Carlson Collapse is minimal under MA

Arnold W. Miller Sept 2012

Namba forcing [5] may be regarded as a generalization of Laver forcing [2] to ω_2 . The analogous forcing for ω_1 we call the Carlson collapse. We first encountered it when writing our joint paper: Carlson, Kunen, and Miller [1]. In that paper we used the Prikry collapse of ω_1 , which is analogous to superperfect tree forcing (e.g., Miller [3]) but with subtrees of $\omega_1^{<\omega}$. We proved in [1] the analogue of Theorem 3 for the Prikry collapse, namely that assuming Martin's axiom the generic extension is minimal. Our paper [1] did not include Theorem 4, although Carlson had already proved it with an easier proof than is given here. Lemma 2 was obtained while giving a topics course [4] on forcing.

One of my colleagues many years ago liked to joke about the referee report that said; "This paper fills a much needed gap in the literature."

Definition 1 (1) A subtree $p \subseteq \omega_1^{<\omega}$ is Carlson iff there exists $s \in p$ called the root of p such that for all $t \in p$ either $s \subseteq t$ or $t \subseteq s$ and for every $t \in p$ with $s \subseteq t$ there are uncountably many $\alpha < \omega_1$ with $s^{\wedge} \langle \alpha \rangle \in p$.

(2) Let \mathbb{P} be the partial order of Carlson trees under inclusion.

(3) We write $p \leq_0 q$ iff $p \leq q$ and root(p) = root(q).

(4) For $s \in p$ define $p_s = \{t \in p : s \subseteq t \text{ or } t \subseteq s\}.$

(5) $B(p) = \{t \in p : root(p) \subseteq t\}$ (nodes beyond the root).

Lemma 2 Suppose MA_{ω_1} and we are given $(p_{\alpha} \in \mathbb{P} : \alpha < \omega_1)$ and τ a \mathbb{P} -name such that for each $\alpha < \omega_1$

$$p_{\alpha} \Vdash \tau \in 2^{\omega} \setminus V.$$

Then there exists $(q_{\alpha} \leq_0 p_{\alpha} : \alpha < \omega_1)$ and $(C_{\alpha} : \alpha < \omega_1)$ pairwise disjoint closed subsets of 2^{ω} such that for every $\alpha < \omega_1$

$$q_{\alpha} \Vdash \tau \in C_{\alpha}.$$

Theorem 3 If $M \models MA_{\omega_1}$ and G is \mathbb{P} -generic over M, then for every $x \in 2^{\omega} \cap M[G]$ either $x \in M$ or $G \in M[x]$.

Proof

Given any p such that $p \Vdash \tau \in 2^{\omega} \setminus M$ construct $q \leq_0 p$ and closed sets $(C_s : s \in B(q))$ such that

- 1. $q_s \Vdash \tau \in C_s$ for each $s \in B(q)$,
- 2. $C_s \subseteq C_t$ if $t \subseteq s$, and
- 3. $C_{s^{\hat{}}\langle\alpha\rangle} \cap C_{s^{\hat{}}\langle\beta\rangle} = \emptyset$ if $\alpha \neq \beta$.

This is an easy fusion argument combined with Lemma 2. We claim that

$$q \Vdash G \in M[\tau^G].$$

This is because G is determined by the generic collapse map $g \in \omega_1^{\omega}$ defined by $g = \bigcap G$. Then

$$G = \{ p \in \mathbb{P} : g \in [p] \} \text{ and } g = \bigcup \{ s : \tau^G \in C_s \}.$$

QED

Theorem 4 (Carlson 1979) Suppose $M \models MA_{\omega_1}$ and G is \mathbb{P} -generic over M. Then for every $f \in \omega^{\omega} \cap M[G]$ there exists $g \in M \cap \omega^{\omega}$ such that $\forall n \ f(n) < g(n)$.

Proof

Without loss we may suppose that

$$p \Vdash \stackrel{\circ}{f} \in \omega^{\omega} \backslash M.$$

Let $E \subseteq 2^{\omega}$ be the eventually zero reals. Let $\Phi : 2^{\omega} \setminus E \to \omega^{\omega}$ be the natural homeomorphism and let τ be a name for $\Phi^{-1}(f)$. Letting $p_{\alpha} = p$ for all $\alpha < \omega_1$ we obtain $(q_{\alpha} \leq_0 p : \alpha < \omega_1)$ and closed pairwise disjoint $(C_{\alpha} \subseteq 2^{\omega} : \alpha < \omega_1)$ such that $q_{\alpha} \Vdash \tau \in C_{\alpha}$ for all $\alpha < \omega_1$. Since the C_{α} are pairwise disjoint there must be α with $C_{\alpha} \cap E = \emptyset$. This implies that $\Phi(C_{\alpha}) = K_{\alpha} \subseteq \omega^{\omega}$ is a compact set and so we may find $g \in \omega^{\omega}$ such that gdominates every element of K_{α} . But then

$$q_{\alpha} \Vdash \forall n \quad \stackrel{\circ}{f}(n) < \check{g}(n).$$

QED

Proof of Lemma 2.

Claim 5 Given any sentence θ and condition p there exists $q \leq_0 p$ such that

$$q \Vdash \theta \text{ or } q \Vdash \neg \theta.$$

Proof

This is the Laver Lemma. It is also true for Namba forcing and many others. QED

Claim 6 Suppose $p_0 \Vdash \tau \in 2^{\omega} \setminus M$. Then there exists $q_1, q_2 \leq_0 p_0$ and pairwise disjoint clopen sets C_1, C_2 such that $q_1 \Vdash \tau \in C_1$ and $q_2 \Vdash \tau \in C_2$.

Proof

For $p \leq p_0$ define p is good iff there are $q_1, q_2 \leq_0 p$ and pairwise disjoint clopen sets C_1, C_2 such that $q_i \Vdash \tau \in C_i$ for i = 1, 2. Note that if p is bad and $s = \operatorname{root}(p)$ then for all but countably many $\alpha < \omega_1$ with $s \land \langle \alpha \rangle \in p$ the condition $p_{s \land \langle \alpha \rangle}$ is bad. This because there are only countably many pairs of disjoint clopen sets C_1, C_2 .

By this observation if the Claim fails then we may construct $q \leq_0 p_0$ such that for every $t \in B(q) = \{t \in q : \operatorname{root}(q) \subseteq t\}$ the condition q_t is bad. Using Claim 5, it follows that for every $s \in B(q)$ there exists a unique $x_s \in 2^{\omega}$ such that for every $n < \omega$ there exists $p \leq_0 q_s$ such that $p \Vdash \tau \upharpoonright n = x_s \upharpoonright n$. If there were two x_s with this property, we could easily get a contradiction to the badness of q_s .

For every $s \in B(q)$ it must be that $x_s = x_{s \land \langle \alpha \rangle}$ for all but countably many $s \land \langle \alpha \rangle \in q$. To see this suppose not and let $Q(s) = \{\alpha < \omega_1 : s \land \langle \alpha \rangle \in q\}$. Then we would be able to find $t \in 2^{<\omega}$ with the property that uncountably many $\alpha \in Q(s)$ had $t \subseteq x_{s \land \langle \alpha \rangle}$ but $t \neq t' = x_s \upharpoonright |t|$. But this means we can find $p \leq_0 q_s$ such that $p \Vdash t \subseteq \tau$. We can also find $p' \leq_0 q_s$ such that $p \Vdash t^p r \subseteq \tau$ by the definition of x_s . This contradicts the badness of q_s .

By the above arguments we can find $x \in 2^{\omega}$ and $q \leq_0 p_0$ such that $x_s = x$ for every $s \in B(q)$. This contradicts the assumption that $p_0 \Vdash \tau \neq \check{x}$. QED

Claim 7 Suppose $p_i \Vdash \tau \in 2^{\omega} \setminus M$ for i = 1, 2. Then there exists $q_1 \leq_0 p_1$, $q_2 \leq_0 p_2$ and pairwise disjoint clopen sets C_1, C_2 such that $q_i \Vdash \tau \in C_i$ for i = 1, 2.

Proof

Apply Claim 6 to p_1 and obtain $q_{1,i} \leq_0 p_1$ and disjoint clopen C_1, C_2 such that $q_{1,i} \Vdash \tau \in C_i$ for i = 1, 2. We may as well assume C_1, C_2 are complementary. Apply the Laver Lemma to p_2 and get $q_2 \leq_0 p_2$ such that either $q_2 \Vdash \tau \in C_1$ or $q_2 \Vdash \tau \in C_2$. If $q_2 \Vdash \tau \in C_2$, take $q_1 = q_{1,1}$, otherwise take $q_1 = q_{1,2}$. QED

Claim 8 Suppose $n < \omega$ and $p_i \Vdash \tau \in 2^{\omega} \setminus M$ for i < n. Then there exists $(q_i \leq_0 p_i : i < n)$ and pairwise disjoint clopen sets $(C_i : i < n)$ such that $q_i \Vdash \tau \in C_i$ for i < n.

Proof Iteratively apply Claim 7 to all pairs i < j < n. QED

Definition 9 For T a finite subtree of B(q) define

(1) $p \leq_T q$ iff $p \leq_0 q$ and $T \subseteq p$. (2) For each $t \in T$ define

$$q_{t,T} = \{ s \in q : s \subseteq t \text{ or } (t \subset s \text{ and } s \upharpoonright (|t|+1) \notin T \}$$

Note that $\{q_{t,T} : t \in T\}$ is a finite maximal antichain beneath q. This is analogous to Laver's $q \leq_n p$ except there are uncountably many T.

Claim 10 Suppose $p \Vdash \tau \in 2^{\omega} \setminus M$ and $p' \Vdash \tau \in 2^{\omega} \setminus M$ and $T \subseteq B(p)$ and $T' \subseteq B(p')$ are finite subtrees. Then there are $q \leq_T p$ and $q' \leq_{T'} p'$ and pairwise disjoint clopen sets C and C' such that $q \Vdash \tau \in C$ and $q' \Vdash \tau \in C'$.

Proof

Let p_i for i < m list all $p_{T,t}$ for $t \in T$ and let p_i for $m \le i < n$ list all $p'_{T',t'}$ for $t' \in T'$. Apply Claim 8 to obtain q_i and C_i . Let $q = \bigcup \{q_i : i < m\}$ and $C = \bigcup \{C_i : i < m\}$. Similarly put $q' = \bigcup \{q_i : m \le i < n\}$ and $C' = \bigcup \{C_i : m \le i < n\}$. QED

Claim 11 Suppose $p \Vdash \tau \in 2^{\omega}$, then there exists $q \leq_0 p$ such and $\pi : q \to 2^{<\omega}$ such that for every $s \in q$ $|\pi(s)| = |s|$ and $q_s \Vdash \pi(s) \subseteq \tau$.

Proof

Use the Laver lemma (Claim 5) and fusion to get the result by considering the sequence of sentences " $\tau(n) = 0$ ". QED

Definition 12 For q as in Claim 11 define the poset $\mathbb{Q}(q)$ as follows: $(T,C) \in \mathbb{Q}(q)$ iff T is a finite subtree of B(q), C is clopen subset of 2^{ω} , and there exists $p \leq_T q$ such that $p \Vdash \tau \in C$. Define $(T_1, C_1) \leq (T_2, C_2)$ iff $T_1 \supseteq T_2$ and $C_1 \subseteq C_2$.

From now on for the poset $\mathbb{Q}(q)$ the condition q will always have the property of Claim 11 and hence for any $p \leq q$ and clopen set C we have that $p \Vdash \tau \in C$ iff the range of the induced continuous map $\pi : [p] \to 2^{\omega}$ is a subset of C.

Claim 13 $\mathbb{Q}(q)$ has the ccc.

Proof

Since there are only countably many clopen sets it is enough to see that any pair with the same clopen set, (T_1, C) and (T_2, C) is compatible. We claim that $(T_1 \cup T_2, C) \in \mathbb{Q}(q)$. Note that for $p \leq q$ that $p \Vdash \tau \in C$ iff $[\pi(s)] \cap C \neq \emptyset$ for every $s \in p$. It follows that if $p_1 \leq_{T_1} q$ and $p_2 \leq_{T_2} q$ and each force $\tau \in C$, then $(p_1 \cup p_2) \leq_{T_1 \cup T_2} q$ and $p_1 \cup p_2 \Vdash \tau \in C$. QED

Definition 14 For G and $\mathbb{Q}(q)$ -filter define

$$q^G = \bigcup \{T \ : \ \exists C \ (T,C) \in G\}$$

and

$$C^G = \bigcap \{ C : \exists T (T, C) \in G \}.$$

Claim 15 We can find \mathcal{D} a family of dense subsets of $\mathbb{Q}(q)$ with $|\mathcal{D}| = \omega_1$ such that for every G a $\mathbb{Q}(q)$ filter which meets each element of \mathcal{D} we have that $q^G \leq_0 p$ and $q^G \Vdash \tau \in C^G$.

Proof

Note that the trivial condition $({root}(q), 2^{\omega})$ is always in G. For $s \in B(q)$ and $\alpha < \omega_1$ define

$$D_{s,\alpha} = \{ (T,C) \in \mathbb{Q}(q) : (T,C) \Vdash s \notin q^G \text{ or } \exists \beta > \alpha \ s^{\langle \beta \rangle} \in T \}$$

To see that it is dense note that any condition can be extended to a condition (T,C) such that either $(T,C) \Vdash s \notin q^G$ or $(T,C) \Vdash s \in q^G$. In the first case $(T,C) \in D_{s,\alpha}$ and we are done. In the second case we must be able to find $(T', C') \leq (T, C)$ with $s \in T'$. By the definition of $\mathbb{Q}(q)$ there exists $p \leq_{T'} q$ such that $p \Vdash \tau \in C'$. Choose any $\beta > \alpha$ with $s^{\hat{}} \langle \beta \rangle \in p$. Then p witnesses that $(T' \cup \{s^{\wedge}\langle\beta\rangle\}, C')$ is in $\mathbb{Q}(q)$ and $D_{s,\alpha}$.

Meeting all the $D_{s,\alpha}$ guarantees that $q^G \in \mathbb{P}$ and $q^G \leq_0 q$. To see that $q^G \Vdash \tau \in C^G$ it is enough to show that for every $(T, C) \in G$ that

 $q^G \Vdash \tau \in C.$

Choose n large enough so that there exists $\Gamma \subseteq 2^n$ such that we may write $C = \bigcup \{ [s] : s \in \Gamma \}$. We claim that (T, C) forces that for every $s \in q^G \cap \omega_1^n$ that $\pi(s) \in \Gamma$. If this were not the case, then for some $(T', C') \leq (T, C)$ and $s \in T' \cap \omega_1^n$ we would have that $\pi(s) \notin \Gamma$. But this means that $q_s \Vdash \tau \in [\pi(s)]$ and therefor $q_s \Vdash \tau \notin C$ contradicting the definition of $\mathbb{Q}(q)$ that $C' \subseteq C$ and there exists $p \leq_{T'} q$ (so $p_s \leq_0 q_s$) and $p \Vdash \tau \in C'$. QED

Finally we prove Lemma 2. We assume that the $q_{\alpha} \leq_0 p_{\alpha}$ have the property as in Claim 11. We let

$$\mathbb{Q} = \sum \{ \mathbb{Q}(q_{\alpha}) : \alpha < \omega_1 \}$$

be the direct sum which has the ccc by MA_{ω_1} . For any $\alpha < \beta < \omega_1$ let

$$D_{\alpha,\beta} = \{ p \in \mathbb{Q} : p_{\alpha} = (T_{\alpha}, C_{\alpha}), \ p_{\beta} = (T_{\beta}, C_{\beta}), \text{ and } C_{\alpha} \cap C_{\beta} = \emptyset \}$$

By Claim 10 this set is dense. By Claim 15 we may find a family \mathcal{D} of dense subsets of \mathbb{Q} with $|\mathcal{D}| = \omega_1$ such that if G is a \mathbb{Q} -filter meeting each element of \mathcal{D} then each $q_{\alpha}^{G} \leq_{0}^{G} q_{\alpha}$ has the property that $q_{\alpha}^{G} \Vdash \tau \in C_{\alpha}^{G}$. If G meets all the $D_{\alpha,\beta}$ then the C_{α}^{G} will be pairwise disjoint. Applying MA_{ω_1} gives us the sequences $(q_{\alpha}^{G} \leq_{0} q_{\alpha} \leq_{0} p_{\alpha} : \alpha < \omega_{1})$ and $(C_{\alpha}^{G} : \alpha < \omega_{1})$ to prove Lemma 2. QED

References

[1] Carlson, Tim; Kunen, Kenneth; Miller, Arnold W.; A minimal degree which collapses ω_1 . J. Symbolic Logic 49 (1984), no. 1, 298-300.

http://www.math.wisc.edu/~miller/res/min.pdf

- [2] Laver, Richard; On the consistency of Borel's conjecture. Acta Math. 137 (1976), no. 3-4, 151-169.
- [3] Miller, Arnold W.; Rational perfect set forcing. Axiomatic set theory (Boulder, Colo., 1983), 143159, Contemp. Math., 31, Amer. Math. Soc., Providence, RI, 1984.

http://www.math.wisc.edu/~miller/res/rat.pdf

- [4] Miller, A.; Math 873 Forcing Fall 2009 http://www.math.wisc.edu/~miller/old/m873-09/index.html
- [5] Namba, Kanji; Independence proof of $(\omega, \omega_{\alpha})$ -distributive law in complete Boolean algebras. Comment. Math. Univ. St. Paul. 19 (1971), 1-12.

Arnold W. Miller miller@math.wisc.edu http://www.math.wisc.edu/~miller University of Wisconsin-Madison Department of Mathematics, Van Vleck Hall 480 Lincoln Drive Madison, Wisconsin 53706-1388