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Abstrat

We study ategoriity in power for redued models of �rst order logi

without equality.
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1 Introdution

The objet of this paper is to study ategoriity in power for theories in �rst order

logi without equality. Our results will reveal some surprising di�erenes between

the model theory for logi without equality and for logi with equality.

When we onsider ategoriity, it is natural to identify elements whih are indis-

tinguishable from eah other. We will do this by on�ning our attention to redued

models, that is, models M suh that any pair of elements whih satisfy the same

formulas with parameters in M are equal. We also on�ne our attention to om-

plete theories T in a ountable language suh that all models of T are in�nite. T is

said to be �-ategorial if T has exatly one redued model of ardinality � up to

isomorphism.

The lassial result about !-ategoriity for logi with equality is the Ryll-

Nardzewski theorem, whih says that T is !-ategorial if and only if T has only

�nitely many omplete n-types for eah �nite n. This result fails for logi with-

out equality. Another relevant result whih fails for logi without equality is the

L�owenheim-Skolem-Tarski theorem, that T has at least one model of every in�nite

ardinality. Conerning unountable ategoriity,  Lo�s [ L℄ onjetured that if T is

�-ategorial for some unountable �, then T is �-ategorial for every unountable

�. The  Lo�s onjeture was proved for logi with equality by Morley [M℄. We will

show that this result also holds for logi without equality.

Some basi fats about redued models are stated in Setion 2. Setion 3 on-

tains several examples of !-ategorial theories in logi without equality whih have

in�nitely many omplete 1-types or 2-types. The reason for this di�erent behavior
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is lari�ed in Setion 4, where we see what happens to the Omitting Types Theorem

in logi without equality. In Setion 5 we apply the Omitting Types Theorem to

study !-ategoriity and the existene of prime models in logi without equality.

Setion 3 also ontains examples of bounded theories, i.e. theories for whih the

lass of ardinalities of in�nite models is bounded. In Setion 6 we show that there

are just three possibilities: All models of T are ountable, the maximum ardinality

of a model of T is the ontinuum, or T has models of all in�nite ardinalities (i.e.

T is unbounded). This shows that the Hanf number of �rst order logi without

equality is (2

!

)

+

. In Setion 7 we show that no bounded theory is ategorial in

an unountable ardinal. Finally, the  Lo�s onjeture for logi without equality is

proved in Setion 8.

We thank the National Siene Foundation and the Vilas Trust Fund for support

of this researh.

2 Preliminaries

Throughout this paper, L will be a ountable �rst order prediate logi without

equality. In onsidering isomorphisms between models of logi without equality, it

is natural to identify elements whih are indistinguishable from eah other. That is,

it is natural to restrit attention to models whih are redued in the following sense

(see [BP℄,[CDJ℄, [D℄, [DJ℄).

De�nition 2.1 A model M for L is said to be redued if for any pair of elements

a; b 2M , we have a = b if and only if for every formula �(x; ~y) of L,

M j= 8~u[�(a; ~u) , �(b; ~u)℄: (1)

In general, two elements a; b 2M are said to be Leibniz ongruent, in symbols

a � b, if ondition (1) holds for all formulas � of L. Thus M is redued if and only if

its Leibniz ongruene relation is the equality relation on M . It is well known that

for every model M for L, the quotient struture M=� of M modulo its Leibniz

ongruene is a redued model, and the mapping a 7! a=� preserves the truth values

of all formulas of L. Moreover, if ondition (1) holds for all atomi formulas �, then

it holds for all formulas �. We are primarily interested in the ase that the Leibniz

ongruene relation is not de�nable in M.

It follows from the preeding remarks that the ompatness and (downward)

L�owenheim-Skolem theorems hold for redued models. That is,

Proposition 2.2 If � is a set of sentenes of L and every �nite subset of � has a

model, then � has a redued model of ardinality at most !.

2
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For eah n, the set of all omplete types in a theory T with at most n free

variables (i.e. the Stone spae of T in n variables) is denoted by S

n

(T ). It is a

ompat Hausdor� spae whose lopen sets are determined by formulas in n free

variables.

Given a set X �M , we let L

X

be the expansion of L obtained by adding a new

onstant symbol for eah a 2 X, and let M

X

be the orresponding expansion of M.

As usual, we say that M is �-saturated if for eah X �M of ardinality less than

�, every 1-type in Th(M

X

) is satis�able in M

X

. The following existene theorem

is proved exatly as in the ase of logi with equality.

Proposition 2.3 (i) For eah in�nite ardinal �, every onsistent theory in L has

a �

+

-saturated redued model of ardinality at most 2

�

.

(ii) A omplete theory T has an at most ountable !-saturated redued model if

and only if S

n

(T ) is �nite or ountable for eah n.

2

We shall say that a theory T in L is �-ategorial if it has exatly one redued

model of ardinality � up to isomorphism.

Redued strutures an also be viewed as strutures whih omit a ertain set

of formulas in logi with equality. Given a logi L without equality, we let L

=

be

the orresponding logi with equality, obtained by adding the equality symbol to

L. Every struture for L, whether or not it is redued, is also a struture for L

=

with the natural interpretation of =. Thus a struture M is redued if and only if

it omits the following set �(x; y) of formulas of L

=

:

�(x; y) = f:x = yg [ f8~u[�(x; ~u) , �(y; ~u)℄ : � is in Lg:

We remark that two redued strutures are isomorphi in the sense of L if and

only if they are isomorphi in the sense of L

=

. However, as we shall see in the next

setion, there are redued strutures whih are elementarily equivalent in the sense

of L but not in the sense of L

=

.

Blanket Hypothesis: Hereafter it will be understood that all models mentioned

are redued. Also, T will always denote a omplete theory of L with in�nite models.

3 Examples

In this setion we give some examples of ategorial theories in logi without equality

whih behave oddly.
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The theorem of Ryll-Nardzewski (see [V℄) shows that for a omplete theory T

with in�nite models in �rst order logi with equality, the following three onditions

are equivalent:

(a) S

n

(T ) is �nite for eah n 2 !.

(b) T is !-ategorial.

() Every ountable model of T is prime.

For logi without equality, it is easily seen that (a) implies (b) and (b) implies

(). But the following examples show that the reverse impliations do not hold in

logi without equality. In eah example, we will desribe a ountable model M and

let T be the omplete theory of M without equality, T = Th(M).

Note that if the voabulary L is �nite and has no funtion symbols, then there are

essentially only �nitely many atomi formulas, and the Leibniz equivalene relation

is de�nable (take the onjuntion of the formulas in ondition (1) where � is atomi).

Thus in this ase onditions (a)-() are still equivalent. For this reason, all of our

examples must either have an in�nite voabulary or funtion symbols.

Example 3.1 (Binary nested equivalene relations). Let L have ountably many

binary relations E

n

; n < !. Let M be a ountable model suh that eah E

n

is an

equivalene relation, E

0

has �nitely many lasses, and for every n, eah equivalene

lass for E

n

is the union of two equivalene lasses for E

n+1

.

In this example, T is !-ategorial, but the Stone spae S

2

(T ) is in�nite, so (b)

holds but (a) fails. Another interesting property of this example is that every model

has ardinality at most ontinuum; the upward L�owenheim-Skolem-Tarski theorem

fails for (redued models of) logi without equality.

Example 3.2 (In�nite nested equivalene relations). Let M be as in the preeding

example, exept that eah equivalene lass for E

n

is the union of ountably many

equivalene lasses for E

n+1

.

Again, T is !-ategorial, but the Stone spae S

2

(T ) is in�nite. But this time

every model of T has elementary extensions of arbitrarily large ardinality.

Example 3.3 Let L have ountably many binary relations E

n

; n < !, a unary

relation U , and a unary funtion symbol f . Let M be a ountable model suh that

(U;E

n

)

n2!

is the struture from the �rst example, f is the identity on U , and for

eah n,

M j= 8y U(f(y)) ^ 8x[U(x) ) 9y[:U(y) ^ E

n

(x; f(y))℄℄:

That is, f maps the omplement of U to a dense subset of U .
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The theory T is not !-ategorial, beause there are ountable models M where

range(f) = U and N where range(f) 6= U . But every ountable model of T is

prime. Thus () holds but (b) fails. We also remark that the models M and N are

elementarily equivalent in the sense of L but are not elementarily equivalent with

respet to the orresponding equality logi L

=

.

Example 3.4 (An example with �nite voabulary). Let L have a unary relation U ,

a unary funtion symbol f , and a onstant symbol . In the model M,

M = fg [ fx

n

: n 2 !g

with  and all the x

n

's distint, U = fx

0

g, and

f() = ; f(x

0

) = x

0

; f(x

n+1

) = x

n

for eah n 2 !:

Here the theory T is !-ategorial but the Stone spae S

1

(T ) is in�nite. In fat,

all models of T are ountable, so M is the only model of T up to isomorphism.

Another elebrated result for logi with equality is Vaught's theorem [V℄ that

no omplete theory an have exatly two ountable models. This result fails in

logi without equality. By removing the onstant symbol  from the voabulary in

the preeding example, we get a omplete theory in logi without equality whih

has exatly two ountable models up to isomorphism (and no unountable models).

Hint: there is at most one element z suh that :U(f

n

(z)) for all n.

Example 3.5 Let M be a model with a unary relation V , a opy of the model from

Example 3.4 on V , and an equivalene relation with in�nitely many lasses on the

omplement of V .

In this example, T is �-ategorial for every in�nite �, but the interpretation

of V is ountably in�nite for every model of T . To see this, observe that the

theory of equality with in�nitely many elements is �-ategorial for every in�nite �.

This example is an artifat of the failure of the upward L�owenheim-Skolem-Tarski

theorem. In a �-ategorial theory in logi with equality, all in�nite de�nable sets

in a model of ardinality � have ardinality �.

4 Omitting Types

The ulprit behind the odd examples of !-ategorial theories is the Omitting Types

Theorem. The usual formulation of the theorem does not hold without equality; the

problem is that in the proof, one must onstrut a model out of onstant terms rather

than onstant symbols. We now give a version of the Omitting Types Theorem whih

holds for logi without equality.
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De�nition 4.1 We say that a set of formulas q(~y) with n free variables ~y is loally

realized by a theory U if for some m, there is a formula �(~x) with m free variables

~x and an n-tuple of terms ~�(~x) suh that �(~x) is onsistent with U and

U j= 8~x[�(~x) )  (~�(~x))℄

for all  2 q(~y). We also say that �(~x) and ~� witness the loal realization.

Theorem 4.2 (Omitting Types without Equality) Let U be a onsistent theory and

let q(~y) be a set of formulas in �nitely many free variables ~y. Suppose that

(i) q(~y) is realized in every model of U .

Then

(ii) U loally realizes q(~y).

Note that sine L is ountable, (i) holds if and only if q is realized in every

ountable model of U .

Here is a topologial formulation of loal realizing. An n-tuple of terms ~�(~x) in

m free variables ~x indues the ontinuous mapping

�̂ : S

m

(U) ! S

n

(U)

de�ned by

�̂(p) = f (~y) :  (~�(~x)) 2 pg:

We shall all the mapping �̂ a term mapping from S

m

(U) into S

n

(U). In logi with

equality, eah term mapping is open, but in logi without equality term mappings

need not be open. Then U loally realizes q(~y) if and only if:

(iii) For some m, there is a term mapping

�̂ : S

m

(U) ! S

n

(U)

suh that �̂

�1

(q) has a nonempty interior.

In the lassial Omitting Types Theorem for logi with equality, ~�(~x) is just ~x,

and �̂ is the identity mapping on S

n

(U). The present statement is di�erent even in

the ase that the voabulary L has only relation symbols.

In Examples 3.1 and 3.2, n = 2 with ~y = (y

1

; y

2

), and m = 1 with ~�(x) = (x; x).

In these examples, ondition (iii) holds for the nonisolated 2-type

q = fE

n

(y

1

; y

2

) : n 2 !g, and �̂ maps the one-point spae S

1

(T ) to q.

In Example 3.4, n = 1, and m = 0 with the onstant term � = . Condition

(iii) holds for the nonisolated 1-type q = f:U(f

n

(y)) : n 2 !g, and �̂ maps the

one-point spae S

0

(T ) to q.
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Proof of the Omitting Types Theorem. We assume that (ii) fails and prove

that (i) fails. To do this we must onstrut a model M of U whih omits (i.e. does

not realize) q(~y). Let n = j~yj.

Let C be a ountable set of onstant symbols whih are not in L. Then L

C

is

ountable, and we may arrange all the sentenes in a list

 

m

; m < !:

We also arrange all the n-tuples of variable-free terms in a list

~�

m

; m < !:

We will form an inreasing hain of theories U

m

for L

C

suh that for eah m:

(a) U

m

is onsistent and is a �nite extension of U ;

(b) If  

m

is onsistent with U

m

then  

m

2 U

m+1

;

() If  

m

= 9x�(x) and  

m

is onsistent with U

m

, then there exists  2 C suh

that �() 2 U

m+1

;

(d) There is a formula '(~y) 2 q(~y) suh that (:'(~�

m

)) 2 U

m+1

.

These onditions are the same as in the usual proof of the Omitting Types

Theorem for logi with equality (e.g. see [CK℄, p.80) exept that ondition (d) has

terms instead of a onstant symbols from C. The onstrution of the hain U

n

is

routine and is left to the reader, with the hint that the hypothesis \U does not

loally realize q(~y)" is used to get ondition (d).

The union U

!

=

S

m

U

m

is a omplete theory in L

C

. In view of (), U

!

has a

model M

0

= (M; 

M

)

2C

suh that eah element of M is the interpretation of a

variable-free term � of L

C

. By (d), the redut M of M

0

to L is a model of U whih

omits q(~y).

2

Corollary 4.3 Let T be a omplete theory and let q(~y) be a set of formulas with n

free variables ~y. Then onditions (i) and (ii) of the Omitting Types Theorem are

equivalent.

2

As in the ase of logi with equality, a minor modi�ation of the proof gives the

following Extended Omitting Types Theorem.

Theorem 4.4 Let U be a onsistent theory and for eah m < ! let q

m

be a set

of formulas with �nitely many free variables. Suppose that for eah m, U does not

loally realize q

m

. Then U has a model whih omits eah q

m

.

2
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5 !-ategorial Theories

In this setion we will use the Omitting Types Theorem to haraterize !-ategorial

theories. Let us say that U is a simple expansion of T if U = Th(M;~a) for some

ountable M j= T and �nite tuple ~a in M .

Corollary 5.1 The following are equivalent.

(i) T is !-ategorial.

(ii) Every ountable model of T is !-saturated.

(iii) For eah simple expansion U of T , every type q 2 S

n

(U) is loally realized

by U .

Proof. As in the ase of logi with equality, (i) ) (ii) is proved using the ompat-

ness theorem, and the onverse is proved with a bak and forth argument.

By the de�nition of !-saturation, (ii) holds if and only if for every simple expan-

sion U of T , every type q 2 S

n

(U) is realized in every ountable model of U . By the

Omitting Types Theorem, this is equivalent to ondition (iii).

2

We shall now give a nier haraterization in the ase that the voabulary L

has no funtion symbols. L may still have in�nitely many relation and/or onstant

symbols.

Theorem 5.2 Suppose the voabulary L has no funtion symbols. The following

are equivalent.

(i) T is !-ategorial.

(ii) Every ountable model of T is prime.

(iii) For eah n, every type in S

n

(T ) is realized in every model of T .

(iv) For eah n, every type in S

n

(T ) is loally realized by T .

Proof. Even without the hypothesis that L has no funtion symbols, it is lear

that (i) implies (ii) and (ii) implies (iii), and the equivalene of (iii) and (iv) follows

from the Omitting Types Theorem.

To omplete the proof we assume ondition (iv) and prove (i). Let U = Th(M;~a)

be a simple expansion of T , and let q 2 S

n

(U). By Corollary 5.1, it suÆes to prove

that q is loally realized by U . Let k = j~aj. Then q(~y) = r(~a; ~y) for some type

r(~u; ~y) 2 S

k+n

(T ). Let p(~u) be the projetion of r to S

k

(T ). Then U = p(~a).

We may assume without loss of generality that the tuple ~a ontains no repeats or

onstants from L. By (iv), there is a tuple of terms (~�(~x); ~�(~x)) and a formula �(~x)

suh that

T j= 9~x�(~x) ^ 8~x[�(~x) )

^

r(~�(~x); ~�(~x))℄:
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Sine L has no funtion symbols, ~� is a sequene of variables from ~x and onstant

symbols. Sine ~a ontains no repeats or onstants from L, ~� must be a k-tuple of

distint variables, whih we may take to be ~u. Let ~v be the variables in ~x whih do

not our in ~u, so that ~x = (~u;~v).

We laim that the formula 9~v �(~u;~v) belongs to the type p(~u). Proof of laim:

Suppose not. Sine p is omplete, :9~v �(~u;~v) belongs to p(~u). But then

T j= �(~u;~v) ) :9~v �(~u;~v);

and this ontradits the fat that

T j= 9~u9~v�(~u;~v):

Now replae the variables ~u with the onstant symbols ~a. The laim shows that

U j= 9~v �(~a;~v):

Sine U ontains T , we have

U j= 8~v[�(~a;~v) )

^

q(~�))℄:

This shows that U loally realizes q(~y) and ompletes the proof.

2

In the general ase that L has funtion symbols, we know from Example 3.3 that

(ii) does not imply (i). However, we do not know whether (iii) implies (ii).

We now onsider the existene of prime models. Using the same argument as for

logi with equality, one an show that if S

n

(T ) is at most ountable for eah n, then

every simple expansion of T has a prime model. Here is a neessary and suÆient

ondition for every simple expansion of T to have a prime model.

Proposition 5.3 The following are equivalent:

(i) Every simple expansion U of T has a prime model.

(ii) For every simple expansion U of T , every formula '(y) whih is onsistent

with U belongs to a 1-type q(y) whih is loally realized by U .

Proof. The impliation from (i) to (ii) is an easy orollary of the Omitting Types

Theorem.

Assume (ii). Let U be a simple expansion of T and let K be the voabulary

of U . Add a ountable sequene 

n

; n < ! of new onstant symbols to K and let

K

0

= K[f

n

: n < !g. We an form a list '

k

(y); k < ! of all formulas of K

0

with the

property that for eah k, at most the onstants 

n

; n < k our in '

k

. Let U

0

= U .
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By reursion, hoose a sequene of simple expansions U

k

of U to K [ f

n

: n < kg

and 1-types q

k

over U

k

suh that:

(a) q

k

(y) is loally realized by U

k

,

(b) q

k

(y) ontains the formula 9z'

k

(z) ) '

k

(y),

() U

k+1

= q

k

(

k

).

The sequene fU

k

g is an inreasing hain of omplete theories, so their union has

a model M

0

with voabulary K

0

. Let N

0

be the submodel of M

0

generated by the

onstants 

n

: n < !. By the riterion of Tarski and Vaught, N

0

� M

0

. Therefore

the redut N of N

0

to K is a model of U . By Corollary 4.3, q

k

(y) is realized in

every model of U

k

. It follows that every model O of U has a sequene of elements

b

n

; n < ! suh that for eah k,

(O; b

0

; : : : ; b

k�1

) j= U

k

:

The mapping 

n

7! b

n

generates an elementary embedding of N into O, so N is

prime.

2

6 Bounded Theories

The usual proof of the downward L�owenheim-Skolem-Tarski theorem goes through

for logi without equality; that is, if ! � � � � and T has a model of ardinality �,

then T has a model of ardinality �. In fat, every model for L of ardinality � has

an elementary submodel of ardinality �.

We have already seen from our examples that the orresponding upward theorem

fails; there are omplete theories whih have models of ardinality ! but no larger,

and omplete theories whih have models of ardinality 2

!

but no larger. In this

setion we shall see that ! and 2

!

are the only ardinals where this happens. This

shows that (2

!

)

+

is the Hanf number of �rst order logi without equality. We will

then show that any theory whih is ategorial in some unountable ardinal must

have models of arbitrarily large ardinality.

De�nition 6.1 T will be alled bounded if the lass of ardinalities of models of

T has an upper bound. Otherwise we say that T is unbounded.

By a fully saturated model we mean a model that is �-saturated for all ardinals

�. It is lear that M is fully saturated if and only if it is jM j

+

-saturated.
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Lemma 6.2 (i) If M is a fully saturated model T , then every model of T is ele-

mentarily embeddable in M, and every fully saturated model of T is isomorphi to

M.

(ii) T is bounded if and only if it has a fully saturated model.

Proof. (i) follows from the following two fats about a �-saturated model M of

T of ardinality at most � (see [CK℄, Setion 5.1). Any �-saturated model of T of

ardinality at most � is isomorphi to M, and any model of T of ardinality at most

� is elementarily embeddable in M.

(ii) Suppose T is bounded. Then for some �, all models of T have ardinality

at most �. But every T has a �

+

-saturated model M (of ardinality at most 2

�

).

Then M is jM j

+

-saturated and hene fully saturated.

Finally, suppose T has a fully saturated model M. By (i), every model of T

is elementarily embeddable in M and hene has ardinality at most jM j, so T is

bounded.

2

Lemma 6.3 Let M be a model of T . The following are equivalent:

(i) T is bounded.

(ii) Every equivalene relation de�nable without parameters in M has �nitely

many equivalene lasses.

(iii) Every equivalene relation de�nable with parameters in M has �nitely many

equivalene lasses.

Proof. We �rst prove that (i) implies (iii). Suppose that (iii) fails, so that M has

an equivalene relation with in�nitely many lasses de�ned by a formula �(x; y;~a)

with parameters ~a. Using the ompatness theorem, for eah ardinal �, M has an

elementary extension N in whih �(x; y;~a) de�nes an equivalene relation with at

least � lasses. Then jN j � �, so T is unbounded and (i) fails.

It is trivial that (iii) implies (ii).

We now assume (ii) and prove (i). The Leibniz ongruene relation is an in-

tersetion of ountably many equivalene relations E

n

; n 2 ! whih are de�nable

without parameters in M. By (ii), eah E

n

has �nitely many lasses. Sine we are

restriting attention to redued models, two elements of M whih are equivalent

with respet to eah E

n

are equal. Therefore jM j � 2

!

, and thus T is bounded.

2

Our next theorem will give a onrete representation of the fully saturated model

of a bounded theory T and all its elementary submodels, up to an isomorphism.

By a �nitely branhing tree we mean a tree T whih has ! levels and �nitely

many nodes at eah level. We denote the set of all branhes of T by B(T ), and give

11



B(T ) the usual topology where the set of all branhes through a node is a basi

lopen set. This topology is ompat and Hausdor�.

For eah n 2 ! we give B(T )

n

the produt topology. By a lopen relation on

B(T ) we mean a relation whih is lopen on B(T )

n

for some n. By a ontinuous

funtion of n variables on B(T ) we mean a ontinuous funtion from B(T )

n

into

B(T ).

Proposition 6.4 Suppose T is bounded. Then there is a �nitely branhing tree T

and a fully saturated model M of T suh that:

(i) M has universe B(T ).

(ii) A relation is de�nable with parameters in M if and only if it is lopen in

B(T ).

(iii) Eah funtion of �nitely many variables de�ned in M by a term is ontin-

uous on B(T ).

(iv) A subset M

0

� M is the universe of an elementary substruture of M if

and only if M

0

is dense in B(T ) and losed under eah funtion de�ned by a term.

Proof. Let E

n

; 0 < n < ! be a list of all equivalene relations de�nable without

parameters in M, and let D

n

= E

1

\ � � � \ E

n

. By Lemma 6.3, eah E

n

has �nitely

many equivalene lasses. Let D

0

= E

0

be the trivial equivalene relation with one

lass. Then eah D

n

has �nitely many equivalene lasses, and D

n+1

is a re�nement

of D

n

. Let T be the �nitely branhing tree suh that the set of nodes of T at level

n is equal to the set of equivalene lasses of D

n

, and whose order relation is reverse

inlusion. Identify eah element x 2M with the branh of T whose node at level n

is the D

n

-equivalene lass of x. It follows from full saturation that eah branh of

T is realized in M. Thus M has universe B(T ), and (i) holds.

(ii) Sine eah equivalene relation D

n

is de�nable in M, eah equivalene lass

of D

n

is de�nable with parameters in M. It follows that eah lopen relation is

de�nable with parameters in M.

For the onverse, suppose for example that a ternary relation R is de�ned by the

formula  (x; y; z;~a) with parameters ~a in M. Any de�nable equivalene relation in

M is re�ned by some D

n

. We may therefore hoose n large enough so that D

n

(b; )

implies

8y8z8~u [ (b; y; z; ~u) ,  (; y; z; ~u)℄;

8x8z8~u [ (x; b; z; ~u) ,  (x; ; z; ~u)℄;

8x8y8~u [ (x; y; b; ~u) ,  (x; y; ; ~u)℄:

Now suppose that

D

n

(x; x

0

); D

n

(y; y

0

); D

n

(z; z

0

); and R(x; y; z):

12



It then follows in turn that  (x; y; z;~a),  (x

0

; y; z;~a),  (x

0

; y

0

; z;~a),  (x

0

; y

0

; z

0

;~a),

and R(x

0

; y

0

; z

0

). This shows that the relation R is lopen with respet to the produt

topology in B(T ), and (ii) is proved.

(iii) Let S be a lopen set in B(T ) and �(x; y; z) a term of L. By (ii), S is de�n-

able by a formula  (u;~a). Then �

�1

(S) is de�nable by the formula  (�(x; y; z);~a),

and is lopen in B(T ) by (ii).

(iv) Let M

0

� M. It is lear that the universe M

0

is losed under funtions

de�ned by terms of L. Sine eah relation D

n

has �nitely many equivalene lasses

and is de�nable without parameters in M, M

0

must meet eah equivalene lass of

D

n

. Therefore M

0

is dense in B(T ).

For the onverse, suppose M

0

is dense in B(T ) and losed under eah funtion

de�ned by a term of L. Then M

0

is a substruture of M. Suppose M j= 9x (x;

~

b)

where

~

b is in M

0

. Sine M

0

is dense and the set de�ned by  (x;

~

b) in M is nonempty

and lopen, there exists a 2 M

0

suh that M j=  (a;

~

b). Thus M

0

� M by the

riterion of Tarski and Vaught.

2

Let us say that T is ountably bounded if all models of T are ountable, and

unountably bounded if T is bounded but has an unountable model.

Corollary 6.5 (i) T is ountably bounded if and only if T has a fully saturated

model of ardinality !.

(ii) T is unountably bounded if and only if T has a fully saturated model of

ardinality 2

!

.

(iii) T is unbounded if and only if every model of T has elementary extensions

of arbitrarily large ardinality.

Proof. By Lemma 6.2, T is bounded if and only if it has a fully saturated model.

By Proposition 6.4, if T is bounded then its fully saturated model an be identi�ed

with the set of branhes of a �nitely branhing tree. But any �nitely branhing tree

with unountably many branhes has 2

!

branhes. We onlude that (i) and (ii)

hold. Part (iii) follows easily from Lemma 6.3.

2

Reall that the Hanf number of a logi is the least ardinal � suh that any

theory whih has a model of ardinality at least � has models of arbitrarily large

ardinality.

Corollary 6.6 The Hanf number of �rst order logi without equality is (2

!

)

+

.

2
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7 Unountable Categoriity Implies Unbounded

In this setion we will show that a bounded theory annot be ategorial in an

unountable ardinal. In fat, an unountably bounded theory T has the maximum

possible number 2

�

of nonisomorphi models in eah unountable ardinal � � 2

!

.

We �rst onsider the ase that � � 2

!

< 2

�

.

Theorem 7.1 Suppose T is unountably bounded and � � 2

!

< 2

�

. Then T has 2

�

nonisomorphi models of ardinality �.

Proof. By Corollary 6.5, T has a fully saturated model M, and jMj = 2

!

. Let A

be a ountable elementary submodel of M. By Proposition 6.4, distint elements

of M realize distint 1-types over A.

We will use the result of Shelah [S℄, Theorem VIII 1.5 (4). It shows that in logi

with equality, if there are unountably many 1-types over a ountable struture A,

then there is a set S of 1-types over A suh that jSj = 2

!

, and for eah R � S there

is a struture B

R

� A whih realizes eah p 2 R and omits eah p 2 S n R. The

proof of this result still works in logi without equality. It follows that there is a

family of strutures K = fB

R

: R 2 [S℄

�

g suh that A � B

R

� M, jB

R

j = �, and

for all distint Q;R 2 [S℄

�

, there is no isomorphism from B

Q

to B

R

whih is the

identity on A.

The family K has ardinality 2

�

, and the relation of being isomorphi partitions

K into equivalene lasses. To omplete the proof it suÆes to show that there are

2

�

di�erent equivalene lasses. Suppose not. Then there is an equivalene lass K

0

of ardinality 2

�

. Choose C 2 K

0

, and for eah B

R

2 K

0

hoose an isomorphism

f

R

: B

R

�

=

C. There are only 2

!

di�erent mappings from A into C, and sine

2

!

< 2

�

, there are distint B

Q

;B

R

2 K

0

suh that the isomorphisms f

Q

and f

R

have the same restrition to A. But then by omposing isomorphisms we see that

B

Q

;B

R

are isomorphi by a mapping whih is the identity on A, and we have a

ontradition.

2

We now onsider the ase that ! < � < 2

�

= 2

!

. Shelah in [S℄, Theorem VIII

1.8, proved that any theory T in logi with equality whih is not !-stable has at

least 2

!

nonisomorphi models of ardinality �. His argument an be applied to

logi without equality to show that any unountably bounded theory has at least 2

!

nonisomorphi models of ardinality �. We will now prove a slightly stronger result

in this diretion.

Theorem 7.2 Suppose T is unountably bounded. Then T has a family K of models

suh that K has ardinality 2

!

, eah M 2 K has ardinality 2

!

, and whenever
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M 2 K;N 2 K, and M 6= N , no unountable elementary submodel of M is

elementarily embeddable in N .

Given two distint branhes b;  of a �nitely branhing tree T , let Æ(b; ) be the

level of the highest node on b\. We say that a mapping h from a subset Y � B(T )

into B(T ) is level-preserving if Æ(h(b); h()) = Æ(b; ) for all distint b;  2 Y . In

the fully saturated model M of Proposition 6.4, the relation Æ(x; y) = n says that n

is the least m for whih :E

m

(x; y), and hene is de�nable in M without parameters.

It follows that every elementary embedding from an elementary submodel of M into

M is level-preserving. Therefore Theorem 7.2 is a onsequene of Proposition 6.4

and the following topologial result on �nitely branhing trees.

Theorem 7.3 Let T be a �nitely branhing tree with unountably many branhes,

and let F be a ountable set of ontinuous funtions of �nitely many variables on

B(T ). Then there is a family fX

�

� B(T ) : � < 2

!

g suh that eah X

�

is a

dense subset of B(T ) of size ontinuum whih is losed under all f 2 F and for

eah distint �; �, there is no level-preserving mapping from an unountable subset

of X

�

into X

�

.

Proof. For simpliity, we �rst onsider the ase that

T = 2

<!

and B(T ) = B(2

<!

)

Later we indiate how to do the more general ase.

In this ase

De�nition 7.4 For any x; y 2 B(2

<!

)

Æ(x; y) = minfn 2 ! : x(n) 6= y(n)g

De�nition 7.5 For any set X � B(2

<!

) de�ne

Æ(X) = fÆ(x; y) : x; y 2 Xg

Clearly, Æ(X) is in�nite for any in�nite X.

We will onstrut X

�

and A

�

� ! suh that the A

�

are pairwise almost disjoint,

i.e.

A

�

\ A

�

is �nite

whenever � 6= �, and for any � we an deompose X

�

into ountable many sets

X

�

=

[

fX

n

�

: n 2 !g

15



suh that Æ(X

n

�

) � A

�

for eah n < !. This implies that there an be no level-

preserving map from any unountable subset of X

�

into X

�

. For suppose there were

a level-preserving bijetion h : Y ! Z with Y � X

�

and Z � X

�

. By utting down

the unountable set Y we may assume that there exists n and m suh that Y � X

n

�

and Z � X

m

�

. Level preserving implies that Æ(Y ) = Æ(Z), but then

Æ(Y ) = Æ(Z) � A

�

\ A

�

;

ontraditing the fat that A

�

and A

�

are almost disjoint.

The general ase is a little messy, but the ideas are fairly simple. For the onve-

niene of the reader we do a simple ase �rst.

We �rst do the ase that F is empty. In this ase we may take the family

fA

�

: � < 2

!

g to be any family of in�nite pairwise almost disjoint subsets of !.

Then de�ne

X

�

= fx 2 B(2

<!

) : 8

1

l (x(l) = 1 ) l 2 A

�

)g

8

1

l means \for all but �nitely many l". It is easy to see that X

�

is dense. Also, for

any n 2 ! and any s 2 2

n

, if we de�ne

X

�

(s) = fx 2 B(2

<!

) : s � x and 8l > n (x(l) = 1 ) l 2 A

�

)g

then

Æ(X

�

(s)) � fl 2 A

�

: l � ng and X

�

=

[

s22

<!

X

�

(s):

Now we onsider the general ase. We may assume that F is a family of ontinu-

ous operations whih ontains the identity funtion and is losed under omposition.

Also, we may as well assume that for eah s 2 2

<!

there is an operation f 2 F suh

that f maps B(2

<!

) one-to-one into [s℄, where

De�nition 7.6 For s 2 2

<!

de�ne [s℄ = fx 2 B(2

<!

) : s � xg.

Thus it is unneessary to guarantee that X

�

is dense; we will only need to

onstrut Y

�

� B(2

<!

) of ardinality ontinuum and then let X

�

be the losure of

Y

�

under the operations of F .

Before diving into the details we give the general idea. Our plan is to onstrut

a sequene k

m

< k

m+1

so that roughly speaking for eah n-ary operation f 2 F and

~x; ~y 2 Y

n

�

If

k

m

< Æ(f(~x); f(~y)) < k

m+1

then k

m

< Æ(u; v) < k

m+1

for some u; v from ~x [ ~y.
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De�nition 7.7 For s 2 2

l

and l < k, let hs; ki 2 2

k

be the unique element of 2

k

suh that s � hs; ki and hs; ki(i) = 0 for all i with l � i < k. In other words, hs; ki

is the sequene of length k gotten by extending s with zeros.

Lemma 7.8 Suppose F � F is �nite and k < !. Then there exists l > k suh that

for every n-ary f 2 F and (r

i

2 2

k

: i < n) there exists a t 2 2

k

suh that

f(

Y

i<n

[hr

i

; li℄) � [t℄

Proof. This is easy, just use the ontinuity of the f 's.

2

Now write F = [fF

n

: n < !g as an inreasing union of �nite sets. By iteratively

applying the last lemma we get:

There exist inreasing sequenes

(k

m

2 ! : m < !) and (l

m

2 ! : m < !)

with k

m

< l

m

< k

m+1

satisfying the following onditions:

Let

L = fl

m

: m < !g and T = fs 2 2

<!

: 8l (s(l) = 1 ) l 2 L)g:

Then for any m < !;

1. For every n-ary f 2 F

m

and

�

s

i

2 T \ 2

l

m

: i < n

�

there exists t 2 2

k

m

suh

that

f(

Y

i<n

[s

i

℄) � [t℄:

2. For any n-ary f 2 F

m

and

(r

i

2 T \ 2

k

m+1

) : i < n) and (t

i

2 T \ 2

k

m+1

) : i < n);

if there exists k � k

m+1

with the property that there are distint r; t 2 2

k

with

f(

Y

i<n

[hr

i

; ki℄) � [r℄ and f(

Y

i<n

[ht

i

; ki℄) � [t℄;

then k

m+1

already has this property.
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This follows from the previous lemma. First we get l

m

> k

m

by applying Lemma

7.8 with k = k

m

and then we get k

m+1

as the maximum of �nitely many k's.

Given (B

�

: � < 2

!

) in�nite pairwise almost disjoint subsets, de�ne Y

�

as follows:

Y

�

= fx 2 B(2

<!

) : 8l < ! (x(l) = 1 ) 9m 2 B

�

l = l

m

)g

and de�ne

A

�

= fi : 9m 2 B

�

k

m

� i < k

m+1

g:

Lemma 7.9 Suppose m

0

2 B

�

, f 2 F

m

0

is n-ary, and ~x; ~y 2 Y

n

�

. Then

Æ(f(~x); f(~y)) 2 A

�

[ k

m

0

+1

Proof. Suppose for ontradition that

k

m

� Æ(f(~x); f(~y)) < k

m+1

for some m > m

0

suh that m =2 B

�

. By our onstrution l

m

has the following

property:

Let r

i

= x

i

j

l

m

and let s

i

= y

i

j

l

m

for eah i < n. Then there exists

r; s 2 2

k

m

suh that

f(

Y

i<n

[r

i

℄) � [r℄ and f(

Y

i<n

[s

i

℄) � [s℄

Beause k

m

� Æ(f(~x); f(~y)), it must be that r = s.

Let m

1

� m

0

be the largest element of B

�

suh that m

1

� m. So m

0

� m

1

< m

and note that there is there is no splitting going on in Y

�

between l

m

1

+ 1 and k

m+1

,

i.e., if u; v 2 Y

�

, then Æ(u; v) � l

m

1

or Æ(u; v) � l

m+1

.

Sine m =2 B

�

and x

i

; y

i

2 Y

�

it must be they are identially zero on all l with

l

m

1

< l < l

m+1

. But l

m+1

has been hosen so that for some r

0

; s

0

2 2

k

m+1

f(

Y

i<n

[x

i

j

l

m+1

℄) � [r

0

℄ and f(

Y

i<n

[y

i

j

l

m+1

℄) � [s

0

℄

Sine we are assuming Æ(f(~x); f(~y)) < k

m+1

it must be that r

0

6= s

0

, but then

this ontradits the way we have hoose k

m

1

+1

, i.e., it must be that m

1

= m and

therefore m 2 B

�

.

2

It follows from Lemma 7.9 that for any t 2 2

k

m

0

+1

and n-ary f 2 F

m

0

that

Æ ([t℄ \ f(Y

n

�

))) � A

�
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and sine the losure of Y

�

under the operations of F an be written as a ountable

union of suh sets, Theorem 7.3 has been proven for the speial ase that B(T ) =

B(2

<!

).

Now we indiate the modi�ations neessary to prove the Theorem in general.

Let T

0

be the subtree of T onsisting of all those nodes of T whih have unountably

many branhes thru them. Clearly,

Q = B(T ) nB(T

0

)

is ountable. Without loss of generality, we may assume that F also ontains all

operations whih an be obtained by substituting elements of Q, e.g., if f 2 F is

binary and a 2 Q then the unary operation g(x) = f(x; a) would also be in F . Thus

we may hoose Y

�

� B(T

0

) and then take

X

�

= Q [

[

ff(Y

n

�

) : f 2 F ; n-ary for some n 2 !g

and then X

�

will be losed under the operations of F .

In the proof, we need to de�ne hs; ki where s 2 T

0

is at level l and k � l. Put

a linear ordering on T

0

and then take hs; ki to be the node of T

0

at level k whih

extends s and whih is obtained by always taking the leftmost immediate branh.

The only other plae in the proof that needs �xing is that we an not neessarily

assume that the tree branhes between level l

n

and l

n

+ 1. Hene, we would hoose

l

0

n

> l

n

so that

� eah s 2 T

0

at level l

n

has at least two inompatible extension in T

0

at level

l

0

n

and

� k

n

< l

n

< l

0

n

< k

n+1

Then we would take Y

�

= B(T

�

), where T

�

is the subtree of T

0

, where nodes an

be extended arbitrarily between levels l

n

and l

0

n

if n 2 B

�

, but otherwise must be

extended by using hs; ki, i.e., the leftmost path. The hoie of k

n

is exatly the same

and so is the rest of the proof.

2

Combining Theorems 7.1 and 7.2, we have

Theorem 7.10 Suppose T is unountably bounded. Then for every unountable

ardinal � � 2

!

, T has 2

�

nonisomorphi models of ardinality �.

Corollary 7.11 If T is unountably bounded, then for every unountable ardinal

�, T is not �-ategorial.

2
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8 The  Lo�s Conjeture

In this setion we show that the  Lo�s Conjeture, whih was proved for logi with

equality by Morley [M℄, also holds for logi without equality. The proof follows the

same outline as the proof in [CK℄, whih uses a two-ardinal omitting type theorem.

We will refer to arguments from [CK℄ when we an, and indiate the modi�ations

that are needed for logi without equality.

Reall that T is �-stable if for every model M of T and every subset X �M of

ardinality �, the theory Th(M

X

) has � 1-types.

Proposition 8.1 If T is �-ategorial in some unountable ardinal �, then T is

!-stable.

Proof. By Corollary 7.11, T is unbounded, so by Lemma 6.3, there is a formula

E(x; y) whih de�nes an equivalene relation with in�nitely many lasses in every

model of T . One an now follow the proof of the orresponding result for logi with

equality (Lemma 7.1.4 in [CK℄) but replae equality by E(x; y).

2

Lemma 8.2 If T is !-stable, then for every model M of T , regular ardinal � > !,

and set Y � M of ardinality �, there is an equivalene relation E(x; y) whih is

de�nable in T without parameters suh that the restrition of E

M

to Y � Y has �

equivalene lasses.

Proof. Suppose the result fails for a model M of T and set Y � M of regular

ardinality � > !. Let E

n

; 0 < n < ! be a list of all equivalene relations de�nable

without parameters in T , and let D

n

be the restrition of E

1

\ � � � \ E

n

to Y � Y .

Let T be the tree whose nodes at level n are the D

n

-equivalene lasses and whose

ordering is reverse inlusion. Call a node t of T large if there are at least � branhes

through t. Then the root of T is large, but at eah level, T has fewer than � nodes.

It follows that for eah large node t of T there are two disjoint large nodes above

t. But then T has a subtree with ountably many nodes and unountably many

branhes. Therefore M has a ountable subset X suh that there are unountably

many types over M

X

, so T is not !-stable.

2

Proposition 8.3 If T is !-stable, then T is �-stable for every in�nite ardinal �.

Proof. Suppose T is not �-stable, so T has a model M whih realizes �

+

types

over some set X � M of power �. By Lemma 8.2, there is an equivalene relation
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E(x; y) de�nable in T and a subset Y � M suh that jY j = �

+

, the restrition of

E

M

to Y � Y is the equality on Y , and any two distint elements a; b 2 Y realize

di�erent types in M

X

. One an now repeat the proof of the orresponding result

for equality logi (Lemma 7.1.3 in [CK℄) but with the relation E(x; y) in plae of

equality.

2

De�nition 8.4 A model M of T is said to be primary over a subset A � M if

there is a sequene hb

�

: � < �i of elements of M suh that

(i) A [ fb

�

: � < �g generates M,

(ii) For eah formula '(y) in L

A

[ fb

�

: � < �g there exists  < � suh that

(M

A

; b

�

)

�<�

j= 9y'(y) ) '(b



):

(iii) For eah � < �, the 1-type of b

�

in Th((M

A

; b

�

)

�<�

) is isolated, (i.e. b

�

satis�es a maximal onsistent formula).

It is lear that every primary model over A is prime over A.

Lemma 8.5 Suppose T is !-stable. Then for every model M of T and every set

A �M , M has an elementary submodel whih is primary over A.

Proof. Sine T is !-stable, a binary tree argument shows that for every B � M ,

every formula '(y) whih is onsistent with Th(M

B

) is implied by a formula  (y)

whih is maximal onsistent with Th(M

B

). By trans�nite reursion, one an build a

sequene hb

�

: � < �i in M suh that onditions (ii) and (iii) in the above de�nition

hold. Condition (ii) implies that � > 0. It follows that the set A [ fb

�

: � < �g is

nonempty, and generates a submodel M

0

of M whih is an elementary submodel

and is primary over A.

2

We need one more lemma, whih is the analogue of Lemma 7.1.13 in [CK℄ for

logi without equality.

Lemma 8.6 Suppose T is !-stable and M is an unountable model of T . Then

there is a proper elementary extension N � M suh that every ountable set of

formulas �(y) whih is realized in N

M

is realized in M

M

.

Proof. By !-stability and a binary tree argument, there is a de�nable set D in

M

M

suh that D is unountable, but for any de�nable subset C � D, either C or

DnC is ountable. By Lemma 8.2, there is an equivalene relation E(x; y) de�nable

without parameters in T whose restrition to D has unountably many equivalene
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lasses. One an now use Lemma 8.5, and the proof of Lemma 7.1.16 in [CK℄ with

E(x; y) in plae of equality, to obtain the required model N �M.

2

Theorem 8.7 ( Lo�s Conjeture) If T is �-ategorial for some unountable ardinal

�, then T is �-ategorial for every unountable ardinal �.

Proof. We have shown that T is unbounded and stable in every in�nite ardinal.

Now the usual proof that T has an !

1

-saturated model in every unountable ardinal

goes through (see [CK℄, Lemma 7.1.6). Finally, one an use Lemma 8.6 and the

argument in [CK℄, p. 494, to show that T is �-ategorial.

2
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