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We say that E ⊆ X × X is a clopen graph on X iff E is symmetric
and irreflexive and clopen relative to X2\∆ where ∆ = {(x, x) : x ∈ X}
is the diagonal. Equivalently E ⊆ [X]2 and for all x 6= y ∈ X there are
open neighborhoods x ∈ U and y ∈ V such that either U × V ⊆ E or
U × V ⊆ X2\E.

For clopen graphs E1, E2 on spaces X1, X2, we say that E1 continuously
reduces to E2 iff there is a continuous map f : X1 → X2 such that for every
x, y ∈ X1

(x, y) ∈ E1 iff (f(x), f(y)) ∈ E2.

Note that f need not be one-to-one but there should be no edges in the
preimage of a point. If f is a homeomorphism to its image, then we say that
E1 continuously embeds into E2.

Theorem 1 There does not exist countably many clopen graphs on the Baire
space, ωω, such that every clopen graph on ωω can be continuously reduced
to one of them. However, there are ω1 clopen graphs on ωω such that every
clopen graph on ωω continuously embeds into one of them.

Since one can take a countable clopen separated union of countably many
clopen graphs on ωω, having countably many is the same as having one
universal graph.

Definition 2 For R ⊆ ωω × ωω, C and D clopen subsets of ωω, and α an
ordinal define

1. rankR(C ×D) = 0 iff C ×D ⊆ R or R ∩ (C ×D) = ∅

2. rankR(C ×D) ≤ α iff there are partitions of C and D into clopen sets:
C = ti<ωCi and D = tj<ωDj such that rankR(Ci×Dj) < α for all i, j
in ω.

We use t to mean disjoint union.

Since we allow Ci’s and Dj’s to be empty, it is clear that:
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Proposition 3 If rankR(C × D) ≤ α and C ′ ⊆ C and D′ ⊆ D, then
rankR(C ′ ×D′) ≤ α.

More generally:

Proposition 4 Suppose f : C t D → C ′ t D′ is a continuous reduction of
R ⊆ C ×D to R′ ⊆ C ′ ×D′ and f−1(C ′) = C and f−1(D′) = D. Then

rankR(C ×D) ≤ rankR′(C ′ ×D′).

Proof
Since f is continuous, clopen partitions C ′ = tC ′i and D′ = tD′j induce
clopen partitions C = tif−1(C ′i) and D = tjf−1(D′j).
QED

Definition 5 For E a clopen graph on ωω define

rank(E) = sup{rankE(C ×D) : C and D are disjoint clopen sets}.

Lemma 6 If E is a clopen graph on ωω, then rank(E) < ω1.

Proof
Given incomparable s0, t0 ∈ ω<ω with the same length look at the tree T :

(s, t) ∈ T iff

1. s0 ⊆ s, t0 ⊆ t, |s| = |t|, and

2. both ([s]× [t]) ∩ E and ([s]× [t]) \E are nonempty.

Let

T ∗ = {(s0, t0)} ∪ {(sˆ〈i〉, tˆ〈j〉) : (s, t) ∈ T and i, j ∈ ω}.

Since E ∩ ([s0]× [t0]) is clopen, T ∗ is well-founded and T ∗\T is the set of the
terminal nodes of T ∗. Let r be the standard rank function on T ∗, i.e.,

• r(s, t) = 0 iff (s, t) ∈ T ∗\T

• r(s, t) = sup{r(sˆ〈i〉, tˆ〈j〉) + 1 : i, j ∈ ω} if (s, t) ∈ T .
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Note that rankE([s] × [t]) ≤ r(s, t) for (s, t) ∈ T ∗. Take any countable
ordinal α such that for every s ∈ ω<ω and distinct i, j ∈ ω we have that
rankE([sˆ〈i〉]× [sˆ〈j〉]) ≤ α.

For any s, t ∈ ω<ω which are incomparable, let n be the least such that
s � n 6= t � n. Then [s] ⊆ [s � n] and [t] ⊆ [t � n] and so by Proposition
3, rankE([s] × [t]) ≤ α. But any nonempty open set U can be written as
pairwise disjoint basic clopen sets, i.e., U = ti<ω[si] where si ∈ ω<ω. (To
see this just take for any x ∈ U the least n with [x � n] ⊆ U .) Hence for
any disjoint clopen sets C,D we have that rankE(C ×D) ≤ α + 1. And so
rank(E) ≤ α + 1.
QED

Lemma 7 For any α < ω1 there exists a clopen graph Eα on ωω such that
if E is any clopen graph on the Baire space such that Eα is continuously
reducible to E, then rank(E) ≥ α.

Proof
Let Q = {in, out} and α any countable limit ordinal. Put Γα = ω × (Q ∪ α)
with the discrete topology and define a clopen relation Rα ⊆ ωω × Γωα as
follows. Given x ∈ ωω and y ∈ Γωα construct sequences mi, ni ∈ ω and
αi ∈ α ∪Q as follows.

• x(0) = m0 and y(m0) = (n0, α0)

• x(ni−1) = mi and y(mi) = (ni, αi) for i ≥ 1.

To determine whether or not (x, y) ∈ Rα look at the first i such that either
αi ∈ Q or (i > 0 and αi ∈ α but not αi < αi−1). Note that such an i must
always occur since otherwise we would get an infinite descending sequence of
ordinals. Let i0 be the first such i and put (x, y) ∈ Rα iff αi0 = in.

Note that Rα is clopen since given any x, y ∈ ωω we can choose N suffi-
ciently large so that every pair in [x � N ] × [y � N ] will terminate the same
way (x, y) did.

Claim 7.1. Suppose s ∈ ω<ω and t ∈ Γ<ωα have the property that we can
define the sequences mi and (ni, αi) for i < N using the same prescription
as above:

1. s(0) = m0 and t(m0) = (n0, α0),
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2. s(ni−1) = mi and t(mi) = (ni, αi) for 1 ≤ i < N ,

3. α0 > α1 > · · · > αN−1 are all ordinals, and

4. s(nN−1) = mN ,

5. however mN ≥ |t| so we have not yet determined αN .

Then rankRα([s]× [t]) ≥ αN−1.

Proof
Suppose that αN−1 is the least ordinal for which this could be false (for any
s, t, N) and let rankRα([s] × [t]) = β < αN−1. It is easy to check that if
αN−1 > 0 then β cannot be zero since we may find extensions tin, tout of t
with tin(mN) = (·, in) and tout(mN) = (·, out).

Let [s] = tiCi and [t] = tjDj be clopen partitions with rankRα(Ci×Dj) <
β for all i, j. Extend s ⊆ s′ so that [s′] ⊆ Ci for some i. Extend t to t′ so that
t′(mN) = (|s′|, β) =def (nN , αN) and [t′] ⊆ Dj for some j. Finally extend s′

by putting s′′ = s′ˆ〈|t′|〉 so s′′(αN) = mN = |t′|. Now we are in the same
situation as before except αN = β is now defined. But

rankRα([s′′]× [t′]) ≤ rankRα(Ci ×Dj) < β = αN .

This violates the minimality of αN−1 and so proves the Claim.
QED

Now for any limit ordinal α and β < α let |s| = 2 and |t| = 1 be defined
by s(0) = 0, s(1) = 1 and t(0) = (1, β). By the claim rankRα([s] × [t]) ≥ β
and since these exist for every β < α, it follows that rank(Rα) ≥ α.

Now we adjust Rα to make its domain and range disjoint. Identify Γα
with ω and define Sα = {(0ˆ〈x〉, 1ˆ〈y〉) : (x, y) ∈ Rα}. Then Sα ⊆ C ×D
where C = [〈0〉] and D = [〈1〉] are disjoint clopen sets. Clearly rank(Sα) ≥ α
as it is a copy of Rα. Let C1 and D1 be nonempty clopen sets such that
C t C1 tD tD1 = ωω. Let

Pα = Sα ∪ (C1 ×D) ∪ (C ×D1)

Since Pα ∩ (C ×D) = Sα we know rank(Pα) ≥ α. If we let A = C ∪ C1 and
B = D ∪D1 then A and B are complementary clopen sets with Pα ⊆ A×B
and for every x ∈ A there is a y ∈ B with (x, y) ∈ Pα and for every y ∈ B
there is an x ∈ A with (x, y) ∈ Pα. (This property that everything is
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connected to something else might have already been true of Rα but if not,
in this step we have added it.)

Finally we define the clopen graph Eα. We put
(x, y) ∈ Eα iff (x, y) ∈ Pα or (y, x) ∈ Pα.

Then Eα is a true clopen graph, i.e., Eα is a clopen relation in (ωω)2 which
is symmetric and irreflexive. Also ωω = A t B where every element ωω is
connected to something else, but neither A nor B contain two elements which
are connected.

Claim 7.2. Suppose α a countable limit ordinal and there is a continuous
reduction of Eα to a clopen graph E. Then rank(E) ≥ α.
Proof
Let f : ωω → ωω be a continuous reduction and suppose for contraction that
rank(E) = β < α. Then in particular for every (x, y) ∈ A×B

(x, y) ∈ Pα iff (f(x), f(y)) ∈ E.

Let A′ = f(A) and B′ = f(B) We show that not only are these sets
disjoint but they have a stronger separation property.

For every z ∈ A′ ∪ B′ there exists some n such that f−1([z � n]) ⊆ A
or f−1([z � n]) ⊆ B. To see why let z = f(x) for some x ∈ A. By our
construction of Pα there is a y ∈ B with (x, y) ∈ Pα. By the reduction
(f(x), f(y)) ∈ E and since E is clopen [f(x) � n] × [f(y) � n] ⊆ E for some
n. So if f(u) ∈ [f(x) � n] then (f(u), f(y)) ∈ E and so (u, y) ∈ Pα. But this
implies u ∈ A since y ∈ B.

Now define Σ ⊆ ω<ω by

Σ = {s ∈ ω<ω : f−1[s] ⊆ A or f−1[s] ⊆ B}

and let
Σ0 = {s ∈ Σ : ∀t ∈ Σ t ⊆ s→ t = s}.

Note that the elements of Σ0 are pairwise incomparable and that

A = ts∈Σ0{f−1[s] : f−1[s] ⊆ A}

and
B = tt∈Σ0{f−1[t] : f−1[t] ⊆ B}

are clopen partitions of A and B. Since rank(E) ≤ β for any distinct s, t ∈ Σ0

we have that rankE([s]× [t]) ≤ β. By Proposition 4 we get that rank(Pα) ≤
β + 1 < α, which is a contradiction. This proves Lemma 7.
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QED

Lemma 8 There exists Uα for α < ω1 clopen graphs on ωω such that for
every clopen graph E on ωω there exists α < ω1 such that E continuously
embeds into Uα.

Proof
For any s ∈ ω<ω except the trivial sequence 〈〉 let s∗ be the parent of s,

i.e., the unique s∗ ⊆ s and |s∗| = |s| − 1.
Let α be a countable ordinal, Q = {in, out} (or more generally any count-

able set). A pair (T, l) is an α-tree iff T is a subtree of ω<ω and l : D → α∪Q
where D = {{s, t} ∈ [T ]2 : |s| = |t| and s 6= t} and l satisfies:

if (s, t) ∈ D and s∗ 6= t∗ then

1. if l(s∗, t∗) ∈ α then l(s, t) < l(s∗, t∗) or l(s, t) ∈ Q

2. if l(s∗, t∗) ∈ Q then l(s, t) = l(s∗, t∗).

Note that l is only defined on pairs with s 6= t of the same length. Also if
s∗ = t∗, then l(s, t) can be anything in α ∪Q. A compact way of stating the
above two conditions would be by taking the binary relation C on α ∪ Q
defined by xC y iff

1. x, y ∈ α and x < y,

2. x ∈ Q and y ∈ α, or

3. x, y ∈ Q and x = y.

Then our condition on l is equivalent to:
if (s, t) ∈ D and s∗ 6= t∗ then l(s, t)C l(s∗, t∗).

Given any clopen graph E we describe the canonical α-tree (ω<ω, l) asso-
ciated with it. For any distinct s, t of the same length if [s] × [t] ⊆ E, then
put l(s, t) = in, if ([s]× [t]) ∩ E = ∅, then put l(s, t) = out.

Let P = {(s, t) : l(s, t) ∈ Q} and note that P is closed downward. For
any s and distinct i, j ∈ ω the tree

Ts,i,j = {(t1, t2) : sˆ〈i〉 ⊆ t1, sˆ〈j〉 ⊆ t2, |t1| = |t2|, and (t1, t2) /∈ P}
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is a well-founded tree because E is clopen. Let l � Ts,i,j be its rank function.
Picking α large enough makes (ω<ω, l) an α-tree.

Next we construct a universal α-tree (ω<ω, L). It will be very strongly
universal in the following sense: Suppose that (T, l) is any α-tree. Then there
will exists σ : ω<ω → ω<ω which is tree embedding, i.e,

1. σ is one-to-one and level preserving, i.e., |σ(s)| = |s|

2. σ preserves the tree ordering, i.e., s ⊆ t implies σ(s) ⊆ σ(t)

3. σ preserves the labeling on edges, i.e., l(s, t) = L(σ(s), σ(t)) for any
distinct s, t of the same length.

It easy to see that σ induces a continuous embedding f : [T ] → ωω by
f(x) =

⋃
n<ω σ(x � n) which reduces the graph associated to l to the one

associated with L.
We construct L to have the following property:

For any n < ω, p ∈ ωn, finite F ⊆ ωn+1, and f : F → α ∪ Q
consistent with L, there will be infinitely many t ∈ ωn+1 with
t∗ = p such that L(t, s) = f(s) for all s ∈ F . By f consistent
with L we mean: for all s ∈ F if s∗ 6= p, then f(s)CL(p, s∗).

First let us check that it is possible to construct L with this property.
Let (pn, Fn, fn) list with infinitely many repetitions all triples (p, F, f) with
p ∈ ω<ω, F ⊆ T ∩ ωk+1 where |p| = k, and f : F → α ∪ Q arbitrary.
Construct (Tn, Ln) an α-tree with Tn finite, Tn ⊆ Tn+1 and Ln ⊆ Ln+1 and if
pn ∈ Tn, Fn ⊆ Tn, and fn consistent with Ln, then there exists t ∈ Tn+1\Tn
with pn = t∗ such that Ln+1(s, t) = fn(s) for all s ∈ Fn. This can be done as
follows: choose any t /∈ Tn with t∗ = pn. For s ∈ Fn define Ln+1(s, t) = fn(s).
For all other s ∈ Tn with |s| = |t| and s∗ 6= t∗ put Ln+1(s, t) = q for any
q ∈ Q with qCLn(s∗, t∗).

Second let us check that this property is all that is needed for universality.
Write any α-tree as an increasing union of finite subtrees Tn gotten by adding
one new child to some node from Tn, i.e., Tn+1 = Tn∪{rn} where r∗n ∈ Tn but
rn /∈ Tn. The map σ is constructed by extending σ � Tn to Tn+1 by defining
σ at rn. Without all the subscripts one step looks like this:

Suppose (T, l) is a finite α-tree and r ∈ T has no child and let T0 = T\{r}.
Suppose that σ : T0 → ω<ω is a tree embedding of (T0, l � [T0]2) into (ω<ω, L).
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Suppose |r| = n, F = σ(T0) ∩ ωn, p = σ(r∗), and f : F → α ∪ Q is defined
by f(σ(s)) = l(r, s). By our property there are infinitely many t such that
we can extend σ to T by defining σ(r) = t. This proves the Lemma.1

QED

Theorem 1 follows immediately from the three Lemmas.

Remarks

Theorem 1 settles a question of Stefan Geschke [1]. It was motivated by his
result that the smallest cardinality of a family of clopen graphs on the Cantor
space, 2ω, such that every such graph can be continuously embedded into
some member of the family is exactly d, the dominating number. Geschke
also showed that there is a clopen graph on ωω universal for all clopen graphs
on 2ω.

The family of Uα in Lemma 8 are also universal for all clopen graphs
on closed subsets of ωω and hence for all clopen graphs on zero dimensional
Polish spaces.

Recall that a clopen graph E on X is true clopen iff E ⊆ X2 is symmetric
irreflexive and clopen in X2 - not just clopen in X2\∆. The proof of Lemma
7 shows that in fact there is no clopen graph on ωω which is universal for all
true clopen graphs on ωω. Note that if E1 is continuously reducible to E2

and E2 is true clopen, then E1 is true clopen. Also if E is true clopen, then
there exists a clopen partition ωω = ti<ωCi such that C2

i ∩ E = ∅ for each
i < ω. Using this we can vary the proof of Lemma 8 to produce true clopen
U ′α for α < ω1 such that every true clopen graph continuously embeds into
one of them. Construct a α-universal tree L′ similar to L but satisfying: if
s, t are distinct, |s| = |t| = n > 1, and s(0) = t(0), then L′(s, t) = out. Hence
we are thinking of replacing Ci with [〈i〉].

In the case of unary predicates continuous reducibility is called Wadge
reducibility, i.e., for A,B ⊆ ωω define A ≤W B iff there exists a continuous
f : ωω → ωω such that x ∈ A iff f(x) ∈ B. For a generalization of Wadge
reducibility to Borel labellings in a better-quasi-order see van Engelen, Miller,
and Steel [3]. Louveau and Saint-Raymond [2] contains some results about
the quasi-order of Borel linear orders under embeddability. Even for finite

1This type of argument is familiar to model theorists who would refer to it as joint
embedding, amalgamation, and universal Fraisse structure. Set theorists would say its
like Cantor’s proof that every countable linear order embeds into the rationals.
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graphs the n-cycles are pairwise incomparable under graph embedding, so we
don’t get a well-quasi-order. However there are weaker notions of reducibility
under which finite graphs are well-quasi-ordered, see Robertson and Dale [4].
Perhaps there is a natural notion of reducibility for clopen graphs that gives
a well-quasi-ordering.
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