula '(y) in L

A

[ fb

�

: � < �g there exists 
 < � su
h that

(M

A

; b

�

)

�<�

j= 9y'(y) ) '(b




):

(iii) For ea
h � < �, the 1-type of b

�

in Th((M

A

; b

�

)

�<�

) is isolated, (i.e. b

�

satis�es a maximal 
onsistent formula).

It is 
lear that every primary model over A is prime over A.

Lemma 8.5 Suppose T is !-stable. Then for every model M of T and every set

A �M , M has an elementary submodel whi
h is primary over A.

Proof. Sin
e T is !-stable, a binary tree argument shows that for every B � M ,

every formula '(y) whi
h is 
onsistent with Th(M

B

) is implied by a formula  (y)

whi
h is maximal 
onsistent with Th(M

B

). By trans�nite re
ursion, one 
an build a

sequen
e hb

�

: � < �i in M su
h that 
onditions (ii) and (iii) in the above de�nition

hold. Condition (ii) implies that � > 0. It follows that the set A [ fb

�

: � < �g is

nonempty, and generates a submodel M

0

of M whi
h is an elementary submodel

and is primary over A.

2

We need one more lemma, whi
h is the analogue of Lemma 7.1.13 in [CK℄ for

logi
 without equality.

Lemma 8.6 Suppose T is !-stable and M is an un
ountable model of T . Then

there is a proper elementary extension N � M su
h that every 
ountable set of

formulas �(y) whi
h is realized in N

M

is realized in M

M

.

Proof. By !-stability and a binary tree argument, there is a de�nable set D in

M

M

su
h that D is un
ountable, but for any de�nable subset C � D, either C or

DnC is 
ountable. By Lemma 8.2, there is an equivalen
e relation E(x; y) de�nable

without parameters in T whose restri
tion to D has un
ountably many equivalen
e
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lasses. One 
an now use Lemma 8.5, and the proof of Lemma 7.1.16 in [CK℄ with

E(x; y) in pla
e of equality, to obtain the required model N �M.

2

Theorem 8.7 ( Lo�s Conje
ture) If T is �-
ategori
al for some un
ountable 
ardinal

�, then T is �-
ategori
al for every un
ountable 
ardinal �.

Proof. We have shown that T is unbounded and stable in every in�nite 
ardinal.

Now the usual proof that T has an !

1

-saturated model in every un
ountable 
ardinal

goes through (see [CK℄, Lemma 7.1.6). Finally, one 
an use Lemma 8.6 and the

argument in [CK℄, p. 494, to show that T is �-
ategori
al.

2
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