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Descriptive set theory is the study of definable sets of real numbers. More
generally, we could consider subsets of any Polish space, i.e., a separable com-
plete metric space.

In fact, it is often most convenient to work in the Baire space, w“. The
symbol w denotes set of nonnegative integers or equivalently the first infinite
ordinal number, w = {0, 1,2, 3,...}. Elements of w* can be thought of either as

infinite sequences of elements of w or as functions f : w — w. The metric on w*
is defined by

d(f,q) = n%_l Where n is the least such that f(n) # g(n)
9 0 iff=g

Baire showed that under this topology the Baire space w® is homeomorphic
to the irrational numbers with their usual topology.

The first person to consider definable sets of real number was probably Borel.
Borel reasoned that basic open sets should be considered definable and if we
allow countably many bits of information, then the family of definable sets
should be closed under taking countable unions and countable intersections.
This is the family of Borel sets.

The classical hierarchy on Borel sets is defined as follows.

1. Z](l) is the family of open sets.

2. IIY is the family of closed sets.

3. XY is the family of sets which are the countable unions of II{ sets.

4. MY is the family of sets which are the countable intersections of X9 sets.
5

. In general, for each countable ordinal o, £ is the family of sets which
are the countable unions of sets each of which is 1:[% for some 8 < a and
II1? is the family of sets which are the countable intersection of sets each
of which is 2% for some (8 < a.

6. A% = X0 NI

By DeMorgan’s laws it is easy to see that the II? sets are precisely the
sets whose complement is ¥0. Lebesgue proved that each of these classes are
nontrivial, i.e., for any countable ordinal « there are sets in 2 which are not in
II° and hence vice-versa. We can think of the Borel sets as being closed under
quantification over w, so the next higher classes would be those in the projective
hierarchy, i.e., closure under quantification over w®.

Suppose X is a Polish space and A C X. Then A is ¥} in X iff there exists
a Borel set B C w* x X such that

ye Aiff Iy e w” (z,y) € B



Figure 1: The Borel hierarchy and a little beyond

Thus the X1 sets or analytic sets are precisely those which are the projection of
a Borel set. The family of IT1 are exactly those which are the complements of
»1. Figure 1 shows how some of these classes of sets are arranged.

Analytic sets have been studied in the context of general topological spaces
by C.A.Rogers, L.E.Jayne, A.H.Stone, and many others, see [12]. Continuing
up the projective hierarchy, we take X3 to be the family of projections of II}
sets and II% to be the complements of X3, etc. It is a classical result that the
class of Borel sets coincides exactly with the Al-sets, i.e. those sets which are
both X1 and IIi.

Early descriptive set theorists, Sierpiniski, Luzin, Suslin, Kuratowski, Borel,
Baire, and Lebesgue, were concerned with questions about the regularity of
projective sets of reals. For example, it was shown that any uncountable X1 set
must contain a perfect subset, i.e., a homeomorphic copy of the Cantor space,
2¢ = {0,1}¥. They showed that ¥} sets are Lebesgue measurable and have the
Property of Baire. They also proved that any X2 is the w; union of Borel sets.
See [6] [7] [8] [11].

In the 1930’s Kurt Goédel as a consequence of his work on the consistency
of continuum hypothesis, showed that it was consistent with the usual axioms
of set theory that there is a Al set which neither contains nor is disjoint from
a perfect set. Such a set cannot have the property of Baire or be Lebesgue
measurable.

In 1960’s Robert Solovay using the forcing technique of Paul Cohen, was
able to show (relative to the consistency of an inaccessible cardinal) that it is
consistent that every projective set of reals is Lebesgue measurable, has the
property of Baire, and has the perfect subset property.

The strongest known regularity property is called determinacy, it arose from
the study of infinite two person games in the 1950’s (see [5]). It implies the
perfect set property, Lebesgue measurability and the Baire property, as well
as, many other natural properties of the projective sets. It was a celebrated
theorem of D.A.Martin that Borel sets are determined. In fact, one of the
reasons this proof was difficult to find, was proved earlier by Harvey Friedman
who showed that a proof of Borel determinacy must necessarily use uncountable
many uncountable cardinals. The axiom of determinacy for projective sets was
established by D.A.Martin and John Steel using large cardinal axioms, specifi-
cally infinitely many Woodin cardinals. The large cardinal assumption was also
shown to be necessary. This confirmed a conjecture of Solovay who was the first
to connect large cardinal theory with the axiom of determinacy. Kanomori’s



book [3] contains many of the results on large cardinal theory in set theory.

In 1970’s, Jack Silver proved the following theorem about Borel equivalence
relations, or actually IIi equivalence relations. Namely, every II1 equivalence
relation with uncountably many equivalence classes must contain a perfect set
of inequivalent members. John Burgess established a similar theorem for X
equivalence relations, namely any such equivalence relation with more than
w1 equivalence classes must have a perfect set of inequivalent elements. Leo
Harrington using a topology invented by Robin Gandy gave a simpler proof of
Silver’s Theorem. This technique achieved great success at proving a number
of other results using effective descriptive set theory. For example, Louveau’s
theorem, the Borel-Dilworth Theorem, and Glimm-Effros-Kechris-Harrington
Dichotomy Theorem were all proved using this technique. See [2] [4] [5] [9] [10].
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