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A CHARACTERIZATION OF THE LEAST CARDINAL FOR
WHICH THE BAIRE CATEGORY THEOREM FAILS

ARNOLD W. MILLER!

ABSTRACT. Let k be the least cardinal such that the real line can be covered by &
many nowhere dense sets. We show that k can be characterized as the least cardinal
such that “infinitely equal” reals fail to exist for families of cardinality «.

Let Baire () stand for:

“The real line is not the union of k many nowhere dense sets
(a set is nowhere dense iff its closure has no interior)”.

The property was extensively studied in Miller (1981) and Miller (1982). It is
easily seen (see Kuratowski (1966)) that: rot Baire (k) iff some separable, completely
metrizable space is the union of ¥ many nowhere dense sets iff every separable,
completely metrizable space without isolated points is the union of k many nowhere
dense sets.

For example, we may replace the real line by Cantor space (2), or Baire space
(w*). Recall that  is the first infinite ordinal and is equal to its set of predecessors
(i.e. the nonnegative integers), 2 = {0, 1}, X7 is the set of functions mapping Y into
X, 2 and w have the discrete topology, and 2“ and «w* have the product topology.

Let Uniformity (k) stand for the proposition

“Every subset of the real line of cardinality less than or equal
to k is meager (a set is meager iff it is the union of countably
many nowhere dense sets)”.

Let us recall some standard terminology: | X| is the cardinality of X, (for any
cardinal k) [X]*={(Y|Y CX, |Y|=«}, [X]™"=(Y|Y C X, | Y|<«k}, V*n ab-
breviates “for all but finitely many n”, and 3°n abbreviates “there are infinitely
many n”’.

Consider the following properties:

Different (k) iff V4 € [w®]=* AX € [w]® IfE ® VgE A
V®n € X f(n) # g(n);

Equal (k) iff V4 € [w®]"" VB € [[w]“]"" If €« Vg E 4
VX& B 3I%°n € X (f(n) = g(n)).
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In Miller (1981) it was shown that Uniformity (k) iff Different (k). A less
satisfactory property was found equivalent to Baire (k). The purpose of this note is
to prove

THEOREM. Baire (k) iff Equal (k).

To see that Baire (x) implies Equal (), note that for any g € w® and X € [w]*,
{f € «”|Vn € X f(n) # g(n)} is closed nowhere dense in w*®.
Now let us prove that Equal («) implies Baire (k). Let Independent () stand for:

“vBE[[w]®] ™ IZ € [w]*VXEB|XNZ|=|X— Z|= w”.
LEmMMA 1. Equal (x) implies Independent (k).

PROOF. Let B = { X, | @ < x} and choose X} € [ X,]“ for i = 0,1 so that X? N X,
= &. Choose g' € w* so that g'( X}) = {i}. By Equal («) let f € w* be such that for
all @ and i, 3%n € X! f(n) = gi(n) = i. Then Z = f (0} does the job. O

DEFINITION. Z € [w]® is l-uncrowded iff VA, m € Zn #m —|n —m|= L.

DEerFINITION. [-Uncrowded (x) iff VB € [[w]“]™* 3Z [-uncrowded VX € B
| XN Z|= w.

LEMMA 2. The following are equivalent.
(A) Independent (k),

(B) 2-Uncrowded (),

(O) for all | < w I-Uncrowded (k).

PROOF. Let us first prove that (A) implies (B). I claim there exists 7' € [w]“ such
that for every X € B, | X — T|= w. To see this, note that Independent (k) implies
Kk <c=|w?’|. A well-known theorem of Sierpinski (1928) says that there exists an
almost disjoint family of cardinality ¢, i.e. there exists M, € [w]® for a < ¢ such that
for all @ # B, | M, N Mg |< w. Since the M, are almost disjoint and « < ¢, for some
a<cforall X € B| X — M,|= w. Let T be any such M.

Let E be the even integers and O the odd integers. Without loss of generality we
may assume that foral X€e B, XCE—TorXC O —T.LetT = {a,: n <w} be
an enumeration in increasing order and for any a and b let (¢, b) = {(n €Ew|a<n
< b}. For each X € B let X* = {n|(a,, a,,;) N X # @}. Let W be independent
with respect to {X* | X € B} (i.e. for all X*, | X* — W|=| X* N W|= w). Let

Z=U{(a,a,,)NElneW}U{(a,,a,,,)NO|n&W}.

It is easily checked that Z is 2-uncrowded and forall X € B, | Z N X |= w.

(B) implies (C) is proved by induction on /. Suppose Z is /-crowded and for all
X€B, | XNZ|=w Let Z= {a,: n < w} (increasing order) and for each X € B,
X*={n|a, € X}. Let Q be a 2-uncrowded set such that for all X € B,
| X* N Q|= w. Then {a,|n € Q} is a 2/-uncrowded set meeting each element of B
in an infinite set.

Now we prove (B) implies (A). Let {W,|a <k} C[w]”. For each a <k, let
We={(2n|lneW,) and W2={2n+ 1|n € W,}. Let Z be a 2-uncrowded set
such that for each a <k, |Z N We|=|Z N W2|=w. Let Q = {n|2n € Z}. Then

n’



500 ) A. W. MILLER

|Z N W¢|= w implies |Q N W,|= w, and | Z N W |= « implies | W, — Q|= w
since 2n + 1 € Z implies 2n € Z. [

LEMMA 3. (Equal (x)) VF € [w”]=" there exists a sequence n, < w for k < w such
that n,,, > ¥ o n, and for every f € F, 3%k f(n,) < ny,,.

PrOOF. We may assume without loss of generality that each f & F is strictly
increasing. Choose g € w* such that.for every f € F, 3%n g(n) = f(n). Construct a
sequence n, for k < w so that n,,, > 2 n, and for every i <n,, g(i) <n,,,.
Then for every f € F3%k f(n,) <n,,,. O

Now we finish proving the theorem. Let us review some standard terminology. Let
272 =U,_, 2" and for s €27 let |s| be the length of s (i.c. that n such that
s €2"). For s and ¢ elements of 2=“ let s”¢ be their concatenation. A basic clopen
subset of 2 is of the form [s] = {x € 2“|s C x} for some s € 2=“.

Suppose D, C Z* for a < k are dense open sets. We must show that N __, D, + @.
Construct f,: @ - 2= such that for every s € 25", [s"f(n)] C D,. This is done by
successively extending | 2<" | times. By Lemma 3 there exists a sequence n, for k <
with n, ., > 2% n; and for each a, 3%k | f,(n,)|< n,,,. By Equal (k) there exists
g: @ > 2= such that for each a <,

X, = {k <o|fne) = g(k) and | f,(ny) | < nyir}
is infinite. We may assume that for all k, | g(k)|<n,,,. Now let Z be a 3-un-
crowded set such that for all « <k, | X, N Z|= w and let Z = {k,|n < w}. Define
h € 2° to be the infinite concatenation

g(ko)Ag(kl)Ag(kz)A-n-
Then h € D, for each a, because if k, € Z N X, then

A

n—1
|g(ko) g(ky) -+ glk,_) < 2 Mpaa SN 43 Sy
i=0

and g(k,) = f(n, ). O

The notion of independent family is due to Fichtenholz and Kantorovitch (1934).
The property Independent (k) is due to R. Price (1979). The notion of uncrowded
set is new here, therefore let us scrutinize some variations of it.

First, we may weaken this notion by saying that Z C w is loosely packed iff there
exists N < w such that for all i, (i,i + N) — Z # @ (i.e. Z does not contain a block
of N — 1 consecutive integers). Call a set Z € [w]® oco-uncrowded iff Z = {a,:
n < w} andlim,_, .(a,,, — a,) = . Define the two properties Loosely packed (k)
and co-Uncrowded (k) by requiring that for every B € [[w]“]=* there exists Z
loosely packed (oo-uncrowded) such that for all X € B, | Z N X |= w.

THEOREM. (A) Independent (k) iff Loosely packed ().
(B) Independent (w,) = oo-Uncrowded (w,) = Baire (w,).

To prove part (A) left to right, just note that a 2-uncrowded set is loosely packed.
Now suppose that Independent (x) fails. Then there exists B € [[w]“]=" such that
for every finite partition of w, { X, X;, X,,...,X,_,}, there exists i <n and X € B
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such that X C X,. The easiest way to obtain such a B is by a Lowenheim-Skolem
argument. (Those readers unfamiliar with the logic involved are invited to find their
own proof.) Let B, € [[w]“]=* witness that Independent (k) fails, i.e. VZ € [w]®
3X € By X N Z s finite or X — Z is finite. Let M be an elementary substructure of
(H(c"), €) such that {B,} UB,C M and |M|<k. Let B=MN [w]®. For any
ZeMN[w]®and Y C Z there exist X € M N [w]® such that X C Zor XN Y =
& . This is because there is, in M, a bijection between Z and w. Now by an easy
induction on n < w, for every partition X,, X,, X,...,X,_, of w suppose Z is
loosely packed and N is such that for every i, (i,i + N) — Z # &. Define X, for
I<Nbyk€X,iff (k-N+1)&Z. Clearly U,_y X, =w.S03Q € B,A/I<NQ C
X,. Butthen {k - N + /| k € Q} N Z = &, so not Loosely packed ().

Next we show that Independent (w,) does not imply co-Uncrowded (w,). This
fact is demonstrated by the random real model of Solovay. This model is obtained
by forcing with the measure algebra B of 2* for some k = w, over a model of CH.
One easily shows that if R is a random subset of w then for every X € [w] in the
ground model, | X — R|=| X N R|= . Now suppose

p(l7 C @ A T o-uncrowded]) = 1.
By standard arguments obtain an increasing sequence 7, in the ground model such
that w([Vk (7 — n,) is k-uncrowded] = ¢) = 3. Letting b, = [i € 7] we see that for
any i <j <k, p(b,, +; b, ;- ¢) = 0. Thus we can find an infinite W C  such that
p(C,cw b)) <. It follows that p(Ir N W= 2]) = 3.

Now let us see that co-Uncrowded (w,) does not imply Baire (w,).

DEFINITION. Bounded (k) iff VF € [0®]=*3g € w® Vf € FY*n f(n) < g(n).

DEFINITION. Weak Bounded (k) iff VF € [w]=", 3g € w® VfE F 3%n f(n) <
g(n).

LemMa 1. (1)? Bounded (k) = Independent (k).

(2) Independent (k) + Weak Bounded (k) = co-Uncrowded (k).

PrOOF. (1) This is a generalization of Theorem 2 of Solomon (1977). Given
B € [[w]®]=" define for each X € B, gy € w* by letting g4(n) be least element of B
greater than n. By Bounded («) find f € «* which eventually dominates each g, for
X € B. Let

z= U [f@2n), f2n+ D)].

n<w

Then for all X € B,
| XNZ|=|X—-Z|=w.

(2) Given B € [[w]®]=" find using Independent (k) a sequence Z,,, C Z, such
that Z, is n-uncrowded and for all X € B, | Z, N X|= w. For each X € B define
f. € w® by requiring that for each n <w, [n, f(n)) N XN Z, # @. By Weak

2This was discovered also by P. Nyikos, F. Galvin, and G. Gruenhage.
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Bounded (k) let g € »* infinitely often dominate each f, and put
Z=U{[n,gn)nz,|n<w}. O

In Laver’s model (Laver (1976)), it is well known that Bounded (w,) holds but
Baire (w,) fails. O

Some remarks and questions. Can one drop the set X from Different (k) or the
family B from Equal («)? If one changes the definition of Weak Bounded (k) to

VF e [0*]=" VB €[[w]*]| ™ 3g € v VX € BYf € F(3*n € X f(n) < g(n)),

one gets an equivalent property (Roitman (1979)).

The property Bounded (k) was defined and studied by Rothberger (1939, 1941,
1952). See also R. Solomon (1977). The property Weak Bounded (k) has been
studied in connection with p-points, see Ketonen (1976) and in connection with box
products, see Williams (1976), Roitman (1979), and van Douwen (1981).

For some models in which Independent (w,) fails, see Baumgartner and Laver
(1979) and Kunen (1980) (in particular Exercises A10, A12, and A13 on p. 289).

Can the least k for which Independent () fails have cofinality «?
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