Cohen forcing preserves being a γ -set but not the Borel-Hurewicz property

Arnold W. Miller Sept 2012

Marion Scheepers proved that random real forcing preserves being a γ -set. Boas Tsaban asked if the same is true for Cohen real forcing.

Proposition 1 Suppose in the ground model M that $X \subseteq 2^{\omega}$ is a γ -set and $\mathbb{P} = 2^{<\omega}$ is Cohen real forcing. Then for any $G \mathbb{P}$ -generic over M

$$M[G] \models X \text{ is a } \gamma\text{-set.}$$

Proof Work in M. Suppose

 $p_0 \Vdash \overset{\circ}{\mathcal{U}}$ is an ω -cover of X with clopen sets and is downward closed.

To simplify our notation assume that p_0 is the trivial condition or replace \mathbb{P} by the conditions stronger than p_0 . For each $p \in \mathbb{P}$ define

$$\mathcal{U}_p = \{ C : \mu(C) < \frac{1}{2^{|p|+1}} \text{ and } \exists q \le p \quad q \Vdash C \in \overset{\circ}{\mathcal{U}} \}.$$

It is easy to check that each \mathcal{U}_p is an ω -cover of X. Hence we may find $(C_p \in \mathcal{U}_p : p \in \mathbb{P})$ a γ -cover of X. Let $f : \mathbb{P} \to \mathbb{P}$ be such that $f(p) \leq p$ and $f(p) \Vdash C_p \in \overset{\circ}{\mathcal{U}}$.

Let G be \mathbb{P} -generic over M and define

$$\mathcal{V} = \{ C_p : f(p) \in G \}.$$

Then $\mathcal{V} \subseteq \mathcal{U}$ is a γ -cover of X. Note that there must be infinitely many p with $f(p) \in G$ since no p can force that there are only finitely many. The measure condition on \mathcal{U}_p guarantees that \mathcal{V} is infinite. QED

Another question asked by Tsaban is whether it possible that adding a Cohen real can destroy the Hurewicz property in the case of a totally imperfect set. Scheepers and Tall showed that adding a Cohen real destroys the property that the ground model's Cantor set is Hurewicz. **Proposition 2** Suppose that $M \models X \subseteq 2^{\omega}$ is a Sierpinski set. If \mathbb{P} is Cohen real forcing, then for any $G \mathbb{P}$ -generic over M

$$M[G] \models X$$
 does not have the Hurewicz property.

Proof

It is well-known that forcing with \mathbb{P} is equivalent to forcing with any non-trivial countable poset. Here is the poset we use:

 $p \in \mathbb{P}$ iff $p = (\vec{C_k} : k < n)$ for some n where each $\vec{C_k} = (C_{k,i} : i < n_k)$ is a finite sequence of clopen sets in 2^{ω} with $\mu(\bigcup_{i < n_k} C_{k,i}) < \frac{1}{2^k}$. Then $p \leq q$ iff $n_p \geq n_q$ and $\vec{C_k}^p$ extends $\vec{C_k}^q$ for $k < n_q$.

Now let G be \mathbb{P} -generic over M and in M[G] define $(\mathcal{U}_n : n < \omega)$ by

$$\mathcal{U}_k = \{ (C_{k,i})^p : \exists p \in G \ k < (n)^p \text{ and } i < (n_k)^p \}.$$

It easy to check that each \mathcal{U}_k is a cover of $2^{\omega} \cap M$ and hence of X. We claim that in M[G] there does not exists $g : \omega \to \omega$ with the property that for every $x \in X$ there exists N such that $x \in \bigcup_{i < g(n)} C_{n,i}$ for all n > N.

Work in M. Suppose for contradiction that there exists p_0 such that

$$p_0 \Vdash \forall x \in X \exists N \; \forall n \ge N \; \check{x} \in \bigcup_{i < \mathring{g}(n)} \mathring{C}_{n,i}$$

For each $p \leq p_0$ and N define

$$X(p,N) = \{ x \in X : \forall n \ge N \ p \Vdash \check{x} \in \bigcup_{i < \mathring{g}(n)} \mathring{C}_{n,i} \}.$$

Note that

$$X = \bigcup \{ X(p, N) : p \le p_0 \text{ and } N < \omega \}.$$

Since \mathbb{P} is countable there must exist $p \leq p_0$ and N for which X(p, N) is uncountable and since X is Sierpinski, X(p, N) has positive outer measure. Note that if $q \leq p$ and $N' \geq N$, then $X(q, N') \supseteq X(p, N)$. Hence by extending p and increasing N if necessary we may suppose that

1. $\mu^*(X(p,N)) > \frac{1}{2^N}$,

2.
$$p \Vdash \overset{\circ}{g}(N) = \check{L}$$
, and

3. $N < n_p$ and the length of $(\vec{C}_N)^p$ is at least L.

Since $\mu(\bigcup_{i < L} (C_{N,i})^p) < \frac{1}{2^N} < \mu^*(X(p,N))$, we can choose $x \in X(p,N)$ with x not in $\bigcup_{i < L} (C_{N,i})^p$. But this contradicts

$$p \Vdash \check{x} \in \bigcup_{i < \mathring{g}(N)} \overset{\circ}{C}_{N,i} \text{ and } p \Vdash \overset{\circ}{g}(N) = \check{L}$$

QED

Note that Sierpinski sets have the Hurewicz property with respect to Borel covers also. Zdomskyy and Tsaban point out that Proposition 2 directly contradicts Theorem 40 of Scheepers and Tall [1].

Alan Dow asked "Can adding one Cohen real lower the value of \mathfrak{b} ?"

Proposition 2 shows that this is possible. Start with a model M where $\mathfrak{b} = \omega_2 = \mathfrak{c}$ or any larger regular cardinal. Then force with the measure algebra on 2^{ω_1} . In the model M[H] the smallest unbounded set is still ω_2 since the reals added by random real forcing are bounded by ground model reals. Let G be \mathbb{P} generic over M[H]. Proposition 2 gives us a sequence of covers $\mathcal{U}_n = \{C_{n,m} : m < \omega\}$ of the generic Sierpinski set X_H determined by H. For each $x \in X_H$ let $f_x(n)$ be the least m with $x \in C_{n,m}$. Then in M[H][G] the set $\{f_x : x \in X_H\}$ is unbounded in ω^{ω} . Hence $\mathfrak{b} = \omega_1$.

References

 Scheepers, Marion; Tall, Franklin D.; Lindelof indestructibility, topological games and selection principles. Fund. Math. 210 (2010), no. 1, 1-46.

The following remark is due to Janusz Pawlikowski (email June 2013)

1. any set that is null and Hurewicz is covered by a null F_{σ} set,

2. given models $M \subseteq N$: if no real from N is eventually different over M (e.g., if the reals from M are nonmeager in N), then any null F_{σ} set coded in N is covered by a null G_{δ} set coded in M, so, if a nonnull set from M becomes in N null and Hurewicz, then N adds an eventually different real over M,

3. in particular, Cohen cannot force a Sierpinski set to keep the Hurewicz property.